
A Structure-Sharing Representation
for

Unification-Based Grammar Formalisms

F e r n a n d o C . N . P e r e i r a

A r t i f i c i a l I n t e l l i g e n c e C e n t e r , S R I I n t e r n a t i o n a l

a n d

C e n t e r f o r t h e S t u d y o f L a n g u a g e a n d I n f o r m a t i o n

S t a n f o r d U n i v e r s i t y

A b s t r a c t

This paper describes a structure-sharing method for the rep-
resentation of complex phrase types in a parser for PATR-[I,
a unification-based grammar formalism.

In parsers for unification-based grammar formalisms,
complex phrase types are derived by incremental refinement
of rite phrase types defined in grammar rules and lexical
entries. In a naive implementation, a new phrase type is
built by copying older ones and then combining the copies
according to the constraints s tated in a grammar rule. The
structure-sharing method was designed to eliminate most
such copying; indeed, practical tests suggest that the use of
this technique reduces parsing t ime by as much as 60%.

The present work is inspired by the structure-sharing
method for theorem proving introduced by Boyer and Moore
and on the variant of it that is used in some Prolog imple-
mentations.

1 O v e r v i e w

In this paper I describe a method, structure sharing, for
the representation of complex phrase types in 'a parser for
PATR-II, a unification-based grammar formalism.

In parsers for unification-based grammar formalisms,
cfmtplex phrase types are derived by incremental refinement
of the phrase types defined in grammar rules anti h, xical
emries. In a naive implementation, a new phrase t.vpe is
built by" copying older ones and then combining the copies
according to the constraints stated in a grammar ruh,. The
structure-sharing method eliminates most such copying by

This research, made possible in part by a gift from the Systems De*
velol.~ment Foundation, wa~ also supported by the Defense Advanced
Research Projects Agency under Contracts N00039*80-C-OG75 and
N00039-84-C-0,524 with the Naval Electronic Systems Command. The
views and conclusions contained in this document are those of the au-
thor and should not be inierpreted as representative ol the official
policies, either expressed or implied, of the Defense Advanced Re*
s,,arrh Projects Agency, or the United States government.

Thanks are due to Stuart Shieber, Lauri Karttunen. aml Ray Per-
rault for their comments on earlier presentations of this materiM.

representing updates to objects (phrase types) separately
from the objects themselves.

The present work is inspired by the structure-sharing
method for theorem proving introduced by Boyer and Moore
[11 and on the variant of it that is used in some Prolog im-
plementations [9].

2 G r a m m a r s w i t h U n i f i c a t i o n

The da ta representation discussed in this paper is applicable,
with but minor changes, to a variety of grammar formalisms
based on unification, such as definite-clause grammars [61,
functional-unification grammar [4], lexical-fimctional gram-
mar [21 and PATR-II [8i. For the sake of concreteness, how-
ever, our discussion will be in terms of the PATR-II formal-
ism.

The basic idea of unification-ba.se, I grammar formalisms is
very simple. As with context-free ~rammars. granlmar rules
stafe how phrase types con,blue t(, yiehl ol her phr:~se types.
[h,t where:m a context-free grammar allows only a finite
nl,mber ,~f predefined atomic phrase types or nonlerminal.~,
a unification-based grammar will in general define implicitly
an infinity of phra.se types.

A phrase type is defined by a net of constraints. A gram-
mar m,le is a set of ronsl.rnints b,,twe,,u the type .\,~ . f a
phr:me ;lnd the types .\', \ ' , of its ,'on..,iitm,nis. The
rt,h, niay I,, applied It, It,. analysis ~,f a -,Ir'irlg s,, ;is the
c<mc;ih,nalion of rcmslil.m'nls "~1,.....%t if and <rely if tho
types ,,f the .~i arc' rOml);~iible with the lypes .\', ;tml the
constraints in the ruh,.

