
CHARACTERIZING STRUCTURAL DESCRIPTIONS PRODUCED BY VARIOUS.
GRAMMATICAL FORMALISMS*

K. Vijay-Shanker David J. W e i r Aravind K. Joshi

Deparunent of Computer and Informat ion Science
University of Pennsylvania
Philadelphia, Pa 19104

A B S T R A C T

We consider the structural descriptions produced by vari-
ous grammatical formalisms in ~ of the complexity of the
paths and the relationship between paths in the sets of structural
descriptions that each system can generate. In considering the
relationship between formalisms, we show that it is useful to
abstract away from the details of the formalism, and examine
the nature of their derivation process as reflected by properties
of their deriva:ion trees. We find that several of the formalisms
considered can be seen as being closely related since they have
derivation tree sets with the same structure as those produced
by Context-Free C-ramma~. On the basis of this observation,
we describe a class of formalisms which we call Linear Context-
Free Rewriting Systems, and show they are recognizable in poly-
nomial time and generate only semilinear languages.

1 Introduction

Much of the study of grammatical systems in computational
linguistics has been focused on the weak generative capacity of
grammatical forma~sm- Little attention, however, has been paid
to the structural descriptions that these formalisms can assign to
strings, i.e. their strong generative capacity. This aspect of the
formalism i s beth linguistically and computationally important.
For example, Gazdar (1985) discusses the applicability of In-
dexed Grammars (IG's) to Natural Language in terms of the
structural descriptions assigned; and Berwick (1984) discusses
the strong generative capacity of Lexical-Functional Grammar
CLFG) and Government and Bindings grammars (GB). The work
of Thatcher (1973) and Rounds (1969) define formal systems
that generate tree sets that are related to CFG's and IG's.

We consider properties of the tree sets generated by CFG's,
Tree Adjoining Grammars (TAG's), Head GrammarS (HG's),
Categorial Grammars (CG's), and IG's. We examine both the
complexity of the paths of trees in the tree sets, and the kinds
of dependencies that the formalisms can impose between paths.
These two properties of the tree sets are not only linguistically
relevant, but also have computational importance. By consider-
ing derivation trees, and thus abstracting away from the details of
the composition operation and the structures being manipuht_ed,
we are able to state the similarities and differences between the

"This work was partially supported by NSF grants MCS-82-19116-CER, MC$-
$2-07294 and DCR-84-10413, ARO grant DAA 29-84-9-0027, and DARPA grant
N00014-85-K001& We are very gateful to Tony Kroch, Michael Palis, Sunii
Shende, and Mark $teedman for valuable discussions.

formalisms. It is striking that from this point of view many for-
malisms can be grouped together as having identically s~'uctm'ed
derivation tree sets. This suggests that by generalizing the notion
of context-freeness in CFG's, we can define a class of grarnmati-
ca] formalisms that manipulate more complex structures. In this
paper, we outline how such family of formalisms can be defined,
and show that like CFG's, each member possesses a number of
desirable linguistic and computational properties: in particular,
the constant growth property and polynomial recognizability.

2 Tree Sets of Various Formalisms

2.1 Context-Free Grammars

From Thateheds (1973) work, it is obvious that the complexity
of the set of paths from root to frontier of trees in a local set (the
tree set of a CFG) is regular ~ . We define the path set of a tree 7
as the set of strings that label a path from the root to frontier of
7. The path set of a tree set is the union of the path sets of trees
in that tree set. It can be easily shown from Thateher's result
that the path set of every local set is a regular set. As a result,
CFG's can not provide the structural descriptions in which there
are nested dependencies between symbols labelling a path. For
example, CFG's cannot produce trees of the form shown in Fig-
ure I in which there are nested dependencies between S and NP
nodes appearing on the spine of the tree. Gazdar (1985) argues
this is the appropriate analysis of unbounded dependencies in the
hypothetical Scandinavian language Norwedish. He also argues
that paired English complementizers may also require structural
descriptions whose path sets have nested dependencies.

2.2 H e a d G r a m m a r s a n d G e n e r a l i z e d C F G ' s

Head Grammars (HG's), introduced by Pollard (1984), is a for-
realism that manipulates headed strings: i.e., strings, one of
whose symbols is distinguished as the head. Not only is con-
catenation of these s~ings possible, but head wrapping can be
used to split a string and wrap it around another string. The
productions of HG's are very similar to those of CFG's except
that the operation used must be made explicit. Thus, the tree
sets generated by HG's are similar to those of CFG's, with each
node annotated by the operation (concatenation or wrapping)
used to combine the headed s~ngs derived by the daughters of

IThatcher actually chxacter/zed recognizable set~ for the purposes of this
paper we do not distinguish them from local gels.

104

S*
A

s
A

NP vP
A

V S '
A

Mp s

v PP

I
Figure 1: Nested dependencies in Norwedish

that node. A derivation tree giving an analysis of Dutch subor-
dinate clauses is given in Figure 2.

