
C O M P U T A T I O N A L  C O M P L E X I T Y  OF C U R R E N T  G P S G  T H E O R Y  

Eric Sven Ristad 

MIT Artificial Intelligence Lab Thinking Machines Corporation 
545 Technology Square and 245 First Street 
Cambridge, MA 02139 Cambridge, MA 02142 

A B S T R A C T  

An important goal of computational linguistics has been to use 
linguistic theory to guide the construction of computationally 
efficient real-world natural language processing systems. At first 
glance, generalized phrase structure grammar (GPSG) appears 
to be a blessing on two counts. First, the precise formalisms of 
GPSG might be a direct and fransparent guide for parser design 
and implementation. Second, since GPSG has weak context-free 
generative power and context-free languages can be parsed in 
O(n ~) by a wide range of algorithms, GPSG parsers would ap- 
pear to run in polynomial time. This widely-assumed GPSG 
"efficient parsability" result is misleading: here we prove that  
the universal recognition problem for current GPSG theory is 
exponential-polynomial time hard, a n d  assuredly intractable. 
The paper pinpoints sources of complexity (e.g. metarules and 
the theory of syntactic features) in the current GPSG theory 
and concludes with some linguistically and computationally mo- 
tivated restrictions on GPSG. 

1 Introduct ion 

An important goal of computational linguistics has been to use 
linguistic theory to guide the construction of computationally 
efficient real-world natural language processing systems. Gen- 
eralized Phrase Structure Grammar (GPSG) linguistic theory 
holds out considerable promise as an aid in this task. The pre- 
cise formalisms of GPSG offer the prospect of a direct and trans- 
parent guide for parser design and implementation. Further- 
more, and more importantly, GPSG's weak context-free gener- 
ative power suggests an efficiency advantage for GPSG-based 
parsers. Since context-free languages can be parsed in polyno- 
mial time, it seems plausible that  GPSGs can also be parsed in 
polynomial time. This would in turn seem to provide "the be- 
ginnings of an explanation for the obvious, but largely ignored, 
fact thatlhumans process the utterances they hear very rapidly 
(Gazdar,198] :155)." 1 

In this paper I argue that  the expectations of the informal 
complexity argument from weak context-free generative power 
are not in fact met. I begin by examining the computational 
complexity of metarules and the feature system of GPSG and 
show that  these systems can lead to computational intractabil- 

~See also Joshi, "Tree Adjoining Grammars ~ p.226, in Natural Language 
Parsing (1985) ed. by D. Dowty, L. Karttunen, and A. Zwicky, Cambridge 
University Press: Cambridge, and aExceptlons to the Rule, ~ Science News 
128: 314-315. 

ity. Next I prove that  the universal recognition problem for cur- 
rent GPSG theory is Exp-Poly hard, and assuredly intractable. 2 
That is, the problem of determining for an arbitrary GPSG G 
and input string z whether x is in the language L(G) gener- 
ated by G, is exponential polynomial time hard. This result 
puts GPSG-Recognition in a complexity class occupied by few 
natural problems: GPSG-Recognition is harder than the trav- 
eling salesman problem, context-sensitive language recognition, 
or winning the game of Chess on an n x n board. The complex- 
ity classification shows that  the fastest recognition algorithm for 
GPSGs must take exponential time or worse. One role of a com- 
putational analysis is to provide formal insights into linguistic 
theory. To this end, this paper pinpoints sources of complexity 
in the current GPSG theory and concludes with some linguisti- 
cally and computationally motivated restrictions. 

2 Complex i ty  of G P S G  Compone nt s  

A generalized phrase structure grammar contains five language- 
particular components - -  immediate dominance (ID) rules, meta- 
rules, linear precedence (LP) statements, feature co-occurrence 
restrictions (FCRs), and feature specification defaults (FSDs) 
- -  and four universal components - -  a theory of syntactic fea- 
tures, principles of universal feature instantiation, principles of 
semantic interpretation, and formal relationships among various 
components of the grammar, s 

Syntactic categories are partial functions from features to 
atomic feature values and syntactic categories. They encode 
subcategorization, agreement, unbounded dependency, and other 
significant syntactic information. The set K of syntactic cate- 
gories is inductively specified by listing the set F of features, the 
set A of atomic feature values, the function po that  defines the 
range of each atomic-valued feature, and a set R of restrictive 
predicates on categories (FCRs). 

The set of ID rules obtained by taking the finite closure of 
the metarules on the ID rules is mapped into local phrase struc- 
ture trees, subject to principles of universal feature instantia- 
tion, FSDs, FCRs, and LP statements. Finally, local trees are 

2We use the universal problem to more accurately explore the power 
of a grammatical formalism (see section 3.1 below for support). Ris- 
tad(1985) has previously proven that the universal recognition problem for 
the GPSG's of Gazdar(1981) is NP-hard and likely to be intractable, even 
under severe metarule restrictions. 

3This work is based on current GPSG theory as presented in Gazdar e t .  
al. (1985), hereafter GKPS. The reader is urged to consult that work for a 
formal presentation and thorough exposition of current GPSG theory. 

30 



assembled to form phrase structure trees, which are terminated 
by lexical elements. 

To identify sources of complexity in GPSG theory, we con- 
sider the isolated complexity of the finite metarule closure Ol>- 
station and the rule to tree mapping, using the finite closure 
membership and category membership problems, respectively. 
Informally, the finite closure membership problem is to deter- 
mine if an ID rule is in the finite closure of a set of metarules M 
on a set of ID rules R. The category membership problem is to 

determine if a category or C or a legal extension of C is in the 
set K of all categories based the function p and the sets A, F 

and R. Note tha t  bo th  problems must  be solved by any GPSG-  
based parsing sys tem when comput ing the ID rule to local tree 

mapping.  

The major  results are tha t  finite closure membership  is NP- 
hard and category membership is PSPACE-hard.  Barton(1985) 
has previously shown tha t  the recognition problem for I D / L P  

g rammars  is NP-hard.  The components  of GPSG theory are 
computat ional ly  complex, as is the theory as a whole. 

Assumptions. In the following problem definitions, we allow 
syntactic categories to be based on arbitrary sets of features 
and feature values. In actuality, GPSG syntactic categories are 
based on fixed sets and a fixed function p. As such, the set K of 
permissible categories is finite, and a large table containing K 
could, in princip}e, be given. 4 We (uncontroversially) generalize 
to arbitrary sets and an arbitrary function p to prevent such a 
solution while preserving GPSG's theory of syntactic features, s 
No other modifications to the theory are made. 