Unification is the operation that determines whether two
types are compauble by buihling the most general type com-
patible with both.

if the constramls arc, Cqllationn I)elween at tril-iI, ,s (~f
phra.se types, ;is is the ,'ase in P A T I I - I I . i~ , , l t l i r : l~e l.x t)e-
can l ie uni lh ,d wlH,iI~,~,l,r ih , ,y , Io l io l ;l~-.ii.rli , l i~ i inc i ~,;ihie.~
I.o I l ie ,~;llll¢, al, l . r i l l i lh , . T h e i l l l i l i l ; i l i l l i i i~, lhc l l jil.~l Ih~, ~'llii-
j u n c t i o n (,sOt I l i l i (l l l) Of the r o r r e s l X l a d i n g sets o f COll.~trailll~,

lsl.
Ilere is a sample rule, in a simplified version (if the PATR-

137

II notation:

Xo - - X t X2 : (Xo cat) = $
(X, cat) = NP
(X, cat) = VP (l)
(Xt agr) = (X~ agr)
(Xo trans) = (X2 trans)
(Xo trans argt) = (Xt trans)

This rule may be read as stating that a phrase of type Xo
can be the concatenation of a phrase of type Xt and a phrase
of type X:, provided that the attribute equations of the rule
are satisfied if the phrases axe substituted for their types.
The equations state that phrases of types X0, Xt, and X:
have categories S, NP, and VP, respectively, that types Xt
and X~ have the same agreement value, that types Xo and
X2 have the same translation, and that the first argument
of X0's translation is the translation of Xt.

Formally, the expressions of the form (it..-I,,,) used in
attribute equations axe path8 and each I~ is a label.

When all the phrase types in a rule axe given constant
cat (category} values by the rule, we can use an abbreviated
notation in which the phrase type vaxiables X~ axe replaced
by their category values and the category-setting equations
are omitted. For example, rule (1) may be written as

S -* N P VP : (N P aor) = (VP agr)
(5' trana) = (VP teens) (2)
(8 trana args) -- (NP trans)

In existing PATR-II implementations, phrase types are
not actually represented by their sets of defining equations.
Instead, they are represented by symbolic solutions of the
equations in the form of directed acyclic graphs (dacs) with
arcs labeled by the attributes used in the equations. Dag
nodes represent the values of attributes and an arc labeled
by l goes from node m to node n if and only if, according
to the equations, the value represented by m has n as the
value of its t attribute [~].

A dag node (and by extension a dag) is said to be atomic
if it represents a constant value; complex if it has some out-
going arcs; and a leaf if is is neither atomic or complex, that
is, if it represents an as yet completely undetermined value.
The domain dora(d) of a complex dag d is the set of labels
on arcs leaving the top node of d. Given a dag d and a label
l E dora(d) we denote by d/I the subdag of d at the end of
the arc labeled I from the top node of d. By extension, for
any path p whose labels are in the domains of the appropri-
ate subdags, d/p represents the subdag of d at the end of
path p from the root of d.

For uniformity, lexical entries and grammar rules are also
represented by appropriate dags. For example, the dag for
rule (t) is shown in Figure 1.

3 The P r o b l e m

In a chart parser [31 all the intermediate stages of deriva-
tions are encoded in ed0es, representing either incomplete

0 2

arg I I ~

trans

Figure 1: Dag Representation of a Rule

(active) or complete (pensive) phra.ses. For PATR-[I, each
edge contains a dag instance that represents the phrase type
of that edge. The problem we address here is how to encode
multiple dag instances efficiently.

[n a chart parser for context-free grammars, the solution
is trivial: instances can be represented by the unique inter-
hal names (that is, addresses) of their objects because the
information contained in an instance is exactly the same a.s
that in the original object.

[n a parser for PATR-|I or any other unification-based for-
realism, however, distinct instances of an object will in gen-
eral specify different values for attributes left unspecified in
the original object. Clearly, the attribute values specified for
one instance are independent of those for another instance
of the same object.

One obvious solution is to build new instances by copy-
ing the original object and then updating the copy with the
new attribute values. This was the solution adopted in the
first PATR-II parser [8]. The high cost of this solution both
in time spent copying and in space required for the copies
thenmelves constitutes the principal justification for employ-
ing the method described here.

4 S truc ture Shar ing

Structure sharing is based on the observation that an ini-
tial object, together with a list of update records, contains
the same information as the object that results from apply-
ing the updates to the initial object. In this way, we can
trade the cost of actually applying the updates (with pos-
sible copying to avoid the destruction of the source object)
against the cost of having to compute the effects of updates
when examining the derived object. This reasoning applies
in particular to dag instances that are the result of adding
attribute values to other instances.

138

As in the variant of Boyer and Moore's method [1] used
in Prolog [9], I shall represent a dag instance by a molecule

(see Figure 2) consisting of

1. [A pointer to] the initial dag, the instance's skeleton

2. [A pointer to] a table of updates of the skeleton, the
instance's environment.