NP VPRR/

N V S

N V $

N V S / . ~

I I
N V

/ N I

Figure 2: HG analysis of Dutch subordinate clauses

HG's are a special case of a class of formalisms called
Generalized Context-Free Grammars, also introduced by Pol-
lard (1984). A formalism in this class is defined by a finite
set of operations (of which concatenation and wrapping are two
possibilities). As in the case of HG's the annotated tree sets for
these formalisms have the same structure as local sets.

2.3 Tree Ad jo in ing G r a m m a r s

Tree Adjoining Grzrnmars, a tree rewriting formalism, was intro-
duced by Joshi, Levy and Takabashi (1975) and Joshi (1983/85).
A TAG consists of a finite set of elementary trees that are ei-
ther initial trees or auxg/ary trees. Trees are composed using
an operation called adjoining, which is defined as follows. Let

be some node labeled X in a tree 3' (see Figure 3). Let 3" be
a tree with root and foot labeled by X. When -/' is a d j o i n e d
at r/ in the tree 3' we obtain a tree 3"". The subtree under ~1
is excised from 3', the tree 3" is inserted in its place and the
excised subtree is inserted below the foot of 3".

It can be shown that the path set of the tree set generated by
a TAG G is a context-free language. TAG's can be used to give

Y: S

i ' . s

r'." x

/?,,,
Figure 3: Adjunction operation

the structural descriptions discussed by Gazdar (1985) for the
unbounded nested dependencies in Norwedish, for cross serial
dependencies in Dutch subordinate clauses, and for the nestings
of paired English complementizers.

From the definition of TAG's, it follows that the choice of
adjunodon is not dependent on the history of the derivation.
Like CFG's, the choice is predetermined by a finite number of
rules encapsulated in the grammar. Thus, the derivation trees
for TAG's have the same structure as local sets. As with HG's
derivation structures are annotated; in the case of TAG's, by the
trees used for adjunction and addresses of nodes of the elemen-
tary tree where adjuoctions occurred.

We can define derivation trees inductively on the length of
the derivation of a tree 3'. If 3' is an elementary tree, the deriva-
tion tree consists of a single node labeled 3'. Suppose 3' results
from the adjunction of 3"1,..., 3"k at the k distinct tree addresses
n l , . . . , nk in some elementary tree 3", respectively. The tree
denoting this derivation of 3' is rooted with a node labeled 7'
having k sublrees for the derivations of 3"z,..., 3'k. The edge
from the root to the subtree for the derivation of 3'~ is labeled
by the address n~. To show that the derivation tree set of a
TAG is a local set, nodes are labeled by pairs consisting of the
name of an elementary tree and the address at which it was ad-
joined, instead of labelling edges with addresses. The following
rule corresponds to the above derivation, where 3 '1, . . . , 3"k are
derived from the auxiliary trees ~1 ~k, respectively.

(3", n) - - h i) . . .
for all addresses n in some elementary tree at which 7 ~ can be
adjoined. If 3" is an initial tree we do not include an address on
the left-hand side.

2.4 Indexed G r a m m a r s

There has been recent interest in the application of Indexed
Grammars (IG's) to natural languages. Gazdar (1985) considers
a number of linguistic analyses which IG's (but not CFG's) can
make, for example, the Norwedish example shown in Figure i.
The work of Rounds (1969) shows that the path sets of trees de-
rived by IG's (like those of TAG's) are context-free languages.
Trees derived by IG's exhibit a property that is not exhibited by
the trees sets derived by TAG's or CFG's. Informally, two or
more paths can be dependent on each other:, for example, they
could be required to be of equal length as in the trees in Figure 4.

105

IG's can generate trees with dependent paths as in Figure 4b.
Although the path set for trees in Figure 4a is regular, no CFG

$ a

a ~ b ~ a / A / B

a • b •
/ A / B . . a

a b
(a) (b)

Figure 4: Example with dependent paths

generates such a tree set. We focus on this difference between
the U'ee sets of CFG's and IG's, and formaliTe the notion of
dependence between paths in a tree set in Section 3.

An IG can he viewed as a CFG in which each nonterminal
• is associated with a stack. Each production can push or pop

symbols on the stack as can he seen in the following productions
that generate tree of the form shown in Figure 4b.

