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I Abstract 

Kay's  functional-unification grammar notation [5] is 
a way of expressing grammars which relies on very few 
primitive notions. The primary syntactic structure is the 
feature structure, which can be visualised as a directed 
graph with arcs labeled by at t r ibutes  of a constituent, and 
the primary structure-building operation is unification. 
In this paper we propose a mathematical  formulation of 
FUG, using logic to give a precise account of the strings 
and the structures defined by any grammar written in 
this notation. 

2 I n t r o d u c t i o n  

Our basic approach to the problem of syntactic de- 
scription is to use logical formulas to put conditions or 
constraints on ordering of constituents, ancestor and de- 
scendant relations, and feature attribute information in 
syntactic structures. The present version of our logic 
has predicates specifically designed for these purposes. 
A grammar can be considered as just a logical formula, 
and the structures satisfying the formula are the syntactic 
structures for the sentences of the language. This notion 
goes back to DCG's [0], but our formulation is quite dif- 
ferent. In particular, it builds on the logic of Kasper and 
Rounds [3], a logic intended specifically to describe fea- 
ture structures. 

The formulation has several new aspects. First, it 
introduces the oriented feature structure as the primary 
syntactic structure. One can think of these structures 
as parse trees superimposed on directed graphs, although 
the general definition allows much more flexibility. In 
fact, our notation does away with the parse tree alto- 
gether. 

A second aspect of the notation is its t reatment  of 
word order. Our logic allows small grammars to define 
free-word order languages over large vocabularies in a way 
not possible with s tandard I D / L P  rules. It is not clear 
whether or not this t reatment  of word order was intended 
by Kay, but  the issue naturally arose during the process 
of making this model precise. (Joshi [1] has adopted much 
the same conventions in tree adjunct grammar.)  

A third aspect of our t reatment  is the use of fixed- 
point formulas to introduce recursion into grammars. This 
idea is implicit in DCG's,  and has been made explicit in 

the logics CLFP and ILFP [9]. We give a simple way of 
expressing the semantics of these formulas which corre- 
sponds closely to the usual notion of grammatical deriva- 
tions. There is an interesting use of type ~ariables to 
describe syntactic categories and/or constructions. 

We illustrate the power of the notation by sketching 
how the constructions of relational grammar [7] can be 
formulated in the logic. To our knowledge, this is the 
first attempt to interpret the relational ideas in a fully 
mathematical framework. Although relational networks 
themselves have been precisely specified, there does not 
seem to be a precise statement of how relational deriva- 
tions take place. We do not claim that our formalization 
is the one intended by Postal and Perlmutter, but we 
do claim that our notation shows clearly the relationship 
of relational to transformational grammars on one hand, 
and to lexical-functional grammars on the other. 

Finally, we prove that the satisfiability problem for our 
logic is undecidable. This should perhaps be an expected 
result, because the proof relies on simulating Turing ma- 
chine computations in a grammar, and follows the stan- 
dard undecidability arguments. The satisfiability prob- 
lem is not quite the same problem as the aniversal recog- 
nition problem, however, and with mild conditions on 
derivations similar to those proposed for LFG [2], the 
latter problem should become decidable. 

We must leave efficiency questions unexamined in this 
paper. The notation has not been implemented. We view 
this notation as a temporary one, and anticipate that 
many revisions and extensions will be necessary if it is to 
be implemented at all. Of course, FUG itself could be 
considered as an implementation, but we have added the 
word order relations to our logic, which are not explicit 
in FUG. 

In this paper, which is not full because of space limi- 
tations, we will give definitions and examples in Section 
3; then will sketch the relational application in Section 4, 
and will conclude with the undecidability result and some 
final remarks. 