Environments may contain two kinds of updates: reroutings
that replace a dag node with another dag; are bindings that
add to a node a new outgoing arc pointing to a dag. Figure
3 shows the unification of the dags

1, "- [a : z , b : y]

z= = [c. [d: eli

After unification, the top node of /2 is rerouted to It and the
top node of [i gets an arc binding with label c and a value
that is the subdag [d : e] of/2. As we shall see later, any up-
date of a dag represented by a molecule is either an update
of the molecule's skeleton or an update of a dag (to which
the same reasoning applies) appearing in the molecule's en-
viroment. Therefore, the updates in a molecule's environ-
ment are always shown in figures tagged by a boxed number
identifying the affected node in the molecule's skeleton.

The choice of which dag is rerouted and which one gets
arc bindings is arbitrary.

For reasons discussed later, the cost of looking up instance
node updates in Boyer and Moore's environment represen-
tation is O(]dl), where [d[is the length of the derivation (a
~equence of resolutions) of the instance. In the present rep-
resentation, however, this cost is only O(Iog]d]). This bet ter
performance is achieved by particularizing the environment
representation and by split t ing the representational scheme
into two components: a memory organization and a daft rep-
re.sentation.

A dag representation is & way of mapping the mathemat-
ical entity dag onto a memory. A memory organization is a
way of putt ing together a memory that has certain proper-
ties with respect to lookup, updating and copying. One can
think of the memory organization as the hardware and the
dag representation as the da ta structure.

5 M e m o r y o r g a n i z a t i o n

In practice, random-access memory can be accessed and up-
dated in constant time. However, updates destroy old val-
ues, which is obviously unacceptable when dealing with al-
ternative updates of the same da ta structure. If we want to
keep the old version, we need to copy it first into a sepa-
rate part of memory and change the copy instead. For the
normal kind of memory, copying time is proportional to the
size of the object copied.

The present scheme uses another type of memory orga-
nization - - virtual-copy array~ ~ which requires O(logn)
time to access or update an array with highest used index

k = 2
a[nl = f a :

f

n = 30 = 132 (base 4)

O(a) = 3

Figure 4: Virtual-Copy Array

of n, but in which the old contents are not destroyed by up-
dating. Virtual-copy arrays were developed by David H. D.
Warren [10] as an implementation of extensible arrays for
Prolog.

Virtual-copy arrays provide a fully general memory ~truc-
ture: anything that can be stored in r,'tndom-a,-ces~ mem-
ory can be stored in virtual-copy arrays, althoqlgh p,~mters
in machine memory correspond to indexes in a virtual-copy
array. An updating operation takes a virtual-copy array, an
index, and a new value and returns a new virtual-copy array
with the new value stored at the given index. An access op-
eration takes an array and an index, and returns the value
at that index.

Basically, virtual-copy arrays are 2k-ary trees for some
fixed k > 0. Define the depth d(n) of a tree node n
to be 0 for the root and d(p) + I if p is the parent of
n. Each virtual-copy array a has also a positive depth
D(a) > max{d(n) : n is a node of a}. A tree node at depth
D(a) (necessarily a leaf) can be either an array element
or the special marker .L for unassigned elements. All leaf
nodes at depths lower than D(a) are also ±, indicating that
no elements have yet been stored in the subarray below the
node. With this arrangement, the array can store at most
2 k°('l elements, numbered 0 through 2 k°~*l - l, but unused
sdbarrays need not be allocated.

By numbering the 2 h daughters of a nonleaf node from 0
to 2 k - 1, a path from a 's root to an array element (a leaf at
depth D(a)) can be represented by a sequence no . . . no(ab-t
in which n, is the number of the branch taken at depth d.
This sequence is just the base 2 k representation of the index
n of the array element, with no the most significant digit
and no(.} the least significant (Figure .t).

When a virtual-copy array a is updated, one of two things
may happen. If the index for the updated element exceeds
the maximum for the current depth (,a~ in the a[8] := ~/up-
date in Figure 5), a new root node is created for the updated
array and the old array becomes the leftmost daughter of the
new root. Other node,, are also created, as appropriate, to
reach the position of the new element. If, on the other hand,
the index for the update is within the range for the current

139

mo,.~,2~ ~ _ m
I

skeleton ~ "~ environment

own I ref I ref
Spot Daniel

initial update

°-° I,ef I,.f
Daniel Spot

Figure 2: Molecule

X unification

. / ~ ~ < > ~ <- / \ <>

° - "_L_ J ° - ' : _L_

III

xa y~d

Figure 3: Unification of Two Molecules

140

a{21: = h

a: [O:e, 2:h, 8:gl

o{81: = g

• •

a: [0:e, 2:f, 8:gl

I g
a: [0:e, 2:fl

e f

Figure 5: Updating Virtual-Copy Arrays

depth, the path from the root to the element being updated
is copied and the old element is replaced in the new tree by
the new element (as in the a[21 := h update in Figure 5).
This description assumes that the element being updated
has alroady been set. If not, the branch to the element may
T,,rminate prematurely in a 2. leaf, in which case new nodes
are created to the required depth and attached to the ap-
propriate position at the end of the new path from the root.