- . s(n, ,) push
- share

- , ,A(o,) pop
B(~a) - - bB(a) pop
A O - -
BO - b

Gazdar (1985) argues that sharing of stacks can be used to give
analyses for coordination. Analogous to the sharing of stacks
in IG's, Lexical-Functional Grammar's (LFG's) use the unifi-
cation of unbounded hierarchical structures. Unification is used
in LFG's to produce structures having two dependent spines
of unbounded length as in Figure 5. Bresnan, Kaplan, Peters,
and Zaenen (1982) argue that these structures are needed to de-
scribe erossed-serial dependencies in Dutch subordinate clauses.
Gaadar (1985) considers a restriction of lG's in which no more

s

NF VP

Jan NP VP V*

I
Plet NP VP V V*

I I I
M m s NP ~ V V'

{ I
V

{

Figure 5: LFG analysis of Dutch subordinate clauses

than one nonterminal on the right-hand-side of a production can
inherit the stack from the left-hand-side. Unbounded dependen-
cies between branches are not possible in such a system. TAG's

can be shown to be equivalent to this restricted system. Thus,
TAG's can not give analyses in which dependencies between
arbitrarily large branches exist.

2.5 C a t e g o r i a l G r a m m a r s

Steedman (1986) considers Categorial Grammars in which both
the operations of function application and composition may be
used, and in which function can specify whether they take their
arguments from their right or left. While the generative power
of CG's is greater that of CFG's, it appears to be highly con-
strained. Hence, their relationship to formalisms such as HG's
and TAG's is of interest. On the one hand, the definition of com-
position in Steedm~- (1985), which technically permits compo-
sition of functions with unbounded number of arguments, gen-
erates tree sets with dependent paths such as those shown in
Figure 6. This kind of dependency arises from the use of the

b 2

Figure 6: Dependent branches from Categorial Grammars

composition operation to compose two arbitrarily large cate-
gories. This allows an unbounded amount of information about
two separate paths (e.g. an encoding of their length) to be com-
bined and used to influence the later derivation. A consequence
of the ability to generate tree sets with this property is that CG's
under this definition can generate the following language which
can not be gener~_t_~_ by either TAG's or HG's.

{a a 1 a 2 b I b 2 b [n = n l + - 2 }

On the other hand, no linguistic use is made of this general
form of composition and Steedman (personal communication)
and Steedman (1986) argues that a more limited definition of
composition is more natural. With this restriction the resulting
tree sets will have independent paths. The equivalence of CG's
with this restriction to TAG's and HG's is, however, still an
open problem.

2.6 M u l t i c o m p o n e n t T A G ' s

An extension of the TAG system was introduced by Joshi et al.
(1975) and later redefined by Joshi (1987) in which the adjunc-
tion operation is defined on sets of elementary trees rather than
single trees. A multicomponent Tree Adjoining Grammar (MC-
TAG) consists of a finite set of finite elementary tree sets. We
must adjoin all trees in an auxiliary tree set together as a single
step in the derivation. The adjuncfion operation with respect
to tree sets (multicomponent adjunction) is defined as follows.

106

Each member of a set of trees can be adjoined into distinct nodes
of trees in a single elementary tree set, i.e, derivations always
involve the adjunction of a derived auxiliary tree set into an
elementary tree set.

Like CFG's, TAG's, and HG's the derivation tree set of a
MCTAG will be a local set. The derivation trees of a MCTAG
are similar to those of a TAG. Instead of the names of elementary
trees of a TAG, the nodes are labeled by a sequence of names
of trees in an elementary tree set. Since trees in a tree set
are adjoined together, the addressing scheme uses a sequence of
pairings of the address and name of the elementary tree adjoined
at that address. The following context-frue production captures
the derivation step of the grammar shown in Figure 7, in which
the trees in the auxiliary tree set are adjoined into themselves at
the root node (address e).

The path complexity of the tree set generated by a MCTAG is not
necessarily context-free. Like the string languages of MCTAG's,
the complexity of the path set increases as the cardinality of the
elementary tree sets increases, though hoth the string languages
and path sets wi l l always be semilinear.

MCTAG's are able to generate tree sets having dependent
paths. For example, the MCTAG shown in Figure 7 generates
trees of the form shown in Figure 4b. The number of paths that

A I J ,/J / ,
Figure 7: A MCTAG with dependent paths

can be dependent is bounded by the grammar (in fact the max-
imum cardinality of a tree set determines this bound). Hence,
trees shown in Figure 8 can not be generated by any MCTAG
(but can be generated by an IG) because the number of pairs of
dependent paths grows with n.

h c i l a t , a

I
A

A A

A `1 A , I

`1 `1 `1 `1 `1 `1 `1 A

I I I I I I I I
d II ~I dl 41 • • •

h e i l h t . =

Figure 8: Trees with unbounded dependencies

Since the derivation trees of TAG's, MCTAG's, and HG's
are local sets, the choice of the structure used at each point in
a derivation in these systems does not depend on the context
at that point within the derivation. Thus, as in CFG's, at any
point in the derivation, the set of structures that can be applied
is determined only by a finite set of rules encapsulated by the
grammar. We characterize a class of formalisms that have this
property in Section 4. We loosely describe the class of all such
systems as Linear Context-Free Rewriting Formalisms. As is
described in Section 4, the property of having a derivation tree
set that is a local set appears to be useful in showing important
properties of the languages generated by the formalisms. The
semflineerity of Tree Adjoining Languages (TAL's), MCTAL's,
and Head Languages (I-IL's) can be proved using this property,
with suitable restrictions on the composition operations.