3 Def in i t ions  and e x a m p l e s  

3.1 Oriented f-structures 

In this section we will describe the syntactic structures 
to which our logical formulas refer. The next subsection 
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Figure i: A typical DG. Figure 2: An oriented f-structure for a4b4c 4. 

will give the logic itself. Our intent is to represent not 
only feature information, but also information about or- 
dering of constituents in a single structure. We begin with 
the unordered version, which is the simple DG (directed 
graph) structure commonly used for non-disjunctive in- 
formation. This is formalized as an acyclic finite automa- 
ton, in the manner of Kasper-Rounds [3]. Then we add 
two relations on nodes of the DG: ancestor and linear 
precedence. The key insight about these relations is that  
they are partial; nodes of the graph need not participate 
in either of the two relations. Pure feature information 
about a constituent need not participate in any ordering. 
This allows us to model the "cset" and "pattern" infor- 
mation of FUG, while allowing structure sharing in the 
usual DG representation of features. 

We are basically interested in describing structures 
like that shown in Figure i. 

A formalism appropriate for specifying such DG struc- 
tures is that  of finite automata theory. A labeled DG can 
be regarded as a transition graph for a partially speci- 
fied deterministic finite automaton. We will thus use the 
ordinary 6 notation for the transition function of the au- 
tomaton. Nodes of the graph correspond to states of the 
automaton, and the notation 6(q, z) implies that starting 
at state(node) q a transition path actually exists in the 
graph labeled by the sequence z, to the state 6(q, z). 

Let L be a set of arc labels, and A be a set of atomic 
feature values. An ( A, L)- automaton is a tuple 

.4 = (Q,6,qo,  r) 

where Q is a finite set of states, q0 is the initial state, L is 
the set of labels above, 6 is a partial function from Q x L to 
Q, and r is a partial function from terminating states of A 
to A. (q is terminating if 6(q, l) is undefined for all l • L.) 
We require that ,4 be connected and acyclic. The map r 
specifies the atomic feature values at the final nodes of the 
DG. (Some of these nodes can have unspecified values, to 
be unified in later. This is why r is only partial.) Let F be 
the set of terminating states of.A, and let PC.A) be the set 
of full paths of,4, namely the set {z • L* : 6(q0, z) • F}. 

Now we add the constituent ordering information to 

the nodes of the transition graph. Let Z be the termi- 
nal vocabulary (the set of all possible words, morphemes, 
etc.) Now r can be a partial map from Q to E u A, with 
the requirement that if r(q) • A, then q • F. Next, 
let a and < be binary relations on Q, the ancestor and 
precedence relations. We require a to be reflexive, an- 
tisymmetric and transitive; and the relation < must be 
irrefiexive and transitive. There is no requirement that 
any two nodes must be related by one or the other of these 
relations. There is, however, a compatibility constraint 
between the two relations: 

v(q, r, 8, t) • Q : (q < ~) ^ (q a s) ^ (~ a t) = s < t. 

Note: We have required that the precedence and dom- 
inance relations be transitive. This is not a necessary 
requirement, and is only for elegance in stating condi- 
tions like the compatibility constraint. A better formula- 
tion of precedence for computational purposes would be 
the "immediate precedence" relation, which says that one 
constituent precedes another, with no constituents inter- 
vening. There is no obstacle to having such a relation in 
the logic directly. 

Example. Consider the structure in Figure 2. This 
graph represents an oriented f-structure arising from a 
LFG-style grammar for the language {anb"c n I n > I}. 

In this example, there is an underlying CFG given by 
the following productions: 

S -- TC 

T-- aTb lab 

C--cClc. 

The arcs labeled with numbers (1,2,3) are analogous 
to arcs in the derivation tree of this grammar. The root 
node is of "category" S, although we have not represented 
this information in the structure. The nodes at the ends 
of the arcs 1,2, and 3 are ordered left to right; in our 
logic this will be expressed by the formula I < 2 < 3. 
The other arcs, labeled by COUNT and #, are feature 
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arcs used to enforce the counting information required by 
the language. It is a little difficult in the graph repre- 
sentation to indicate the node ordering information and 
the ancestor information, so this will wait until the next 
section. Incidentally, no claim is made for the linguistic 
naturalness of this example! 