6 Dag representation
Any dug representation can be implemented with virtual-
copy memory instead of random-access memory. If that were
,lone for the original PATR-II copying implementation, a
certain measure of structure sharing would be achieved.

The present scheme, however, goes well b~yond that by
using the method of structure sharing introduced in Section
4. As we saw there, an instance object is represented by a
molecule, a pair consisting of a skeleton dug {from a rule
or iexical entry) and an update environment. We shall now
examine the structure of environments.

In a chart parser for PATR-ll, dug instances in the chart

fall into two classes.
Base in.stances are those associated with edges that are

created directly from lexical entries or rules.
Derived instances occur in edges that result from the com-

bination of a left and a right parent edge containing the left
and right parent instances of the derived instance. The left
ancestors of an instance {edge) are its left parent and that
parent 's ancestors, and similarly for right ancestors, l will

assume, for ease of exposition, that a derived instance is
always a subdag of the unification of its right parent with
a subdag of its left parent. This is the case for most com-
mon parsing algorithms, although more general schemes are
possible [7].

If the original Boyer-Moore scheme were used directly, the
environment for a derived instance would consist of point-
ers to left and right parent instances, as well as a list of
the updates needed to build the current instance from its
parents. As noted before, this method requires a worst-case
O(Idl} search to find the updates that result in the current
instance.

The present scheme relies on the fact that in the great
majority of cases no instance is both the left and the right
ancestor of another instance. [shall assume for the moment
that this is always the case. In Section 9 this restriction will
be removed.

It is as imple observation about unification that an update
of a node of an instance]" is either an update of [' s skeleton
or of the value (a subdag of another instance) of another
update of L If we i terate this reasoning, it becomes clear
that every update is ult imately an update of the skeleton of
a base instance ancestor of [. Since we assumed above that
no instance could occur more than once in it's derivation, we
can therefore conclude that [' s environment consists only of
updates of nodes in the skeletons of its base instance an-
cestors. By numbering the base instances of a derivation
consecutively, we can then represent an environment by an
array of frames, each containing all the updates of the skele-
ton of a given base instance.

Actually, the environment of an instance [will be a branch
environment containing not only those updates directly rele-
vant to [, but also all those that are relevant to the instances
o f / ' s part icular branch through the parsing search space.

In the context of a given branch environment, it is then
possible to represent a molecule by a pair consisting of a
skeleton and the index of a frame in the environment. In
particular, this representation can be used for all the value~
(dags) in updates.

More specifically, the frame of a base instance is an array
of update records indexed by small integers representing the
nodes of the instance's skeleton. An update record is either
a list of arc bindings for distinct arc labels or a rerouting
update. An arc binding is a pair consisting of a label and
a molecule (the value of the arc binding). This represents
an addition of an arc with that label and that value at th,,
given node. A rerouting update is just a pointer to another
molecule; it says that the subdag at that node in the updated
dug is given by that molecule (rather than by whatever w,xs
in the initial skeleton).

To see how skeletons and bindings work together to rep-
resent a dag, consider the operation of finding the sub(tag
d / (I t ' " l m) of dug d. For this purpose, we use a current
skeleton s and a current frame f , given initially by the skele-
ton and frame of the molecule representing d. Now assume

141

that the current skeleton s and current frame ,f correspond
to the subdag d' -- d/(ll.., l~-l). To find d/(l~.., l~) -" ~/l~,
we use the following method:

I. If the top node of s has been rerouted in j" to a dag v,
dereference £ by setting s and .f from v and repeating
this step; otherwise

2. If the top node of s has an arc labeled by l~ with value
s', the subdag at l~ is given by the moledule (g,[);
otherwise

3. If .f contains an arc binding labeled l~ for the top node
of s, the subdag at l~ is the value of the binding

If none of these steps can be applied, (It .-. l~) is not a path
from the root in d.