3 Dependencies between Paths

Roughly spe~ki,g, we say that a tree set contains trees with
dependent paths if there are two paths p.~ = u~v.~ and q.y =

u.lw.1 in each -/ E r' such that u-y is some, possibly empty,
shared initial subpath; v.y and w.y are not hounded in length;
and there is some "dependence" (such as equal length) between
the set of all v.~ and w. r for each ~/ E I'. A tree set may be
said to have dependencies between paths if some "appropriate"
subset can be shown to have dependent paths as defined above.

We attempt to formalize this notion in terms of the tree
pumping lemma which can be used to show that a tree set
does not have dependent paths. Thatcher (1973) describes a
tree pumping lemma for recognizable sets related to the suing
pumping]emma for regular sets. The tree in Figure 9a can be
denoted by t l t2t3 where tree substitution is used instead of con-
catenation. The tree pumping lemm2 states that if there is tree,
t = h t 2 t s , generated by a CFG G, whose height is more than
a predetermined bound k, then all trees of the form tlt2t 3 for
each i >_ 0 will also generated by (3 (as shown in Figure 9b).
The suing pumping lemma for CFG's (uvuTz!/-theorem) can be
seen as a corollary of this lemma.

$

x

w

(=) Co)

Figure 9: Tree pumping lemma for local sets

The fact that local sets do not have dependent paths follows

107

from this pumping lemma: a single path can be pumped in-
dependently. For example, let us consider a tree set containing
trees of the form shown in Figure 4a. The tree t~ must be on one
of the two branches. Pumping ta will change only one branch
and leave the other b~aach unaffected. Hence, the resulting trees
wiU no longer have two branches of equal size,

We can give a tree pumping lemma for TAG's by adapt-
ing the uvwzy-tbeorem for CFL's since the Uee sets of TAG's
have independent and context-free paths. This pumping]emma
states that if there is tree, t = tzt2tat4ts, gener=_t_-~_ by a TAG
G, such that its height is more than a predetermined bound k,
then all trees of the form tst~tot~ts for each i _> 0 will also
generated by G. Similarly, for tree sets with independent paths
and more complex path sets, tree pumping lemmas can be given.
We adapt the string pumping lemmn for the class of languages
corresponding to the complexity of the path set.

A geometrical progression of language families defined by
Weir (1987) involves tree sets with increasingly complex path
sets. The independence of paths in the tree sets of the k ta
grammatical formalism in this hierarchy can be shown by means
of tree pumping lemma of the form i ~ i ~ z t ~ t s t 4 . . . t2k+Z t~k+Z+S.
The path set of ~ sets at level k + 1 have the complexity of
the string language of level k.

The independence of paths in a tree set appears to be an
important property. A formalism generating tree sets with com-
plex path sets can still generate only semilinc~r languages ff
its tree sets have independent paths, and semilinear path s e ~
For example, the formalisms in the hierarchy described above
generate semflinear languages although their path sets become
increasingly more complex as one moves up the hierarchy. From
the point of view of recognition, independent paths in the deriva-
t/on structures suggests that a top-down parser (for example) can
work on each branch independently, which may lead to efficient
pa~sing using an algorithm based on the Divide and Conquer
technique.

4 L i n e a r C o n t e x t - F r e e R e w r i t i n g S y s t e m s

From the discussion so far it is clear that a number of formalisms
involve some type of context-free rewriting (they have derivation
trees that are local sets). Our goal is to define a class of formal
systems, and show that any member of this class will possess
certain attractive properties. In the remainder of the paper, we
outline how a class of Linear Context-Free Rewriting Systems
(LCFRS's) may be defined and sketch how semifinearity and
polynomial recognition of these systems follows.

4.1 D e f i n i t i o n

In defining LCFRS's, we hope to generalize the definition of
CFG's to formalisms manipulating any structure, e.g. strings,
trees, or graphs. To be a member of LCI~S a formalism must
satisfy two restrictions. First, any grammar must involve a fi-
nite number of elementary structures, composed using a finite
number of composition operations. These operations, as we see
below, are restricted to be size preserving (as in the case of
concatenation in CFG) which implies that they will be linear

and non-erasing. A second res~iction on the forma~ms is that
choices during the derivation are independent of the context in
the derivation. As will be obvious later, their derivation tree
sets will be local sets as are those of CFG's.