An ambiguity in GKPS is how the FCRs actually apply to 
embedded categories. 6 Following Ivan Sag (personal communi- 
cation), I make the natural assumption here that FCRs apply 
top-level and to embedded categories equally. 

4This suggestion is of no practical significance, because the actual num- 
ber of GPSG syntactic categories is extremely large. The total number of 
categories, given the 25 atomic features and 4 category-valued features, is: 

J K = K '  I = 32s((1 +32s)C(1 +32s)((1 ÷32~)(1 +32s)~)2)s)" 
~_ 32s(1 + 32~) s4 > 3 le2~ > 10 T M  

See page 10 for details. Many of these categories will be linguistically 
meaningless, but all GPSGs will generate all of them and then filter some 
out in consideration of FCRs, FSDs, universal feature instantiation, and 
the other admissible local trees and lexical entries in the GPSG. While 
the FCRs in some grammars may reduce the number of categories, FCRs 
are a language-particular component of the grammar. The vast number of 
categories cited above is inherent in the GPSG framework. 

SOur goal is to identify sources of complexity in GPSG theory. The gen- 
eralization to arbitrary sets allows a fine-grained study of one component 
of GPSG theory (the theory of syntactic features) with the tools of compu- 
tational complexity theory. Similarly, the chess board is uncontroverslally 
generalized to size n × a in order to study the computational complexity of 
chess. 

eA category C that is defined for a feature ], f E (F - Atom) n DON(C) 
(e.g. f = SLASH ), contains an embedded category C~, where C(f) --- C~. 
GKPS does not explain whether FCR's must be true of C~ as well as C. 

2 .1  M e t a r u l e s  

The complete set of ID rules in a GPSG is the maximal set that 
can be arrived at by taking each metarule and applying it to 
the set of rules that have not themselves arisen as a result of 
the application of that metarule. This maximal set is called the 
finite closure (FC) of a set R of lexical ID rules under a set M 
of metarules. 

The cleanest possible complexity proof for metarule finite 
closure would fix the GPSG (with the exception of metarules) 
for a given problem, and then construct metarules dependent 
on the problem instance that is being reduced. Unfortunately, 
metarules cannot be cleanly removed from the GPSG system. 
Metarules take ID rules as input, and produce other ID rules as 
their output. If we were to separate metarules from their inputs 
and outputs, there would be nothing left to study. 

The best complexity proof for metarules, then, would fix 
the GPSG modulo the metarules and their input. We ensure 
the input is not inadvertently performing some computation by 
requiring the one ID rule R allowed in the reduction to be fully 
specified, with only one 0-1evel category on the left-hand side 
and one unanalyzable terminal symbol on the right-hand side. 
Furthermore, no FCRs, FSDs, or principles of universal feature 
instantiation are allowed to apply. These are exceedingly severe 
constraints. The ID rules generated by this formal system will 
be the finite closure of the lone ID rule R under the set M of 
metarules. 

The (strict, resp.) finite closure membership problem for 
GPSG metarules  is: Given an ID rule r and sets of metarules  
M and ID rules R, determine if 3r e such tha t  r I ~ r (r I = r, 
resp.) and r I • FC(M, R). 

T h e o r e m  1: Finite Closure Membership is NP-hard 

P r o o f :  On input  3-CNF formula F of length n using the m vari- 
ables z l . . .  x,~, reduce 3-SAT, a known NP-complete problem, 

to Metarule-Membership in polynomial  time. 

The set of ID rules consists of the one ID rule R, whose 
mother  category represents the formula variables and clauses, 
and a set of metarules  M s.t. an extension of the ID rule A is in 
the finite closure of M over R iff F is satisfiable. The metarules  

generate possible t ru th  assignments  for the formula variables, 
and then compute  the t ru th  value of F in the context of those 

t ru th  assignments.  

Let w be the str ing of formula literals in F ,  and let wl denote 
the i th symbol in the str ing w. 

1. The ID rules R , A  

31 



R: 

A: 

where 
<satisfiable> 

<satisfiability> 
F= 

F--*<satisfiability> 

[[STAGE 3]]-~<satisfiable> 

is a terminal symbol 
is a terminal symbol 

{[y, 0 ] : l < i < m }  

u {lc, o]:I<i< ~} 
U {[STAGE I ] }  

2. Construct  the metarules 

(a) m metarules to generate all possible assignments to 
the variables 

Vi, 1 < i < m 

{[yi 0],[STAGE I]} -* W (i) 

{[Yi I],[STAGE 1]} ~ W 

(b) one metarule to stop the assignment generation pro- 
cess 

{[STAGE 1]) -~ W 

(2) 
{[STAGE 2]} --* W 

(c) I w[ metarules to verify assignments 

Vi , j , k  1 < i < 1 ~  j, l <_ j <_ m, O < k < 2, 
if wsi-k : xj, then construct the metarule 

{[yi 1],[ei 0],[STAGE 2]) --+ W 
(3) 

{[yj i],[ci 1], [STAGE 2]} --' W 

Vi , j , k  l < i < ~  -1, l < _ j < _ m , O < k < _ 2 ,  
if wsi-k = ~ ,  then construct the metarule 

{[yj 0], [cl 0], [STAGE 2]} -* W 
(4) 

{[yj O],[ci 1],[STAGE 2]}---,W 

(d) Let the category C = {[ci 1]:  1 < i < l~J}. Con- 
struct  the metarule 

C[STAGE 2] -~ W 

{[STAGE 3]} --* <satisfiable> 

(5) 

The reduction constructs O(I w l) metarules of size log(I w [), 
and clearly may be performed in polynomial time: the reduc- 
tion time is essentially the number of symbols needed to write 
the GPSG down. Note tha t  the strict finite closure membership 
problem is also NP-hard. One need only add a polynomial num- 
ber of metarules to "change" the feature values of the mother  

node C to some canonical value when C(STAGE ) = 3 - -  all 0, 
for example, with the exception of STAGE . Let F = {[Yi 0] : 
l < i < m }  U {[c, O ] : l < i <  ~ } .  Then A would be 

A : F[STAGE 3] -~ < s a t i s f i a b l e >  

Q.£.P 

The major source of intractability is the finite closure opera- 
tion itself. Informally, each metarule can more than double the 
number of ID rules, hence by chaining metarules (i.e. by apply- 
ing the output  of a metarule to the input of the next metarule) 
finite closure can increase the number of ID rules exponentiallyff 

2 .2  A T h e o r y  o f  S y n t a c t i c  F e a t u r e s  

Here we show tha t  the complex feature system employed by 
GPSG leads to computat ional  intractability. The underlying 
insight for the following complexity proof is the almost direct 
equivalence between Alternating Turing Machines (ATMs) and 
syntactic categories in GPSG. The nodes of an ATM compu- 
tat ion correspond to 0-level syntactic categories, and the ATM 
computat ion tree corresponds to a full, n-level syntactic cate- 
gory. The finite feature closure restriction on categories, which 
limits the depth of category nesting, will limit the depth of 
the corresponding ATM computat ion tree. Finite feature clo- 
sure constrains us to specifying (at  most) a polynomially deep, 
polynomially branching tree in polynomial time. This is ex- 
actly equivalent to a polynomial t ime ATM computation,  and 
by Chandra  and Stockmeyer(1976), also equivalent to a deter- 
ministic polynomial space-bounded ' luring Machine computa- 
tion. 