The details of the representation are illustrated by the
example in Figure 6, which shows the passive edges for the
chart analysis of the string ab according to the sample gram-

S - * A B : (5" a) = (A)
(S b) = (B)
(S = =) = (Shy)

m a r

A - * a : (A u v) = a
(3)

8- . . . b : (B u y) = b

For the sake of simplicity, only the subdags corresponding
to the explicit equations in these rules are shown (ie., the
cat dug arcs and the rule arcs 0, 1,... are omitted}. In
the figure, the three nonterminal edges (for phrase types S,
.4 and B) are labeled by molecules representing the corre-
sponding dags. The skeleton of each of the three molecules
comes from the rule used to build the nonterminal. Each
molecule points (via a frame index not shown in the figure)
to a frame in the branch environment. The frames for the
A and B edges contain arc bindings for the top nodes of
the respective skeletons whereas the frame for the S edge
reroute nodes 1 and 2 of the S rule skeleton to the A and B
molecules respectively.

7 The Unification Algorithm

I shall now give the u~nification algorithm for two molecules
(dags} in the same branch environment.

We can treat a complex dug d a8 a partial function from
labels to dags that maps the label on each arc leaving the top
node of the dag to the dug at the end of that arc. This allows
us to define the following two operations between dags:

d~ \ d2 = { { l , d } e d ~ l i ~ d o m { d : } }

di <3 d= = {(l,d) Ed l J I Gdorn(d:)}

It is clear that dom(dl <~ d~) = dom(d2 <~ dl).
We also need the notion of dug dereferencing introduced

in the last section. As a side effect of successive unifications,

the top node of a dag may be rerouted to another dag whose
top node will also end up being rerouted. Dereferencing is
the process of following such chains of rerouting pointers to
reach a dug that has not been rerouted.

The unification of dags dl and d~ in environment e consists
of the following steps:

1. Dereference dl and d2

2. If dl and d: are identical, the unification is immediately
successful

3.

4.

5.

6.

If dl is a leaf, add to e a rerouting from the top node of
dl to d~; otherwise

If d2 is a leaf, add to e a rerouting from the top node of
d2 to dl; otherwise

If dl and d2 are complex dags, for each arc (l, d) E dl <~
d= unify the dag d with the dag d' of the corresponding
arc (i,d') G d~ <l dl. Each of those unifications may
add new bindings to e. If this unification of subdags i.~
successful, all the arcs in dl \ d~ are are cab'red in e ~
arc bindings for the top node of d: and tinnily the top
node of dl is rerouted to d~.

If none of the conditions above applies, the unification
fails.

To determine whether a dag node is a leaf or com-
plex, both the skeleton and the frame of the corresponding
molecule must be examined. For a dereferenced molecule.
the set of arcs leaving a node is just the union of the skele-
ton arcs and the arc bindings for the node. For this to make
sense, the skeleton arcs and arc bindings for any molecule
node must be disjoint. The interested reader will have no
di~cuhy in proving that this property is preserved by the
unification algorithm and therefore all molecules built from
skeletons and empty frames by unification wiU satisfy it.

°

8 Mapping dags onto virtual-copy
memory

As we saw above, any dag or set of dags constructed by
the parser is built from just two kinds of material: (I)
frames; (21 pieces of the initial skeletons from rules and
[exical entries. The initial skeletons can be represented triv-
ially by host language data structures, as they never change.
F~'ames, though, are always being updated. A new frame is
born with the creation of an instance of a rule or lexical
entry when the rule or entry is used in some parsing step
(uses of the same rule or entry in other steps beget their own
frames). A frame is updated when the instance it belongs
to participates in a unification.

During parsing, there are in general several possible ways
of continuing a derivation. These correspond to alternative
ways of updating a branch environment. In abstract terms,

142

[] []

{7) i

Figure 6: St ructure-Shar ing Char t

on coming to a choice point in the derivation with n possi-
ble continuations, n - 1 copies of the envi ronment are made,
giving n envi ronments - - namely, one for each alternative.
In fact. the use of vir tual-copy arrays for envi ronments and
frames renders this copying unnecessary, so each continu-
ation path performs its own upda t ing of its version of the
envi ronment without interfering with the other paths. Thus,
all unchanged por t ions of the env i ronment are shared.