Each derivation of a grammm" can be represented by a gener-
alized context-free derivation tree. These derivation trees show
how the composition operations were used to derive the final
structures from elementary structm'es. Nodes are annotated by
the name of the composition operation used at that step in the
derivation. As in the case of the derivation trees of CFG's,
nodes are labeled by a member of some finite set of symbols
(perhaps only implicit in the grnrnmm" as in TAG's) used to de-
note derived structures. Frontier nodes are annotated by zero
arity functions con'esponding to elementary su'uctures. Each
treelet (an internal node with all its children) represents the use
of a rule that is encapsulated by the g~a,- , ,~ . The grammar
encapsulates (either explicitly or implicitly) a finite number of
rules that can be written as follows:

A - . - , / , , (A~ , A .) n > 0

In the case of CFG's, for each production

p = A -* u t A 1 • . . unAnun+I

(where ui is a string of terminals) the function fp is defined as
follows.

In the case of TAG's, a derivation step in which the derived
uees ~z,. . . , ~- are adjoined into ~ at the addresses i s , . . . , i , ,
would involve the use of the following rule 2.

- . 4 , , , , , , . (Bs ~ .)

The composition operations in the case of CFG's are parame-
terized by the productions. In TAG's the elementary ~ee and
addresses where adjunction takes place are used to instantiate
the operation.

To show that the derivation trees of any grammar in LCFRS
is a /oca/ set, we can rewrite the annotated derivation trees
such that every node is labelled by a pair to include the com-
position operations. These systems are similar to those de-
scribed by Pollard (1984) as Generalized Context-Free Gram-
mars (GCFG's). Unlike GCF*G'S, however, the composition
operations of LCFRS's are restricted to be linear (do not du-
plicate unboundedly large s~mcmres) and nonerasing (do not
erase unbounded structures, a restriction made in most modern
transformational grammars). These two resWictions impose the
constraint that the remit of composing any two s~ucmres should
be a sa-ucture whose "size" is the sum of its constituents plus
some constant For example, the operation fp discussed in the
case of CF'G's (in Section 4.1) adds the constant equal to the
sum of the length of the strings u s , . . . , u ,+z .

Since we are considering formalisms with arbitrary struc-
tures it is difficult to precisely specify all of the restrictions
on the composition operations that we believe would appropri-
ately generalize the concatenation operation for the particular

2 We denote • tree derived from the elemeatany Wee -f by the symbol '~.

108

structures used by the formalism. In considering recognition of
LCFRS's, we make further assumption concerning the contri-
butinn of each structure to the input suing, and how the com-
position operations combine structores in this respect. We can
show that languages generated by LCFRS's are semilinear as
long as the composition operation does not remove any terminal
symbols from its arguments.

4.2 S e m i l i n e a r i t y o f L C F R L ' s

Semillnearity and the closely related constant growth property
(a consequence of semilinearity) have been discussed in the con-
text of grammars for naUtral languages by Joshi (1983185) and
Berwick and Weinberg (1984). Roughly speaking, a language,
L, has the property of semillnearity if the number of occurrences
of each symbol in any suing is a linear combination of the oc-
currences of these symbols in some fixed finite set of strings.
Thus, the length of any suing in L is a linear combination of the
length of swings in some fixed finite subset of L, and thus L is
said to have the constant growth property. Although this prop-
erty is not structural, it depends on the structural property that
sentences can be built from a finite set of clauses of bounded
structure as noted by Joshi (1983/85).

The property of semilinearity is concerned only with the
occurrence of symbols in strings and not their order. Thus, any
language that is letter equivalent to a semilinear language is
also semilinear. Two strings are letter equivalent if they contain
equal number of occurrences of each terminal symbol, and two
languages are letXer equivalent if every string in one language is
letter equivalent to a string in the other language and vice-versa.
Since every CFL is known to be semillnear (Parikh, 1966), in
order to show semilinearity of some language, we need only
show the existence of a leUer equivalent CFL.

Our definition of LCFRS's insists that the composition op-
erations are linear and nonerasing. Hence, the terminal sym-
bols appearing in the structures that are composed are not lost
(though a constant number of new symbols may be inUxaluced).
If ~P(A) gives the number of occurrences of each terminal in the
structure named by A, then, given the constraints imposed on
the formalism, for each rule A --* f p (A1 A n) we have the
equality

¢(A) = ¢(A~) + . . . + ¢ (A.) + cp

where cp is some constant. We can obtain a letter equivalent
CFL defined by a CFG in which the for each rule as above,
we have the production A - * A1 . . . A , u p where ~P(up) = cp.
Thus, the language generated by a grammar of a LCFRS is
semilinear.

4.3 Recogn i t ion o f L C F R L ' s

We now turn our attention to the recognition of suing languages
generated by these formalisms (LCFRL's). As suggested at the
end of Section 3, the restrictions that have been specified in
the definition of LCFRS's suggest that they can be efficiently
recognized. In this section for the purposes of showing that
polynomial time recognition is possible, we make the additional
restriction that the contribution of a derived structure to the in-

put string can be specified by a bounded sequence of substrings
of the input. Since each composition operation is linear and
nonerasing, a bounded sequences of substrings associated with
the resulting structure is obtained by combining the substrings in
each of its arguments using only the concatenation operation, in-
cluding each substring exactly once. CFG's, TAG's, MCTAG's
and HG's are all members of this class since they satisfy these
restrictions.