As a consequence of the above insight, one would expect 
the GPSG Category-Membership problem to be PSPACE-hard.  
The actual proof is considerably simpler when framed as a re- 
duction from the Quantified Boolean Formula (QBF) problem, 
a known PSPACE-complete problem. 

Let a specification of K be the arbitrary sets of features F, 
atomic features Atom, atomic feature values A, and feature co- 
occurrence restrictions R and let p be an arbitrary function, all 
equivalent to those defined in chapter 2 of GKPS. 

The category membership problem is: Given a category C 
and a specification of a set K of syntactic categories, determine 
i f 3 C  Is . t .  C I ~ C a n d C  I E K .  

The QBF problem is {QIF1Qzyz...  Qmy,nF(yh YZ,. . . ,  y,n) I 
Qi 6 {V, 3}, where the yi are boolean variables, F is a boolean 
formula of length n in conjunctive normal form with exactly 

~More precisely, the metarule finite closure operation can increase the 
size of a GPSG G worse than exponentially: from I Gi to O(] G [2~). Given 
a set of ID rules R of symbol size n, and a set M of m metarule, each of 
size p, the symbol size of FC(M,R) is O(n z~) = O(IGIZ~). Each met~ule 
can match the productions in R O(n) different ways, inducing O(n + p) 
new symbols per match: each metarule can therefore square the ID rule 
grammar size. There are m metarules, so finite closure can create an ID 
rule grammar with O(n 2~) symbols. 

32 



three variables per clause (3-CNF), and the quantified formula 
is true}. 

T h e o r e m  2: GPSG Category-Membership is PSPACE-hard 

P roo f :  By reduction from QBF. On input formula 

f l  = Q l y l Q 2 y 2  . . . Q m y m F ( y l ,  y2, . . . , y,~) 

we construct an instance P of the Category-Membership 
problem in polynomial time, such that f~ E QBF if and only 
if P is true. 

Consider the QBF as a strictly balanced binary tree, where 
the i th quantifier Qi represents pairs of subtrees < Tt, T! > such 
that (1) Tt and T! each immediately dominate pairs of subtrees 
representing the quantifiers Qi+l . . .  Qra, and (2) the i th variable 
yi is t r u e  in T~ and false in Tf. All nodes at level i in the whole 
tree correspond to the quantifier Qi.  The leaves of the tree are 
different instantiations of the formula F, corresponding to the 
quantifier-determined truth assignments to the m variables. A 
leaf node is labeled t rue  if the instantiated formula F that it 
represents is true. An internal node in the tree at level i is 
labeled t r u e  if 

1. Qi = "3" and either daughter is labeled t rue ,  or 

2. Qi  -= "V" and both daughters are labeled t rue .  

Otherwise, the node is labeled false. 

Similarly, categories can be_understood as trees, where the 
features in the domain of a category constitute a node in the 
tree, and a category C immediately dominates all categories C ~ 
such that S f  e ( ( r  - Atom) A D O N (C ) ) [C ( f )  = C']. 

In the QBF reduction, the atomic-valued features are used 
to represent the m variables, the clauses of F, the quantifier 
the category represents, and the truth label of the category. 
The category-valued features represent the quantifiers - -  two 
category-valued features qk,qtk represent the subtree pairs < 
Tt ,  T I > for the quantifier Qk.  FCRs maintain quantifier-imposed 
variable truth assignments "down the tree" and calculate the 
truth labeling of all leaves, according to F, and internal nodes, 
according to quantifier meaning. 

De ta i l s .  Let w be the string of formula literals in F, and w~ 
denote the i th symbol in the string w. We specify a set K of 
permissible categories based on A, F, p,.and the set of FCRs R 
s.t. the category [[LABEL 1]] or an extension of it is an element 
of K iff ~ is t rue .  

First we define the set of possible 0-level categories, which 
encode the formula F and truth assignments to the formula 
variables. The feature wi represents the formula literal wi in w, 
yj represents the variable yj in f2, and ci represents the truth 
value of the i th clause in F. 

Atom = {LEVEL ,LABEL } 
u {w,: 1 < i <lwl} 
u {y:- : 1 < j <  m} 
u {c~:1<;< ~}  

F - A t o m  = {qk,q~ : l < k < m }  
p°(LEVEL) = { k : l  < k <  mA-1} 
p o ( f )  = {0,1} Vf E A t o m -  {LEVEL } 

FCR's are included to constrain both the form and content of 
the guesses: 

1. FCR's to create strictly balanced binary trees: 

Vk, l < k < m ,  

]LEVEL k] = [qk [[Yk 1][LEVEL k + 1]]]& 
[ql [[Vk 0][LEVEL k + 1]]] 

2. FCR's to ensure all 0-level categories are fully specified: 

Vi, 1 < i <  m 

[c,] = [ w 3 , - ~ ] & [ ~ 3 ~ - l ] & [ ~ 3 , ]  
]LABEL ] -- = [cl] 

Vk ,  1 < k < m ,  
[LABEL] --= [yk] 

3. FCR's to label internal nodes with truth values deter- 
mined by quantifier meaning: 

Vk, l < k < r n ,  
if Qk = "V", then include: 

[LEVEL k]&[LABEL 1] ------ [qk [[LABEL ll]]&[q~ [[LABEL 1]]1 

[LEVEL k]&[LABEL O] ----- [qk [[LABEL 0]]] V [q~ [[LABEL 0]]1 
otherwise Qk = "3", and include: 
[LEVEL k]&[LABEL 1] -- [qk [[LABEL 11]] Y [q~ [[LABEL I]]] 
[LEVEL k]&[LABEL O] -- [qk [[LABEL 0]]]&Iq ~ [[LABEL 0]]] 

The category-valued features qk and q~ represent the quan- 
tifier Qk. In the category value of qk, the formula vari- 
able yk = 1 everywhere, while in the category value of q~, 
Yk = 0 everywhere. 