3 . 2  A p r e s e n t a t i o n  o f  t h e  l o g i c  

We will introduce the logic by continuing the exam- 
ple of the previous section. Consider Figure 2. Particu- 
lar nodes of this structure will be referenced by the se- 
quences of arc labels necessary to reach them from the 
root node. These sequences will be called paths. Thus 
the path 1 2 2 2 3  leads to an occurrence of the terminal 
symbol b. Then a formula of the form, say, 12  COUNT - 
2 2  COUNT would indicate that these paths lead to the 
same node. This is also how we specify linear precedence: 
the last b precedes the first c, and this could be indicated 
by the formula 1 2 2 2 3 < 2 2 2 2 1 .  

It should already be clear that  our formulas will de- 
scribe oriented f-structures. We have just illustrated two 
kinds of atomic formula in the logic. Compound formulas 
will be formed using A (and), and V (or). Additionally, 
let I be an arc label. Then an f-structure will satisfy a for- 
mula of the form I : ¢, iff there is an/-transition from the 
root node to the root of a substructure satisfying ~b. What 
we have not explained yet is how the recursive informa- 
tion implicit in the CFG is expressed in our logic. To do 
this, we introduce type variables as elementary formulas 
of the logic. In the example, these are the "category" 
variables S, T, and C. The grammar is given as a system 
of equations (more properly, equivalences), relating these 
variables. 

We can now present a logical formula which describes 
the language of the previous section. 

S w h e r e  

S : :~ 

C : :~  

V 

T ::-" 

V 

l:TA2:CA(Icount-- 2count) 
A(1 <2) A~b12 
(l:cA2:CA(count #---- 2count) A¢1~) 

(i :CA(count ~ -- end) A ~I) 
(I :aA2:TA3:bA(count #---- 2count) 
A (I < 2) A (2 < 3) A¢1~z) 

( l : a A 2 : b  

A (count # : end) A (I < 2) A ~b12), 

where ¢I~ is the formula (e a 1) A (e a 2), in which e is 
the path of length 0 referring to the initial node of the 
f-structure, and where the other ~ formulas are similarly 
defined. (The ~b formulas give the required dominance 
information.) 

In this example, the set L - (1,2, 3, # ,  count}, the set 
E - {a,b,c}, and the set A -- {end}. Thus the atomic 

symbol "end" does not appear as part of any derived 
string. It is easy to see how the structure in Figure 2 
satisfies this formula. The whole structure must satisfy 
the formula S, which is given recursively. Thus the sub- 
structure at the end of the 1 arc from the root must satisfy 
the clause for T, and so forth. 

It should now be clearer why we consider our logic a 
logic for functional grammar. Consider the FUG descrip- 
tion in Figure 3. 

According to [5, page 149], this descril~tion specifies 
sentences, verbs, or noun phrases. Let us call such struc- 
tures "entities", and give a partial translation of this de- 
scription into our logic. Create the type variables ENT,  
S, VERB,  and NP.  Consider the recursive formula 

E N T  w h e r e  

E N T  ::= 

S ::-- 

S v N P  v V E R B  

subj : N P  A pred : V E R B  

A(subj < pred) 

A((seomp : none) V (seomp : S 

A(pred <scomp))) 

Notice that the category names can be represented as 
type variables, and that the categories N P  and V E R B  
are free type variables. Given an assignment of a set of 
f-structures to these type variables, the type E N T  will 
become well-specified. 