Giving a recognition algorithm for LCFRL's involves de-
scribing the subs~ings of the input that are spanned by the
structures derived by the LCFRS's and how the composition
operation combines these substrings. For example, in TAG's
a derived auxiliary tree spans two substrings (to the left and
right of the foot node), and the adjunction operation inserts an-
other substring (spanned by the subtree under the node where
adjunction takes place) between them (see Figure 3). We can
represent any derived tree of a TAG by the two subsc~ngs that
appear in its frontier, and then define how the adjunction opera-
t/on concatenates the substrings. Similarly, for all the LCFRS's,
discussed in Section 2, we can define the relationship between a
structure and the sequence of suhstrings it spans, and the effect
of the composition operations on sequences of subsU'ings.

A derived structure will be mapped onto a sequence
z l , zt of subsU'ings (not necessarily contiguous in the in-
puO, and the composition operations will be mapped onto func-
tions that can defined as follows s .

f ((= , = . ,) , (y , y .~)) = (~, ,,,,,)

where each zl is the concatenation of strings from z j ' s and y~'s.
The linear and nonerasing assumptions about the operations dis-
cussed in Section 4.1 require that each z j and Yk is used exactly
once to define the swings z l , . . . , z,~ 3. S o m e of the operations
will be constant functions, corresponding to elementary s~uc-
rares, and will be written as f 0 ---- (z l , . . . z~) , where each z~ is
a constant, the string of terminal symbols a1,~ . . . an~,~.

This representation of strncV.tres by substrings and the com-
position operation by its effect on subswings is related to the
work of Rounds (1985). Although embedding this version of
LCFRS's in the framework of ILFP developed by Rounds (1985)
is straightforward, our motivation was to capture properties
shared by a family of grammatical systems and generalize them
defining a class of related formafisms. This class of formalisms
have the properties that their derivation trees are local sets, and
manipulate objects, using a finite number of composition oper-
ations that use a finite number of symbols. With the additional
assumptions, inspired by Rounds (1985), we can show that mem-
bers of this class can be recognized in polynomial time.

4 .3.1 A l t e r n a t i n g T u r i n g M a c h i n e s

We use Alternating Turing Machines (Chandra, Kozen, and
Stockmeyer, 1981) to show that polynomial time recognition
is possible for the languages discussed in Section 4.3. An ATM
has two types of states, existential and universal. In an existen-
tial state an ATM behaves like a nondeterminlstic TM, accepting

3 In order to simplify the following discussion, we assume that each composition
operation is binary. It is easy to generalize to the case of n-ary operations.

109

if one of the applicable moves leads to acceptance; in an uni-
versal state the ATM accepts if all the applicable moves lead to
acceptance. An ATM may be thought of as spawning indepen-
dent processes for each applicable move. A k-tape ATM, M,
has a read-only input tape and k read-write work tapes. A $~p
of an ATM consists of reading a symbol from each tape and
optionally moving each head to the left or right one tape ceiL
A configuration of M consists of a state of the finite control,
the nonblank contents of the input tape and k work tapes, and
the position of each head. The space of a configuration is the
sum of the lengths of the nonblank tape contents of the k work
tapes. M works in space 5(n) if for every string that M ac-
cepts no configuration exceeds space S(n) . It has been shown
in (Chandra et al., 1981) that if M works in space logn then
there is a deterministic TM which accepts the same language in
polynomial time. In the next section, we show how an ATM
can accept the slrings generated by a grammar in a LCFRS for-
realism in logspace, and hence show that each fatally can be
recognized in polynomial time.

4 .3 .2 R e c o g n i t i o n b y A T M

We define an ATM, M, reCOgni~ng a language gener~t~ by
a grammar, G, having the properties discussed in Section 4.3.
It can be seen that M performs a top-down recognition of the
input ax . . . a,~ in logspace.

The rewrite rules and the definition of the composition op-
erations may be stored in the finite state control since G uses
a finite number of them. Suppose M has to determine whether
the k substrings z x , . . . , zk can be derived from some symbol
A. Since each zi is a contiguous substrin 8 of the input (say
a~x . . . a~2), and no two substrings overlap, we can represent zi
by the pair of intoge~'s (ix, i2). We assume that M is in an ex-
istential state qA, with integers ix and i2 representing z~ in the
(2i - 1) th and 2i *h work tape, for 1 _< i _< k.

For each rule p : A --, fp(B, C) such that fp is mapped
onto the function fp defined by the following rule.