4. one FCR to guarantee that only satisfiable assignments 
are permitted: 

[LEVEL 1] ~ ILABEL 1] 

5. FCR's to ensure that quantifier assignments are preserved 
"down the tree": 

Vi,  k l < _ i < k < m ,  

[Yi 1] D [qk [[Yi 1]]]&[q~ [[Yi 1]]] 

[~, O] ~ [q~ [[y~ o]]]&[q i [[y~ 0]]] 

33 



6. FCR's to instantiate variable assignments into the formula 
F: 

Vi, k l  < i < l w [  and 1 <  k < m ,  
if wi = Yk, then include: 

[Yk 11 D [w, 11 
[~ko] D [ ~ o ]  

else if wi = Y-~, then include: 
[y,~ :] D [~, o] 
[~,~, o] D N, 1] 

7. FCR's  to verify the guessed variable assignments in leaf 
nodes: 

Vi l < i < ~ ,  
It, o] _= [~s,-2 o ]~ [~ ,_ ,  o ]~ [~ ,  o] 
[ci 1] -- [ws,-~ 1]V[ws,_I 1]V[ws, 1] 
[LEVEL rn + l]&[c, 0] D [LABEL 0] 

[LEVEL m +  1]d~[Cx 1]&:[c2 l]&...&[c~ol/31 ] D [LABEL 11 

The reduction constructs O(1~1) features and O(m ~) FCRs 
of size O(log m) in a simple manner,  and consequently may be 
seen to be polynomial time. 0 .~ .P  

The primary source of intractability in the theory of syn- 
tactic features is the large number of possible syntactic cate- 
gories (arising from finite feature closure) in combination with 
the computat ional  power of feature co-occurrence restrictions, s 
FCRs of the "disjunctive consequence" form [f v] D [fl vl] V 
. . .  V [fn vn] compute the direct analogue of Satisfiability: when 
used in conjunction with other FCRs, the GPSG effectively 
must try all n feature-value combinations. 

3 C o m p l e x i t y  o f  G P S G - R e c o g n i t i o n  

Two isolated membership problems for GPSG's  component for- 
mal devices were considered above in an a t tempt  to isolate 
sources of complexity in GPSG theory. In this section the recog- 
nition problem (RP) for GPSG theory as a whole is considered. 
I begin by arguing tha t  the linguistically and computationally 
relevant recognition problem is the universal recognition prob- 
lem, as opposed to the fixed language recognition problem. I 
then show tha t  the former problem is exponential-polynomial 
(Exp-Poly) time-hard. 

SFinite feature closure admits a surprisingly large number of possible 
categories. Given a specification (F, Atom, A, R, p) of K, let a =lAteral and 
b =IF - Atom I. Assume that all atomic features are binary: a feature may 
be +,-, or undefined and there are 3 a 0-1evel categories. The b category- 
valued features may each assume O(3 ~) possible values in a 1-1evel category, 
so I/f '  I= O(3=(3")b). More generally, 

IK  = K ' I -  O(3~'~C ~ o r r ~  - ,= ) = O ( 3  ~° ' '  ~C:oo , ~ )  = O ( ~ * " . )  = O ( 3  o. ' ' )  

where E~=o ~ converges toe ~ 2.7 very rapidly and a,b = O(IGI) ; a = 
25, b = 4 in GKPS. The smallest category in K will be 1 symbol (null 
set),  and the largest, maximally-specified, category wilt be of symbol-slze 
log I K I = oca. b!). 

3 .1  D e f i n i n g  t h e  R e c o g n i t i o n  P r o b l e m  

The universal recognition problem is: given a grammar G and 
input string x, is z C L(G)?. Alternately, the recognition prob- 
lem for a class of grammars may be defined as the family of 
questions in one unkown. This fized language recognition prob- 
lem is: given an input string x, is z E L for some fixed language 
L?. For the fixed language RP, it does not mat ter  which gram- 
mar is chosen to generate L - -  typically, the fastest grammar is 
picked. 

It seems reasonable clear tha t  the universal RP is of greater 
linguistic and engineering interest than the fixed language RP. 
The grammars licensed by linguistic theory assign structural  
descriptions to utterances, which are used to query and update 
databases, be interpreted semantically, t ranslated into other hu- 
man languages, and so on. The universal recognition problem 
- -  unlike the fixed language problem - -  determines membership 
with respect to a grammar,  and therefore more accurately mod- 
els the parsing problem, which must  use a grammar to assign 
structural  descriptions. 

The universal RP also bears most directly on issues of nat- 
ural language acquisition. The language learner evidently pos- 
sesses a mechanism for selecting grammmars  from the class of 
learnable natural  language grammars /~a  on the basis of linguis- 
tic inputs. The more fundamental  question for linguistic theory, 
then, is "what is the recognition complexity of the class /~c?". 
If this problem should prove computationally intractable,  then 
the (potential) tractability of the problem for each language 
generated by a G in the class is only a partial answer to the 
linguistic questions raised. 

Finally, complexity considerations favor the universal RP. 
The goal of a complexity analysis is to characterize the amount  
of computat ional  resources (e.g. time, space) needed to solve the 
problem in terms of all computationally relevent inputs on some 
standard machine model (typically, a multi-tape deterministic 
Turing machine). We know tha t  bo th  input string length and 
grammar size and structure affect the complexity of the recog- 
nition problem. Hence, excluding either input from complexity 
consideration would not advance our understanding. 9 

Linguistics and computer science are primarily interested in 
the universal recognition problem because both  disciplines are 
concerned with the formal power of a family of grammars.  Lin- 
guistic competence and performance must  be considered in the 
larger context of efficient language acquisition, while computa- 
tional considerations demand tha t  the recognition problem be 
characterized in terms of bo th  input string and grammar size. 
Excluding grammar size from complexity consideration in order 

SThis ~consider all relevant inputs ~ methodology is universally assumed 
in the formal language and computational complexity literature. For ex- 
ample, Hopcraft and Ullman(1979:139) define the context-free grammar 
recognition problem as: "Given a CFG G = (V,T,P, $) and a string z in 
Y', is x in L(G)?.". Garey and Johnson(1979) is a standard reference work 
in the field of computational complexity. All 10 automata and language 
recognition problems covered in the book (pp. 265-271) are universal, i.e. 
of the form "Given an instance of a machine/grammar and an input, does 
the machine/grammar accept the input7 ~ The complexity of these recog- 
nition problems is alt#ays calculated in terms of grammar and input size. 

34 



to argue tha t  the recognition problem for a family of grammars 
is tractable is akin to fixing the size of the chess board in order 
to argue tha t  winning the game of chess is tractable: neither 
claim advances our scientific understanding of chess or natural  
language. 

