AN INTERNATIONAL DELPHI POLL ON FUTURE TRENDS IN "INFORMATION LINGUISTICS"

Rainer Kuhlen

Universitaet Konstanz Informationswissenschaft Box 6650 D-7750 Konstanz 1, West Germany

ABSTRACT

The results of an international Delphi poll on information linguistics which was carried out between 1982 and 1983 are presented.

As part of conceptual work being done in information science at the University of Constance an international Delphi poll was carried out from 1982 to 1983 with the aim of establishing a mid-term prognosis for the development of "information linguistics". The term "information linguistics" refers to a scientific discipline combining the fields of linguistic data processing, applied computer science, linguistics, artificial intelligence, and information science. A Delphi poll is a written poll of experts - carried out in this case in two phases. The results of the first round were incorporated into the second round, so that participants in the poll could react to the trends as they took shape.

1. Some demoscopic data

1.1 Return rate

Based on sophisticated selection procedures 385 international experts in the field of information linguistics were determined and were sent questionnaires in the first round (April 1982). 90 questionnaires were returned. In the second round 360 questionnaires were mailed out (January 1983) and 56 were returned, 48 of these from experts who had answered in the first round. The last questionnaires were accepted at the end of June 1983.

Overlapping data in the two rounds

first	round	(90)

second round (56)

In the following we refer to four sets of data: Set A 90 from round 1 Set B 48 from round 1 with answers in round 2 Set C 56 from round 2

Set_D	48	from	round	2	with	answers	in	round	1	
-------	----	------	-------	---	------	---------	----	-------	---	--

But we shall concentrate primarily on Set C because - according to the Delphi philosophy - the data of the second round are the most relevant. There were 8 persons within Set C who did not answer in the first round. But they also were aware of the results of the first round; therefore a Delphi effect was possible. (In the following the whole integers refer to absolute numbers; the decimal figures to relative/procentual numbers)

1.2 Qualification according to academic degree

The survey singled out highly competent people, as reflected in academic degree(data from A and C):

Tab.1 Qualification of participants

	Set	_A	Set_C		
B.S./B.A	23	25.6	16	28.6	
M.S./M.A./Dipl.	40	44.4	28	50.0	
Ph.D./Dr.	62	68.9	37	66.1	
Professor	14	15.6	15	26.8	

1.3 Age

Since Delphi polls are concerned with future developments, it has been claimed in the past that the age and experience of people in the field influence the rating. In this paper, however, we cannot prove this hypothesis. Here are the mere statistical facts, only taken from Set_C (they do not differ significantly in the other sets)

Tab.2 Age of participants

-30	30-35	36-40	41-45	46 - 50	50- years
3 5.6	14 25.9	14 25.9	10 18.5	5 9.3	8 14.8

1.4 Experience

The number of years these trained specialists have been working in the general area of information linguistics were as follows

Tab.3 Experience in information linguistics

-2	3-5	6–10	10-	years	of	experience
3 5.6	7 13.0	13 24.1	31 57	.4		

These data in particular confirm our impression experienced people that very qualified and the questionnaire. Almost 60% have answered worked longer than 10 years in the general area of information linguistics.

1.5 Size of research groups

Most of those answering the questionnaire work in a research-group. Table 4 gives an impression of the size of the groups in Set A and Set C:

Tab.4 Size of research groups

	1–2	3–5	6–10	11-50	50 -
Set_A	16 19.0	25 29.8	21 25.0	18 21.4	4 4.8
Set_C	14 26.4	17 32.1	12 22.6	8 15.1	2 3.8

1.6. Represented subject fields

Among those answering in the two rounds, the following fields were represented:

Tab.5 Scientific background of participants

	Set_A	Set_C
information science computer science linguistics natural sciences/	32 35.6 36 40.0 21 27.3 15 16.7	17 30.4 20 35.7 16 28.6 12 21.4
engineering humanities/social sciences	3 3.3 15 16.7	2 3. 6 12 21 . 4

1:7 Research and application/development

With respect to whether participants are mainly involved in research (defined as: basic groundwork, mainly of theoretical experimental environment) or in theoretical interest, application/development (defined as: mainly of interest from the point of view of working systems (i.e. commercial, industrial), applicable to routine tasks) the results were as follows:

Tab.6 Involved in research or application

	Set_A	Set_B	Set_C	Set_D
research	59 65.6	31 64.6	39 69.6	33 68.8
application	27 30. 0	16 33.3	16 28.6	15 31.3

1.8 Working environment

Tab.7 Types of institutions

	Set_A	Set_C
university	45 50.0	30 53.6
research institute	7 7.8	4 7.1
industrial research	17 18.9	12 21.4
information industry	8 8.9	2 3.6
indust. administ.	_	1 1.8
public administration	8 8.9	4 7.1
public inf. systems	3 3.3	2 3.6

Most of the work in information linguistics so far has concentrated on English (generally more than 80%, with slight differences in the single sub-areas, i.e. acoustic 80.6%, indexing 82.5%, question-answering 83.3%).