M' breaks z x , . . . , z k into substrings z l , . . . , Z n ~ and
Yx Y,,2 conforming to the definition of fp. M spawns as
many processes as there are ways of breaklng up zx, zk
and rules with A on their left-hand-side. Each spawned process
must check if z x , . . . , zn: and y x , . . . , Yn2 can be derived from
B and C, respectively. To do this, the z ' s and y ' s are stored
in the next 2nx + 2n2 tapes, and M goes to a universal state.
Two processes are spawned requiring B to derive z x , . . . , z n l
and C to derive ~./x , . . . , Yn2. Thus, for example, one successor
process will be have M to be in the existential state qs with
the indices encoding zx, zn~ in the firat 2nl tapes.

For rules p : A - , f p 0 such that fp is constant func-
tion, giving an elementary structure, fp is defined such that
f p 0 ---- (zx . . . zk) where each z is a constant string. M must
enter a universal state and check that each of the k constant
substrings are in the appropriate place (as determined by the
contents of the first 2k work tapes) on the input tape. In addi-
tion to the tapes required to store the indices, M requires one

work tape for splitting the substrings. Thus, the ATM has no
more than 6k m'x -4- I work tapes, where k m'x is the maximum
number of substrings spanned by a derived structure. Since the
work tapes store integers (which can be written in binary) that
never exceed the size of the input, no configuration has space ex-
ceeding O(log n). Thus, M works in logspace and recognition
can be done on a deterministic TM in polynomial tape.

5 Discussion

We have studied the structural descriptions (trce sets) that can
be assigned by various gr-mr-at;cal systems, and classified these
formalisms on the basis of two fentures: path complexity; and
path independence. We contrasted formalisms such as CFG's,
HG's, TAG's and MCTAG's, with formalisms such as IG's and
unificational systems such as LFG's and FUG's.

We address the question of whether or not a formalism
can generate only slructural descriptions with independent paths.
This property reflects an important aspect of the underlying lin-
guistic theory associated with the formalism. In a grammar
which generates independent paths the derivations of sibling
constituents can not share an unbounded amount of information.
The importance of this property becomes clear in contrasting the-
ories underlying GPSG (Gazdar, Klein, Pullum, and Sag, 1985),
and GB (as described by Berwick, 1984) with those underly-
ing LFG and FUG. It is interesting to note, however, that the
ability to produce a bounded number of dependent paths (where
two dependent paths can share an unbounded amount of infor-
mation) does not require machinery as powerful as that used in
LFG, FUG and IG's. As illustrated by MCTAG's, it is possible
for a formalism to give tree sets with bounded dependent paths
while still sharing the constrained rewriting properties of CFG's,
HG's, and TAG's.

In order to observe the similarity between these constrained
systems, it is crucial to abstract away from the details of the
strucUwes and operations used by the system. The similarities
become apparent when they are studied at the level of deriva-
tion structures: derivation tree sets of CFG's, HG's, TAG's,
and MCTAG's are all local sets. Independence of paths at this
level reflects context freeness of rewriting and suggests why they
can be recognized efficiently. As suggested in Section 4.3.2, a
derivation with independent paths can be divided into subcom-
putatious with limited sharing of information.

We outlined the definition of a family of constrained gram-
matical formalisms, called Linear Context-Free Rewriting Sys-
tems. This family represents an attempt to generalize the prop-
erties shared by CFG's, HG's, TAG's, and MCTAG's. Like
HG's, TAG's, and MCTAG's, members of LCFRS can manipu-
late structures mere complex than terminal strings and use com-
position operations that are more complex that concatenation.
We place certain restrictions on the composition operations of
LCFRS's, restrictions that are shared by the composition opera-
tions of the constrained grammatical systems that we have con-
sidered. The operations must be linear and nonerasing, i.e., they
can not duplicate or erase structure from their arguments. Notice
that even though IG's and LFG's involve CFG-like productions,

110

they are (linguistically) fundamentally different from CFG's be-
cause the composition operations need not be linear. By sharing
stacks (in IG's) or by using nonlinear equations over f-structares
(in FUG's and LFG's), structures with unbounded dependencies
between paths can be generat_~i_. LCFRS's share several proper-
ties possessed by the class of m//d/y context-sensitive formalisms
discussed by Joshi (1983/85). The results described in this paper
suggest a characterization of mild context-sensitivity in terms of
generalized context-freeness.