3 .2  G P S G - R e c o g n i t i o n  is E x p - P o l y  h a r d  

T h e o r e m  3: GPSG-Recognition is Exp-Poly time-hard 

P r o o f  3: By direct simulation of a polynomial space bounded 
alternating Turing Machine M on input w. 

Let S(n) be a polynomial in n. Then, on input M, a S(n) 
space-bounded one tape alternating Turing Machine (ATM), 
and string w, we construct a GPSG G in polynomial t ime such 
tha t  w E L(M) iff $0wllw22...w,~n$n÷l E L(G). 

By Chandra  and Stockmeyer(1976), 

ASPACE(S(n)) = U DTIM~ cs(")) 
c:>0 

where ASPACE(S(n)) is the class of problems solvable in 
space Sin ) on an ATM, and DTIME(F(n)) is the class of prob- 
lems solvable in t ime F(n) on a deterministic Turing Machine. 
As a consequence of this result and our following proof, we have 
the immediate result tha t  GPSG-Recognition is DTIME(cS(n)) - 
hard, for all constants c, or Exp-Poly time-hard. 

An alternating Turing Machine is like a nondeterministic 
TM, except tha t  some subset of its states will be referred to 
as universal states, and the remainder as existential states. A 
nondeterministic TM is an alternating TM with no universal 
states. 10 

The nodes of the ATM computation tree are represented by 
syntactic categories in K ° - -  one feature for every tape square, 
plus three features to encode the ATM tape head positions and 
the current state. The reduction is limited to specifying a poly- 
nomial number of features in polynomial time; since these fea- 
tures are used to encode the ATM tape, the reduction may only 
specify polynomial space bounded ATM computations. 

The ID rules encode the ATM NextM() relation, i.e. C ---* 
N e x t M ( C )  for a universal configuration C. The reduction con- 
structs an ID rule for every combination of possible head po- 
sition, machine state, and symbol on the scanned tape square. 
Principles of universal feature instantiat ion transfer the rest of 
the instantaneous description (i.e. contents of the tape) from 
mother to daughters in ID rules. 

1°Our ATM definition is taken from Chandra  and Stockmeyer(1976), with 
the restriction that  the work tapes are one-way infinite, instead of two-way 
infinite. Without loss of generality, we use a 1-tape ATM, so 

C (Q x r )  × (Q × r k × (L,R} x (L,R)) 

Let N e x t M ( C  ) ---- { C 0 , C l , . . .  ,Ck}. If C is a universal con-  

figuration, then we construct an ID rule of the form 

c ~ Co, C l , . . . , c k  (6) 

Otherwise, C is an existential coi~figuration and we construct 
the k + 1 ID rules 

c --, c~ vi, 0 < i < k  (7) 

A universal ATM configuration is labeled accepting if and 
only if it has halted and accepted, or if all of its daughters are 
labeled accepting. We reproduce this with the ID rules in 6 
(or 8), which will be admissible only if all subtrees rooted by 
the RHS nodes are also admissible. 

An existential ATM configuration is labeled accepting if and 
only if it has halted and accepted, or if one of its daughters is 
labeled accepting. We reproduce this with the ID rules in 7 
(or 9), which will be admissible only if one subtree rooted by a 
RHS node is admissible. 

All features tha t  represent tape squares are declared to be 
in the HEAD feature set, and all daughter categories in the 
constructed ID rules are head daughters, thus ensuring tha t  the 
Head Feature Convention (HFC) will transfer the tape contents 
of the mother  to the daughter(s),  modulo the tape writing ac- 
tivity specified by the next move relation. 

De t a i l s .  

Le__tt 

Resu l t0M(i ,  a, d) = 
[[HEAD0 i + l l , [ i  a],[A 1]] i f d = R  

[[HEAD0 i - 1],[i a], [A 1]] if d = L 

R e s u l t l M ( j ,  c, p, d) = 
[[HEAD1 j + l ] , [ r f  c][STATE p]] if d =  R 

[[HEAD1 j -  l ] , [ r i  c][STATE pl] if d =  L 

TransM(q, a, b) = ((p, c, dl, d2): ((q, a, b), (p;c, dl, d2>) e B} 

w h e r e  

a is the read-only (R/O) tape symbol currently 
being scanned 

b is the read-write (R /W)  tape symbol cur- 
rently being scanned 

dl is the R/O tape direction 

d2 is the R / W  tape direction 

The GPSG G contains: 

1. Feature definitions 

35 



A category in K ° represents a node of an ATM compu- 
tat ion tree, where the features in Atom encode the ATM 
configuration. Labeling is performed by ID rules. 

(a) definition of F, Atom, A 

F : Atom = 

A = 

{STATE ,HEADO ,HEAD1 ,A} 
u { i : O < i < [ w l + l  } 
u { r i :  1 _< j _< S( Iw l ) }  
Q U E U r ; as defined earlier 

(b) definition of p0 

p°(A) = {1,2,3} 
p°(STATE ) = Q ; the ATM state set 
p°(HEADO ) : { j :  1 < j <-I~1} 
p°(HEAD1 ) = { i :  1 < i < S ( I ~ I ) }  

v f  • { ; :  o < ; <1~1 +1} 
po(f) = Z U {$} ; the ATM input alphabet 

Vf • {ry : 1 < j < s ( l~ l ) }  
pO(f) = F ; the ATM tape alphabet 

(c) definition of H E A D  feature set 

HEAD = { i :  0 _< ; -<M + l } u { r j .  : 1 _< j _< S( l~ l ) }  

(d) FCRs to ensure full specification of all categories ex- 
cept null ones. 

V f . f  e Atom, [STATE ] D [f] 

2. Grammatical  rules 

Vi,j,q,a,b : 1 <  / <lwl, 1 < J-< S(I~I), q c Q ,  a e Z ,  b e t  

if TransM(q, a, b) # @, construct the following ID rules. 

(a) if q • U (universal state) 

{[HEADO i], [i a], [HEAD1 j], Jr; b], [STATE q], [A I]} --* 
{ResultOM(i, a, dlk) U R e s u l t  1M(j, ck, Pk, d2k) : 

(Pk, ck, dlk, d2k) e TransM(q, a, b)} 
(s) 

where all categories on the RHS are heads. 

(b) otherwise q • Q - U (existential state) 

V(pk, ck, dlk, d2~) E TransM(q, a, b), 
{[HEADO i], [i a], [HEAD1 j], [rj b], [STATE q], [A I]} ---+ 

ResultOM({ , a, dlk ) U R e s u l t  1M(], ck,pk , d2k ) 
(9) 

where all categories on the RHS are heads. 

(c) One ID rule to terminate accepting states, using null- 
transitions. 