In fact, derivations as such are not explicit in a , 'hart
parser. Instead, the instance in each edge has its own branch
, ,nvironment, as described previously. Therefore. when two
e,lges are combined, it is necessary to merge their environ-
ments. The cost of this merge operat ion is at most the same

the worst case cost for unification proper (O([d[log JdJ)).
However, in the very common case in which the ranges of
frame indices of the two environments do not overlap, the
merge cost is only O(log [d[).

To summarize, we have shar ing at two levels: the Boyer-
Moore style dag representation allows derived (lag in-
stances to share input data structures (skeletons), and the
virtual-copy array environment representation allows differ-
ent branches of the search space to share update records.

9 The Renaming Problem

In the foregoing discussion of the s t ructure-shar ing method,
[assumed that the left and right ancestors of a derived in-
s tance were disjoint. In fact, it is easy to show that the con-

dition holds whenever the graHtm;tr d . ' s n¢)t ~.llow elllpty
deriv(,d edges.

In ,',mtrast, it is p,)ssible t,) construct a g rammar in which
an empty derived edge with dag D is b . t h a left and a right
ancestor of another edge with dag E. Clearly, tile two uses
(~f D a.s an ancestor of E are mutual ly independent and
the corresponding updates have to be seqregated. In ,~ther
words, we need two ,'~l)ies of tile instance D. 13v anal,,~'
with theorem proving, [call Ihi~ lhe renaminq pr~d,h,m.

The ('nrreflt sol|,t.i(,n is t,) us,, real ,'(,I)YiV|g t,) turn th,,
empty edge into a skelet(>n, which is the|| adde~l t~ the chart.
The new skeleton is then used in the norn|al fa.shion to pro-
duce multiple instances that are free of mutual interference.

10 I m p l e m e n t a t i o n

The representation described here has been used in a PATR-
II parser implemented in I)r,~l,)g ". Two versions of the parser
exist - cme using all Ea,-h,y-st.vle algori thn| related to Ear-
ley deduction [7], the other using a left- , ' . rner algorithm.

Prel iminary tests of the left-corner algorithm with struc-
ture shar ing on various grammars and input have shown
parsing times as much as 60% faster (never less, in fact,
than 40% faster) than those achieved by the same parsing
algori thm with s t ruc ture copying.

14,3

References

[1] R. S. Boyer and J S. Moore. The sharing of structure in
theorem-proving program& In Machine Intelligence 7,
pages 101-116, John Wiley and Sons, New York, New
York, 1972.

[21 J. Bresnan and R. Kaplan. Lexical-functional gram-
mar: a formal system for grammatical representation.
In J. Bresnan, editor, The Mental Representation of
Grammatical Relations, pages 173-281, MIT Press,
Cambridge, Massachusetts, 1982.

[3] M. Kay. Algorithm Schemata and Data Structures in
Syntactic Processing. Technical Report, XEROX Palo
Alto Research Center, Palo Alto, California, 1980. A
version will appear in the proceedings of the Nobel
Symposium on Text Processing, Gothenburg, 1980.

I4] M. Kay. Functional grammar. In Pro¢. of the Fifth
Annual Meeting of the Berkeley Linguistic Society,
pages 142-158, Berkeley Linguistic Society, Berkeley,
California, February 17-19 1979.

[5] Fernando C. N. Pereira and Stuart M. Shieber. The se-
mantics of grammar formalisms seen as computer lan-
guages. |n Proe. of Coling8~, pages 123-129, Asso,-ia-
tion for Computational Linguistics, 1984.

[6] Fernando C. N. Pereira and David H. D. Warren. Defi-
nite clause grammars for language analysis - a survey of
the formalism and a comparison with augmented transi-
tion networks. Artificial Inteilicence, 13:231-278, 1980.

[7] Fernando C. N. Pereira and David H. D. Warren. Pars-
ing as deduction. In Proc. of the 9lst Annual 3Iectin~
of the Association for Computational Linguistics, MIT,
Cambridge, Massachusetts, June 15-17 1983.

[8[Stuart M. Shieber. The design of a computer lan-
guage for linguistic information. In Proc. of Colinf8j,
pages 362-366, Association for Computational l,inguis-
tics, 1984.

[9] David H. D. Warren. Applied Logic - its use and intple.
menlalion as proqramming tool. PhD thesis, University
of FMinburgh, Scotland, 1977. Reprinted as T~,,'hnical
Note 290, Artificial Intelligence Center, SRI, Intorna-
tional, Menlo Park, California.

{10] David H. D. Warren, Logarithmic access arrays for
Prolog. Unpublished program, 1983.

144