Having defined LCFRS's, in Section 4.2 we established the
sem/1/nearity (and hence constant growth property) of the lan-
guages generated. In considering the recognition of these lan-
guages, we were forced to be more specific regarding the re-
lationship between the structures derived by these formalisms
and the substrings they span. We insisted that each slzucture
dominates a bounded number of (not necessarily adjacent) sub-
strings. The composition operations are mapped onto operations
that use concatenation to define the substrings spanned by the
resulting strucntres. We showed that any system defined in this
way can be recocniTed in polynomial time. Members of LCFRS
whose operations have this property can be translated into the
ILFP notation (Rounds, 1985). However, in order to capture the
properties of various grammatical systems under consideration,
our notation is more restrictive that ILFP, which was designed
as a general logical notation to characterize the complete class of
languages that are recognizable in polynomial time. It is known
that CFG's, HG's, and TAG's can be recognized in polynomial
time since polynomial time algorithms exist in for each of these
formalisms. A corollary of the result of Section 4.3 is that poly-
nomial time recognition of MCTAG's is possible.

As discussed in Section 3, independent paths in tree sets,
rather than the path complexity, may be crucial in characteriz-
ing semilinearity and polynomial time recognition. We would
like to relax somewhat the constraint on the path complexity
of formalisms in LCFRS. Formalisms such as the restricted in-
dexed grammars (Gazdar, 1985) and members of the hierarchy
of grammatical systems given by Weir (1987) have independent
paths, but more complex path sets. Since these path sets are
semillnear, the property of independent paths in their tree sets
is sufficient to cause semilinearity of the languages generated
by them. In addition, the restricted version of CG's (discussed
in Section 6) generates Use sets with independent paths and we
hope that it can be included in a more general definition of
LCFRS's containing formalisms whose tree sets have path sets
that are themselves LCFRL's (as in the case of the restricted
indexed grammars, and the hierarchy defined by Weir).

LCFRS's have only been loosely defined in this paper; we
have yet to provide a complete set of formal properties associ-
ated with members of this class. In thi s paper, our goal has been
to use the notion of LCFRS's to classify grammatical systems
on the basis of their strong generative capacity. In considering
this aspect of a formalism, we hope to better understand the re-
lationship between the structural descriptions generated by the
grammars of a formalism, and the properties of semilinearity
and polynomial recognizability.

References
Berwick, R., 1984. Strong generative capacity, weak generative capac-
ity, and modern linguistic theories. Comput. Ling. 10:189-202.

Betwick, R. and Weinberg, A., 1984. The Grammatical Basis of Lin.
guistic Performance. MIT Press, Cambridge, MA.

Breanan, J. W.; Kaplan, R. M.; Peters, P. S.; and Zaenen, A., 1982.
Cross-serial Dependencies in Dutch. Ling. Inqu/ry 13:613-635.

Chandn, A. K.; Kozen, D. C.; and Stockmeyer, L J., 1981. Alternation.
J. ACM 28:114-122.

Gazdar, G., 1985. Applicability of Indexed Grammars to Natural Lan.
guages. Technical Report CSLI-85-34, Center for Study of Language
and Information.

Gazdar, G.; Klein, E.; Pullum, G. K.; and Sag, I. A., 1985. General-
ized Phrase Structure Grammars. Blackwell Publishing, Oxford. Also
published by Harvard University Press, Cambridge, MA.

Joshi, A. K., 1985. How Much Context-Sensitivity is Necessary for
Characterizing Structural Descriptions - - Tree Adjoining Grammars. In
Dowry, D.; Karuunan, L; and Zwicky, A. (editors), Natural Language
Proceauing ~ Theoretical, Computational and Psychological Perspec-
tive. Cambridge University Press, Hew York, NY. Originally presented
in 1983.

Joshi, A. K., 1987. An Introduction to Tree Adjoining Grammars. In
Manaater-gamer, A. (editor), Mathematics of Language. John Ben-
jamins, Amsterdam.

Jeshi, A. K.: Levy, L. S.; and Takahashi, M., 1975. Tree Adjunct
Grammars. J. Comput. Syst. Sci. 10(I).

Perikh, IL, 1966. On Context Free Languages. J. ACM 13:570--581.

Pollard, C., 1984. Generalized Phrase Structure Grammars, Head
Grammars and Natural Language. PhD thesis, Stanford University.

Rounds, W. C. LFP: A Logic for Linguistic Descriptions and an Anal-
ysis of its Complexity. To appear in Comput. Ling.

Rounds, W. C., 1969. Context-free Grammars on Trees. In IEEE]Oth
Annual Symposium on Switching and Automata Theory.

Steedman, M. J., 1985. Dependency and Coordination in the Grammar
of Dutch and English. Language 61".523-568.

Steedman, M., 1986. Combinntory Grammars and Parasitic Gaps. Nat-
ural Language and Linguistic Theory (to appear).

Thatcher, J. W., 1973. Tree Automata: An informal survey. In Aho,
A. V. (editor), Currents in the Theory of Computing, pages 143-172.
Prentice Hall Inc., Englewood Cliffs, NJ.

Weir, D. J., 1987. Context-Free Grammars to Tree Adjoining Gran-
mmars and Beyond. Technical Report, Department of Computer and
Information Science, University of Pennsylvania, Philadelphia.

111