{[STATE h], [1 Y]} --* ~ (10) 

(d) Two ID rules to read input strings and begin the 
ATM simulation. The A feature is used to separate 
functionally distinct components of the grammar.  [A 
1] categories participate in the direct ATM simula- 
tion, [A 2] categories are involved in reading the in- 
put  string, and the [A 3] category connects the read 
input string with the ATM simulation s tar t  state. 

START---* {[A 1]},{[A 21} 
(11) 

{ [a  2]}--~ {[A 2]},{[A 2]} 

where all daughters are head daughters, and where 

START : {[HEAD0 1],[HEAD1 I],[STATE s],[A 3]} 
u {[rj #1 : 1 _< j _< s (M)}  

(e) the lexical rules, 

Va, i a c E ,  l < i < l w l ,  

< ~;,{[A 2],[; ~]} > 
(12) 

vi  o _< i <lwl +1, 
< $i,{[A 2],[i $]} > 

The reduction plainly may be performed in polynomial t ime 
in the size of the simulated ATM, by inspection. 

No metarules or LP statements  are needed, although recta- 
rules could have been used instead of the Head Feature Conven- 
tion. Both devices are capable of transferring the contents of the 
ATM tape from the mother  to the daughter(s).  One metarule 
would be needed for each tape square/ tape symbol combination 
in the ATM. 

GKPS Definition 5.14 of Admissibility guarantees tha t  ad- 
missible trees must be terminated,  n By the construction above 
- -  see especially the ID rule 10 - -  an [A 1] node can be termi- 
nated only if it is an accepting configuration (i.e. it has halted 
and printed Y on its first square). This means the only admis- 
sible trees are accepting ones whose yield is the input string 
followed by a very long empty string. P.C.P 

**The admissibility of nonlocal trees is defined as follows (GKPS, p.104): 

Definition: Admissibility 
Let R be a set of ID rules. Then a tree t is admissible from R 
if and only if 

1. t is terminated, and 
2. every local subtree in. t is either terminated or locally 

admissible from some r 6 R. 

36 



3 . 3  S o u r c e s  o f  I n t r a c t a b i l i t y  

The two sources Of intractabil i ty in GPSG theory spotl ighted 
by this reduct ion are null- transit ions in ID rules (see the ID 
rule 10 above), and universal feature ins tant ia t ion (in this case, 
the  Head Feature Convention).  

Grammars  with unrestr ic ted null- t ransi t ions can assign elab- 
orate  phrase s t ruc ture  to the  empty  string,  which is linguisti- 
cally undesirable and computat ional ly  costly. The reduction 
must  const ruct  a GPSG G and input  s tr ing x in polynomial 
t ime such tha t  x E L(G) iff w E L(M), where M is a PSPACE-  
bounded ATM with  input  w. The 'polynomial  t ime '  constraint  
prevents  us from making either x or G too big. Null- transit ions 
allow the g rammar  to simulate the PSPACE ATM computa t ion  
(and an Exp-Poly TM computa t ion  indirectly) with an enor- 
mously long derivation str ing and then erase the string. If the 
GPSG G were unable to erase the derivation str ing,  G would 
only accept s tr ings which were exponential ly larger than  M and 
w, i.e. too big to wri te  down in polynomial  t ime. 

The Head Feature Condit ion transfers HEAD feature val- 
ues from the mothe r  to the  head daughters  jus t  in case they 
don ' t  conflict. In the  reduction we use HEAD' fea tu re s  to en- 
code the ATM tape,  and thereby use the HFC to transfer  the 
tape  contents  from one" ATM configuration C (represented by 
the mother)  to its immedia te  successors Co,... ,Cn (the head 
daughters}. The configurations C, C 0 , . . .  ,Ca  have identical tapes,  
wi th  the critical exception of one tape square. If the  HFC en- 
forced absolute agreement  between the  HEAD features of the 
mother  and head daughters ,  we would be unable to simulate the 
PSPACE ATM computa t ion  in this manner .  

4 Interpreting the Result  

4 . 1  G e n e r a t i v e  P o w e r  a n d  C o m p u t a t i o n a l  C o m -  
p l e x i t y  

At  first glance, a proof  tha t  GPSG-Recogni t ion  is Exp-Poly hard 
appears  to contradic t  the  fact tha t  context-free languages can 
be recognized in O ( n  s) t ime by a wide range of algori thms.  To 
see why there  is no contradict ion,  we must  first explicitly s ta te  
the  argument  from weak context-free generative power, which 
we dub the efficient parsability (EP) argument .  

The EP argument s ta tes  tha t  any GPSG can be converted 
into a weakly equivalent context-free g rammar  (CFG),  and tha t  
CFG-Recogni t ion is polynomial  t ime; therefore,  GPSG-Recogni t ion  
must  also be polynomial  t ime. The EP  argument  continues: if 
the conversion is fast ,  then GPSG-Recogni t ion  is fast ,  but  even 
if the conversion is slow, recognition using the "compiled" CFG 
will still be fast ,  and we may justifiably lose interest  in recogni- 
tion using the  original, slow, GPSG.  

The E P  argument  is misleading because it ignores both  the 
effect conversion has on g rammar  size, and the  effect g rammar  
size has on recognit ion speed. Crucially, g r ammar  size affects 
recognition t ime in all known algori thms,  and the  only gram- 

mars  directly usable by context-free parsers,  i.e. with the same 
complexity as a CFG,  are those composed of context-free pro- 
duct ions wi th  atomic nonterminal  symbols.  For GPSG,  this is 
the set of admissible local trees, and this set is astronomical:  

o((3 m~','+') (Iz) 

in a GPSG G of size m. ]~ 

Context-free parsers like the Earley algorithm run in time 
O(I G' j2 .n3) where I G'I is the size of the CFG G' and n the 
input string length, so a GPSG G of size m will be recognized 
in time 

O(3=.m!m=~+ '  . ~3)  (14) 

The hyper-exponent ia l  t e rm will dominate  the Earley algo- 
r i thm complexity in the reduct ion above because m is a function 
of the  size of the ATM we are simulating.  Even if the GPSG is 
held cons tant ,  the s tunning derived g rammar  size in formula 13 
turns  up as an equally s tunning ' cons tan t '  multiplicative factor 
in 14, which in turn  will dominate  the  real-world performance of 
the Earley algori thm for all expected inputs  (i.e. any tha t  can 
be wri t ten  down in the  universe), every t ime we use the derived 
grammar.iS 

Pullum(1985) has suggested that "examination of a suitable 

'typical' GPSG description reveals a ratio of only 4 to I between 
expanded and unexpanded grammar statements," strongly im- 
plying that GPSG is efficiently processable as a consequence. 14 