A few other points need to be made concerning this 
example. First, our formula does not have any ancestor 
information in it, so the dominance relations implicit in 
Kay's patterns axe not represented. Second, our word or- 
der conventions are not the same as Kay's. For example, 
in the pattern (subj pred. . . ) ,  it is required that the sub- 
ject be the very first constituent in the sentence, and that 
nothing intervene between the subject and predicate. To 
model this we would need to add the "immediately left of" 
predicate, because our < predicate is transitive, and does 
not require this property. Next, Kay uses "CAT" arcs to 
represent category information, and considers "NP" to be 
an atomic value. It would be possible to do this in our 
logic as well, and this would perhaps not allow NPs to be 
unified with VERBs. However, the type variables would 
still be needed, because they are essential for specifying 
recursion. Finally, FUG has other devices for special pur- 
poses. One is the use of nonlocai paths, which are used 
at inner levels of description to refer to features of the 
"root node" of a DG. Our logic will not treat these, be- 
cause in combination with recursion, the description of 
the semantics is quite complicated. The full version of 
the paper will have the complete semantics. 
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cat = S 
pattern = (subj pred . . . )  

i:i: } 
I cat = V E R B  ] 

$corrlp -~. none  ] 
pattern = ( . . .  scomp) ] 
• c o ~ p  = [ ~at = S ] J 

cat = N P ] 
cat = V E R B  ] 

Figure 3: Disjunctive specification in FUG. 

3 . 3  T h e  f o r m a l i s m  

3.3.1 Syntax 

We summarize the formal syntax of our logic. We 
postulate a set A of atomic feature names, a set L of 
attribute labels, and a set E of terminal symbols (word 
entries in a lexicon.) The type variables come from a 
set T V A R  = {X0,Xt  . . . .  }. The following list gives the 
syntactical  constructions. All but  the last four items are 
atomic formulas. 

1. N I L  

2. T O P  

3. X,  in which X E T V A R  

4. a, in which a E A 

5. o', in which o" E E 

6. z < v ,  in which z and v E L" 

7. x c~ V, in which z and V E L" 

8. [zt  . . . . .  x~], in which each z~ E L= 

9 . / : $  

10. @^g,  

11. ~ v , ~  

12. ~b w h e r e  [Xt ::= ~bt;... X,~ ::= ~,]  

Items (1) and (2) are the identically true and false 
formulas, respectively. I tem (8) is the way we officially 
represent path  equations. We could as well have used 
equations like z = V, where ~ and V E L ' ,  but  our deft- 
nition lets us assert the simultaneous equality of a finite 
number of paths  without writing out  all the pairwise path 
equations. Finally, the last i tem (12) is the way to express 
recursion. It will be explained in the next subsection. 
Notice, however, that  the keyword w h e r e  is par t  of the 
syntax. 

3 .3 .2  Semantics 

The semantics is given with a standard Tarski defini- 
tion based on the inductive structure of wffs. Formulae 
are satisfied by pairs (.4,p), where ,4 is an oriented f- 
structure and p is a mapping from type variables to sets 
off-structures, called an environment. This is needed be- 
cause free type variables can occur in formulas. Here are 
the official clauses in the semantics: 

N I L  always; 

T O P  never; 

x iff.4 e p(X); 

a iff 7"(q0) = a, where q0 is the initial state 

1. (.4, p) 

2. (.4,p) 

3. ( .4,p) 

4. (.4, p) 
of ,4; 

5. (A,p) 

6. (.4, p) 

T. (.4,p) 

8. (.4, p) 

~, where o" E ~-, iff r(q0) = o'; 

v < w iff 6(q0, v) < 6(qo, w); 

v a w iff 6(qo, v) a ~(qo, w); 

[=~ . . . . .  = . ]  i f fVi,j  : 6(q0,zl)  = ~(qo,xj); 

9. (.4,p) ~ l : ~ iff ( .4/l ,p) ~ ~, where .4/1 is the 
automaton .4 s tar ted at 6(qo, l); 

10. (A, p) ~ ~ ^ ~ iff (A, p) ~ ~ and (A, p) ~ ~; 

11. (.4,p) ~ ~ V ~b similarly; 

12. (.4,p) ~ ~b w h e r e  [Xt ::= O t ; . . . X ,  ::= 0n] iff 
for some k, (.4, p(~)) ~ ~b, where p(k) is defined 
inductively as follows: 

• p ( ° ) ( xo  = 0; 

• p(k+~)(Xd = {B I (~,p(~)) [= ,~,}, 

and where p(k)(X) = p(X)  if X # Xi for any i. 