But this "expanded grammar" is not adequately expanded, i.e. 
it is not composed of context-free productions with unanalyz- 

12As we saw above, the metarule finite closure operation can increase 
the ID rule grammar size from I R I = O(I G I) to O(m 2~) in a GPSG 
G of size m. We ignore the effects of ID/LP format on the number of 
admissible local trees here, and note that if we expanded out all admissible 
linear precedence possibilities in FC(M,R}, the resultant 'ordered' ID rule 
grammar would be of size O(rn2'~7). In the worst case, every symbol in 
FC(M,R) is underspecified, and every category in K extends every symbol 
in the FC(M,R} grammar. Since there are 

o ( s - - , ' )  

possible syntactic categories, and O(m TM) symbols in FU(M,R), the number 
of admissible local trees (= atomic context-free productions} in G is 

o((3~.~,)  , , , , ' )  = o(s~, ,,,,~*' ) 

i.e. astronomical. Ristad(1986) argues that the minimal set of admissible 
local trees in GKPS' GPSG for English is considerably smaller, yet still 
contains more than 10 z° local trees. 

laThe compiled grammar recognition problem is at least as intractable 
as the uncompiled one. Even worse, Barton{1985) shows how the grammar 
expansion increases both the space and time costs of recognltlon, when 
compared to the cost of using the grammar directly. 

14Thls substantive argument is somewhat strange coming from a co-author 
of a book which advocates the purely formal investigation of linguistics: 
"The universalism [of natural language 1 is, ultimately, intended to be en- 
tirely embodied in the formal system, not expressed by statements made in 
it.'GKPS(4). It is difficult to respond precisely to the claims made in Pul- 
Ium(1985), since the abstract is (necessarily) brief and consists of assertions 
unsupported by factual documentation or clarifying assumptions. 

37 



able nonterminal  symbols.  15 These informal tractability argu- 

ments  are a part icular  instance of the more general EP argument  
and are equally misleading. 

The preceding discussion of how intractability arises when 
converting a GPSG into a weakly equivalent CFG does not in 

principle preclude the existence of an efficient compilation step. 
If the compiled g rammar  is truly fast and assigns the same struc- 

tural  descriptions as the uncompiled GPSG,  and it is possible to 
compile the GPSG in practice, then the complexity of the uni- 

versal recognition problem would not  accurately reflect the real 
cost of parsing. 16 But until such a suggestion is forthcoming, 

we must  assume tha t  it does not  exist. 1~,1s 

iS,Expanded grammar" appears to refer to the output of metarule finite 
closure (i.e. ID rules), and this expanded grammar is tra,=table only if 
the grammar is directly usable by the Earley algorithm exactly as context- 
free productions are: all noaterminals in the context-free productions must 
be unanalyzable. But the categories and ID rules of the metarule finite 
closure grammar do not have this property. Nonterminals in GPSG are 
decomposable into a complex set of feature specifications and cannot be 
made atomicj in part because not all extensions of ID rule categories are 
legal. For example, the categories -OO01Vl~[-tCF1g}~ PA$] and VP[+INV, 
VFOI~ FIN] are not legal extensions of VP in English, while VP [÷INV, +AUX. 
VFORI~ FINI is. FCRs, FSDs, LP statements, and principles of universal 
feature instantiation --  all of which contribute to GPSG's intractability - -  
must all still apply to the rules of this expanded grammar. 

Even if we ignore the significant computational complexity introduced by 
the machinery mentioned in the previous paragraph (i.e. theory of syntac- 
tic features, FCRs, FSDs, ID/LP format, null-transitions, and metarules), 
GPSG will still not obtain an e.fficient parsability result. This is because the 
Head Feature Convention alone ensures that the universal recognition prob- 
lem for GPSGs will be NP-hard and likely to be intractable. Ristad(1986) 
contains a proof. This result should not be surprising, given that (1) prin- 
ciples of universal feature instant]ation in current GPSG theory replace the 
metarules of earlier versions of GPSG theory, and (2) metarules are known 
to cause intractability in GPSG. 

~6The existence or nonexistence of efficient compilation functions does 
not affect either our scientific interest in the universal grammar recognition 
problem or the power and relevance of a complexity analysis. If complexity 
theory classifies a problem as intractable, we learn that something more 
must be said to obtain tractability, and that any efficient compilation step, 
if it exists at all, must itself be costly. 

17Note that the GPSG we constructed in the preceding reduction will 
actually accept any input x of length less than or equal to Iwl if and only 
if the ATM M accepts it using S(]wl) space. We prepare an input string 
$ for the GPSG by converting it to the string $0xl lx22. . ,  xn nSr~-1 e.g. 
shades is accepted by the ATM if and only if the string $Oalb2a3d4e5e657 
is accepted by the GPSG. Trivial changes in the grammar allows us to per- 
mute and "spread" the characters of • across an infinite class of strings 
in an unbounded number of ways, e.g. $ O ' ~ x ~ i ' ~ 2 . . . ~ z l l ' y b . . . ? ~ $ a ÷ l  
where each ~ is a string over an alphabet which is distinct from the ~i 
alphabet. Although the flexibility of this construction results in a more 
complicated GPSG, it argues powerfully against the existence of any effi- 
cient compilation procedure for GPSGs. Any efficient compilation proce- 
dure must perform more than an exponential polynomial amount of work 
(GPSG-Recognition takes at least Exp-Poly time) on at least an exponen- 
tial number of inputs (all inputs that fit in the t w t space of the ATM's 
read-only tape). More importantly, the required compilation procedure will 
convert say exponential-polynomial time bounded Turing Machine into a 
polynomial*time TM for the class inputs whose membership can be deter- 
mined within a arbitrary (fixed) exp-poly time bound. Simply listing the 
accepted inputs will not work because both the GPSG and TM may ac- 
cept an infinite class of inputs. Such a compilation procedure would be 
extremely powerful. 

lSNote that compilation illegitimately assumes that the compilation step 

4 . 2  C o m p l e x i t y  a n d  S u c c i n c t n e s s  

The major  complexity result of this paper  proves tha t  the fastest  

a lgori thm for GPSG-Recogni t ion must  take more than  exponen- 

tial time. The immediately preceding section demonst ra tes  ex- 
actly how a part icular  algori thm for GPSG-Recognit ion (the EP 
argument)  comes to grief: weak context-free generative power 

does not ensure efficient parsabili ty because a GPSG G is weakly 
equivalent to a very large CFG G ~, and CFG size affects recog- 

nition time. The rebut ta l  does no t  suggest tha t  computa t ional  
complexity arises f rom representat ional  succinctness, either here 
or in general. 