We need to explain the semantics of recursion. Our 
semantics has two presentations. The above definition is 
shorter to state,  hut  it is not as intuitive as a syntactic,  
operational  definition. In fact, our notat ion 

~b w h e r e  [Xt ::= ~bl . . . . .  Xn : : -  ~bn] 
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is meant to suggest that the Xs can be replaced by the Cs 
in ¢. Of course, the Cs may contain free occurrences of 
certain X variables, so we need to do this same replace- 
ment process in the system of Cs beforehand. It turns 
out that  the replacement process is the same as the pro- 
cess of carrying out grammatical derivations, but making 
replacements of nonterminal symbols all at once. 

With this idea in mind, we can turn to the definition 
of replacement. Here is another advantage of our logic - 
replacement is nothing more than substitution of formu- 
las for type variables. Thus, if a formula 0 has distinct 
free type variables in the set D = {Xt . . . . .  An}, and 
Ct , . . - ,  ¢ ,  are formulas, then the notation 

denotes the simultaneous replacement of any free occur- 
rences of the Xj in 0 with the formula Cj, taking care 
to avoid variable clashes in the usual way (ordinarily this 
will not be a problem.) 

Now consider the formula 

¢ w h e r e  [Xt ::= C t ; . - . X ,  ::= ¢,] .  

The semantics of this can be explained as follows. Let 
D = {XI ..... X,~}, and for each k _> 0 define a set of 

formulas {¢~k) [ I _< i _< n}. This is done inductively on 
k: 

~o) = ¢,[X *-- T O P  : X E D]; 

¢(k+1) .- elk) i = ~ ' i [X : X e O] .  

These formulas, which can be calculated iteratively, cor- 
respond to the derivation process. 

Next, we consider the formula ¢. In most grammars, 
¢ will just be a "distinguished" type variable, say S. If 
(`4, p) is a pair consisting of an automaton and an envi- 
ronment, then we define 

(`4, p) ~ ¢ w h e r e  [Xt ::= ¢ i ; . . . X , t  ::= ¢,]  

iff for some k, 

(.4, p) ~ ¢[X, , -  e lk):  X, E D]. 

Example. Consider the formula (derived from a reg- 
ular grammar) 

S where  

T " ' ~  

(I :aA2 : S) V(I :hA2 :T) Vc 

(I :bA2 : S) V(I :aA2 : T) Vd. 

Then, using the above substitutions, and simplifying ac- 
cording to the laws of Kasper-Rounds, we have 

¢(s o) 
C, 

¢~) = d ;  

CH) = (1:aA2:c) V(1:bA2:d)Vc; 

¢(~) = (1:bA2:c) V(1:aA2:d)Vd; 
¢(2) = I:aA2:(I:aA2:c) V(I:bA2:d)Vc) 

V l:bA2:((l:bA2:c) V(l:aA2:d)Vd) 
VC. 

The f-structures defined by the successive formulas for S 
correspond in a natural way to the derivation trees of the 
grammar underlying the example. 

Next, we need to relate the official semantics to the 
derivational semantics just explained. This is done with 
the help of the following lemmas. 

Lemma 1 (`4,p) ~ ¢~) ~ (`4, p(k)) ~ ¢i. 

L e m m a  2 (`4,p) ~ 0[Xj - -  ¢./ : X./ E D] i f f ( `4 ,p ' )  
O, where p°(Xi)  = {B ] (B,p) ~ ¢i}, i f  Xi  E D, and 
otherwise is p(X) .  

The proofs are omitted. 
Finally, we must explain the notion of the language 

defined by ¢, where ¢ is a logical formula. Suppose for 
simplicity that $ has no free type variables. Then the 
notion A ~ 0 makes sense, and we say that a string 
w E L(~b) iff for some subsumpfion.minirnal f-structure 
,4, A ~ ¢, and w is compatible with ,4. The notion 
of subsumption is explained in [8]. Briefly, we have the 
following definition. 

Let ,4 and B be two automata. We say ,4 _ B (.4 
subsumes B; B extends `4) iff there is a homomorphisrn 
from `4 to B; that is, a map h : Q.4 - -  Qs such that (for 
all existing transitions) 

1. h(6.~(q, l)) = 6B(h(q), l); 

2. r(h(q)) = r(q) for all q such that r(q) E A; 

3. h(qoa) = qo~. 

It can be shown that subsurnption is a partial order on 
isomorphism classes of automata (without orderings), and 
that for any formula 4} without recursion or ordering, that 
there are a finite number of subsumption-minimal au- 
tomata satisfying it. We Consider as candidate structures 
for the language defined by a formula, only automata 
which are minimal in this sense. The reason we do this 
is to exclude f-structures which contain terminal symbols 
not mentioned in a formula. For example, the formula 
N I L  is satisfied by any f-structure, but only the mini- 
mal one, the one-node automaton, should be the principal 
structure defined by this formula. 

By compatibility we mean the following. In an f- 
structure `4, restrict the ordering < to the terminal sym- 
bois of,4.  This ordering need not be total; it may in fact 
be empty. If there is an extension of this partial order on 
the terminal nodes to a total order such that the labeling 
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symbols agree with the symbols labeling the positions of 
w, then w is compatible with A. 

This is our new way of dealing with free word order. 
Suppose that  no precedence relations are specified in a 
formula. Then, minimal satisfying f-structures will have 
an empty < relation. This implies that  any permutat ion 
of the terminal  symbols in such a structure will be al- 
lowed. Many other ways of defining word order can also 
be expressed in this Logic, which enjoys an advantage over 
I D / L P  rules in this respect. 

4 Modeling Relational Grammar 

Consider the relational analyses in Figures 4 and 5. 
These analyses, taken from [7], have much in common 
with functional analyses and also with transsformational 
ones. The present pair of networks illustrates a kind of 
raising construction common in the relational literature. 
In Figure 4, there are arc labels P, I, and 2, representing 
"predicate", "subject", and "object" relations. The "cl" 
indicates that this analysis is at the first linguistic stra- 
tum, roughly like a transformational cycle. In Figure 5, 
we learn that at the second stratum, the predicate ("be- 
lieved") is the same as at stratum i, as is the subject. 
However, the object at level 2 is now "John", and the 
phrase "John killed the farmer" has become a "chSmeur" 
for level 2. 

The relational network is almost itself a feature struc- 
ture. To make it one, we employ the trick of introducing 
an arc labeled with l, standing for "previous level". The 
conditions relating the two levels can easily be stated as 
path equations, as in Figure 6. 

The dotted lines in Figure 6 indicate that the nodes 
they connect are actually identical. We can now indicate 
precisely other information which might be specified in 
a relational grammar,  such as the ordering information 
I < P < 2. This would apply to the "top level", which 
for Perlmutter and Postal would be the "final level", or 
surface level. A recursive specification would also become 
possible: thus 

S E N T  ::= C L A U S E A ( I < P < 2 )  

C L A U S E  ::= I : N O M A P : V E R B  

A 2 : ( C L A U S E  V N O M )  

A ( R A I S E  V P A S S I V E  V . . . )  

A I : C L A U S E  

l : 2 : C L A U S E  A (equations in (6)) R A I S E  ::= 

This is obviously an incomplete grammar,  but  we think 
it possible to use this notation to give a complete specifi- 
cation of an RG and, perhaps at some stage, a computa- 
tional test. 

5 Undecidability 

In this section we show that the problem of sa(is/ia- 
bility - given a formula, decide if there is an f-structure 
satisfying it - is undecidable. We do this by building a for- 
mula which describes the computations of a given Turing 
machine. In fact, we show how to speak about the com- 
putations of an automaton with one stack (a pushdown 
automaton.) This is done for convenience; although the 
halting problem for one-stack automata is decidable, it 
will be clear from the construction that the computation 
of a two-stack machine could be simulated as well. This 
model is equivalent to a Turing machine - one stack rep- 
resents the tape contents to the left of the TM head, and 
the other, the tape contents to the right. We need not 
simulate moves which read input, because we imagine the 
TM started with blank tape. The halting problem for 
such machines is still undecidable. 