Complexity results characterize the amount  of resources needed 

to solve instances of a problem, while succinctness results mea- 

sure the space reduction gained by one representat ion over an- 
other,  equivalent, representat ion.  

There is no casual connection between computa t ional  com- 
plexity and representat ional  succinctness, either in practice or 

principle. In practice, converting one g rammar  into a more  suc- 
cinct one can either increase or decrease the recognition cost. 
For example, converting an instance of context-free recognition 
(known to be polynomial t ime) into an instance of context-  

sensitive recognition (known to be PSPACE-complete  and likely 
to be intractable) can significantly speed the recognition prob- 

lem if the conversion decreases the size of the CFG logarithmi- 
cally or better.  Even more strangely, increasing ambiguity in 

a CFG can speed recognition t ime if the succinctness gain is 
large enough, or slow it down otherwise - -  unambiguous  CFGs  
can be recognized in linear time, while ambiguous ones require 
cubic time. 

In principle, t ractable  problems may involv~ succinct rep- 

resentations. For example, the iterating coordination schema 
(ICS) of GPSG is an unbeatably  succinct encoding of an infi- 

nite set of context-free rules; from a computa t ional  complexity 
viewpoint,  the ICS is ut ter ly trivial using a slightly modified 
Earley algorithm. 19 Tractable problems may also be verbosely 

represented: consider a r andom finite language, which may be 
recognized in essentially constant  time on a typical computer  
(using a hash table),  yet whose elements must  be individually 
listed. Similarly, intractable problems may be represented both  

succinctly and nonsuccinctly. As is well known, the Turing ma- 
chine for any arbi t rary r.e. set may be either extremely small 
or monst rously  big. Winning the game of chess when played on 
an n x n board is likely to be computat ionMly intractable,  yet 

the chess board is not  intended to be an encoding of another  

representat ion,  succinct or otherwise. 

is free. There is one theory of primitive language learning and use: conjec- 
ture a grammar and use it. For this procedure to work, grammars should 
be easy to test on small inputs. The overall complexity of learning, testing, 
and speech must be considered. Compilation speeds up the speech com- 
ponent at the expense of greater complexity in the other two components. 
For this linguistic reason the compilation argument is suspect. 

X~A more extreme example of the unrelatedness of succinctness and com- 
plexity is the absolute succinctness with which the dense language ~" may 
be represented - -  whether by a regular expression, CFG, or even Taring 
machine - -  yet members of E ° may be recognized in constant time (i.e. 
always accept). 

38 



Tractable problems may involve succinct or nonsuccinct rep- 
resentations, as may intractable problems. The reductions in 
this paper show that GPSGs are not merely succinct encod- 
ings of some context-free grammars; they are inherently com- 
plex grammars for some context-free languages. The heart of 
the matter is that GPSG's formal devices are computationally 
complex and can encode provably intractable problems. 

4 .3  R e l e v a n c e  o f  t h e  R e s u l t  

In this paper, we argued that there is nothing in the GPSG for- 
mal framework that guarantees computational tractability: pro- 
ponents of GPSG must look elsewhere for an explanation of 
efficient parsability, if one is to be given at all. The crux of 
the matter is that the complex components of GPSG theory 
interact in intractable ways, and that weak context-free gener- 
ative power does not guarantee tractability when grammar size 
is taken into account. A faithful implementation of the GPSG 
formalisms of GKPS will provably be intractable; expectations 
computational linguistics might have held in this regard are not 
fulfilled by current GPSG theory. 

This formal property of GPSGs is straightforwardly inter- 
esting to GPSG linguists. As outlined by GKPS, "an important 
goal of the GPSG approach to linguistics [is! the construction 
of theories of the structure of sentences under which significant 
properties of grammars and languages fall out as theorems as 
opposed to being stipulated as axioms (p.4)." 

The role of a computational analysis of the sort provided 
here is fundamentally positive: it can offer significant formal 
insights into linguistic theory and human language, and sug- 
gest improvements in linguistic theory and real-world parsers. 
The insights gained may be used to revise the linguistic theory 
so that it is both stronger linguistically and weaker formally. 
Work on revising GPSG is in progress. Briefly, some proposed 
changes suggested by the preceding reductions are: unit feature 
closure, no FCRs or FSDs, no null-transitions in ID rules, meta- 
rule unit closure, and no problematic feature specifications in 
the principles of universal feature instantiation. Not only do 
these restrictions alleviate most of GPSG's computational in- 
tractability, but they increase the theory's linguistic constraint 
and reduce the number of nonnatural language grammars li- 
censed by the theory. Unfortunately, there is insufficient space 
to discuss these proposed revisions here - -  the reader is referred 
to Ristad(1986) for a complete discussion. 

Acknowledgments. Robert Berwick, Jim Higginbotham, and 
Richard Larson greatly assisted the author in writing this paper. 
The author is also indebted to Sandiway Fong and David Waltz 
for their help, and to the MIT Artificial Intelligence Lab and 
Thinking Machines Corporation for supporting this research. 

Barton, G.E. (1985). "On the Complexity of ID/LP Parsing," 
Computational Linguistics, 11(4): 205-218. 

Chandra, A. and L. Stockmeyer (1976). "Alternation," 17 th 
Annual Symposium on Foundations of Computer Science,: 
98-108. 

Gazdar, G. (1981). "Unbounded Dependencies and Coordinate 
Structure," Linguistic Inquiry 12: 155-184. 

Gazdar, G., E. Klein, G. Pullum, and I. Sag (1985). Gener- 
alized Phrase Structure Grammar. Oxford, England: Basil 
Blackwell. 

Garey, M, and D. Johnson (1979). Computers and Intractabil- 
ity. San Francisco: W.H. Freeman and Co. 

Hopcroft, J.E., and J.D. Ullman (1979). Introduction to Au- 
tomata Theory, Languages, and Computation. Reading, 
MA: Addison-Wesley. 

Pullum, G.K. (1985). "The Computational Tractability of GPSG," 
Abstracts of the 60th Annual Meeting of the Linguistics So- 
ciety of America, Seattle, WA: 36. 

Ristad, E.S. (1985). "GPSG-Recognition is NP-hard," A.I. 
Memo No. 837, Cambridge, MA: M.I.T. Artificial Intelli- 
gence Laboratory. 

Ristad, E.S. (1986). "Complexity of Linguistic Models: A Com- 
putational Analysis and Reconstruction of Generalized Phrase 
Structure Grammar," S.M. Thesis, MIT Department of Elec- 
trical Engineering and Computer Science. (In progress). 

5 R e f e r e n c e s  

39 