We make the following conventions about our PDA. 
Moves are of two kinds: 

• q i  : p u s h  b; g o  t o  q j  ; 

• q i  : p o p  s t a c k ;  i f  a g o  t o  q j  e l s e  g o  t o  qk. 

The machine has a two-character stack alphabet  {a, b}. 
(In the push instruction, of course pushing "a" is allowed.) 
If the machine a t tempts  to pop an empty stack, it can- 
not continue. There is one final s tate qf .  The machine 
halts sucessfully in this and only this state.  We reduce 
the halting problem for this machine to the satisfiability 
problem for our logic. 

Atoms: "none ..... bookkeeping marker 
for telling what 
is in the stack 

qO, q l  . . . . .  q n - - -  o n e  f o r  
e a c h  s t a t e  

Labels: a, b --- for describing 
stack contents 

s -- pointer to top of stack 
next --- value of next state 
p --- pointer to previous 

stack configuration 

Type v a r i a b l e s :  
CONF -- structure represents 

a machine configuration 
INIT0 FINAL --confi~trations 

at start and finish 
QO ..... QN: property of being 

in  o n e  o f  t h e s e  s t a t e s  

The simulation proceeds as in the relational grammar 
example. Each configuration of the stack corresponds to 
a level in an RG derivation. Initially, the stack is empty. 
Thus we put  
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Figure 4: Network for The woman believed that John killed the farmer.  

b ~  p c a. 

f 

Figure 5: Network for The woman believed John to have killed the farmer.  

p = l p  

1 = l l  

2 = 121  

C h o p  = 1 2 P  

C h o  2 " 1 2 2 

Figure 6: Representing Figure 5 as an f-structure. 
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INIT ::= s : (b : none A a : none) A nerl; : q0. 

Then we describe standard configurations: 

C0//F ::= ISIT V (p : CONF A (QO V. . .  V QN)). 

Next, we show how configurations are updated, de- 
pending on the move rules. If q£ is push b; go to qj, then 
we write 

QI ::=nex~:qjAp:next:qiAs:a:noneAsb=ps. 

The last clause tells us that the current stack contents, 
after finding a %" on top, is the same as the previous 
contents. The %: none" clause guarantees that only a 
%" is found on the DG representing the stack. The sec- 
ond clause enforces a consistent state transition from the 
previous configuration, and the first clause says what the 
next state should be. 

If q£ is 

pop stack; if a go to qj else go to qk, 

then we write the following. 

QI ::= p : nex~ : qi 

A ((s=psaAnex~::qjAp:s:b:none) 

V(s=psbAnext:qkAp:s:a:none)) 

For the last configuration, we put 

I~F ::---- C011F A p : nex~ : qf. 

We take QF as the "distinguished predicate" of our 
scheme. 

It should be clear that this formula, which is a big 
where-formula, is satisfiable if[" the machine reaches state 

qf. 

6 C o n c l u s i o n  

It would be desirable to use the notation provided 
by our logic to state substantive principles of particu- 
lax linguistic theories. Consider, for example, Kashket's 
parser for Warlpiri [4], which is based on GB theory. For 
languages like Warlpiri, we might be able to say that 
linear order is only explicitly represented at the mor- 
phemic level, and not at the phrase level. This would 
translate into a constraint on the kinds of logical for- 
mulas we could use to describe such languages: the < 
relation could only be used as a relation between nodes 
of the MORPHEME type. Given such a condition on 
formulas, it migh t then be possible to prove complexity 

results which were more positive than a general undecid- 
ability theorem. Similar remarks hold for theories like 
relational grammar, in which many such constraints have 
been studied. We hope that logical tools will provide a 
way to classify these empirically motivated conditions. 
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