2. Content of the questionnaire

2.1 Sub-areas

The discipline "information linguistics" was not defined theoretically but ostensively instead by a number of sub-areas.

Ac

Ha

So

n

In

Ab

Tr

- abreviation 1. Acoustic/phonetic procedures
- 2. Morphological/syntactic procedures Мо
- 3. Semantic/pragmatic procedures Se
- 4. Contribution of new hardware
- Contribution of new software
 Information/documentation languages
- 7. Automatic indexing
- 8. Automatic abstracting
- 9. Automatic translation
- 10. Reference and data retrieval systems Re
- 11. Question answering and understanding Qu systems

2.2 Single topics

The sub-areas included a varying number of topics (from 6 to 15). These topics were chosen based on the author's experience in information linguistics, on a pre-test with mostly German researchers and practitioners, on advices from members of FID/LD, and on long discussions with Don Walker, Hans Karlgren, and Udo Hahn. Altogether, there were 91 topics in the first round and 90 in the second round, as follows:.

- Segmentation of Acoustic Input ac1
- Speaker Dependent Speech Recognition ac2
- Speaker Independent Speech Recognition ac3
- ac4 Speech Understanding
- Identification of Intonational/Prosodic Inforac5 mation with respect to Syntax
- Identification of Intonational/Prosodic Inforac6 mation with respect to Semantics
- ac7 Automatic Speech Synthesis
- Automatic Correction of Incomplete or False mo1 Input
- **mo**2 Analysis of Incomplete or Irregular Input
- Morphological Analysis (Reduction Algorithms) шоЗ
- Automatic Determination of Parts of Speech mo4
- Automatic Analysis of Functional Notions mo5
- mo6 Partial Parsing Recognition Techniques
- Partial Parsing Transformation Techniques mo7
- mo8 Recognition of Syntactic Paraphrases
- mo9 Recognition of Textual Paraphrases
- mo10 Question Recognition
- mol1 Grammars of Syntactic Parsing of Unrestricted Natural Language Input
- set Semantic Classification of Verbs or Predicates
- Organizing Domain-Specific Frame/Script-Type se2
- Structures
- se3 Semantically Guided Parsing
- se4 Semantic Parsing

- se5 Knowledge Acquisition
- Analysis of Quantifiers se6
- Analysis of Deictic Expressions se7
- Analysis of Anaphoric/Cataphoric Expressions se8 (Pronominalization)
- se9 Processing of Temporal Expressions
- se10 Establishment of Text Cohesion and Text Coherence
- sell Recognition of Argumentation Patterns
- se12 Management of Vague and Incomplete Knowledge
- sel3 Automatic Management of Plans
- se14 Formalizing Speech Act Theory se15 Processing of Unpragmatical Input
- hat Personal Computers for Linguistic Procedures
- Parallel Processing Systems ha2
- New Mass Memory Technologies ha3
- Associative Memory ha4
- Terminal Support ha5
- ha6 Hardware Realization of Natural Language Analysis Procedures
- Communication Networks ha7
- Standard Programming Languages for Information sol Linguistics
- Development of Modular Standard Programs so2 (Hardware-Independent)
- Natural Language Programming 803
- 804 Parallel Processing Techniques
- Alternative File Organization **s**o5
- New Database System Architecture for the **so**6 Purpose of Information Linguistics
- so7 Flexible Data Management Systems
- Compatibility of Documentation Languages in il1 Distributed Networks
- Enrichment of Information Languages by i12 Statistical Relations
- Enrichment of Information/Documentation i13 Languages by Linguistic Semantics
- Enrichment of Higher Documentation Languages i14 by Artificial Intelligence Methods
- i15 Standardization of Information/Documentation Languages
- i16 Documentation Languages for Non-Textual Data il7 Information/Documentation Languages for
- Heterogeneous Domains
- il8 Determination of Linguistic Relations
- il9 Adaptation of Ordinary Language Dictionary Databases
- il10 (cancelled in the second round)
- il11 Statistical Models of Domain-Specific Scientific Languages
- in1 Improvement of Automatic Indexing by Morphological Reduction Algorithms
- Improvement of Automatic Indexing by in2 Syntactic Analysis
- Improvement of Automatic Indexing by in3 Semantic Approaches
- in4 Probabilistic Methods of Indexing
- in5 Indexing Functions
- in6 Automatic Indexing of Full-texts
- ab1
- Abstracting Methodology ab2
- Automatic Extracting ab3 Automatic Indicative Abstracting
- ab4 Automatic Informative Abstracting

- ab5
- Automatic Positional Abstracting Graphic Representation of Text Structures ab6
- Development of Sophisticated Multi-Lingual tr1 Lexicons
- Automatic Translation of Restricted Input tr2
- Interactive Translation Systems tr3
- Fully Automatic Translation Systems tr4
- Multilingual Translation Systems tr5
- tr6 Integration of Information and Translation Systems
- Iterative Index and/or Query Modification rel by Enrichment of Term Relations
- re2 Natural Language Front-End to Database Systems
- Graphic Display for Query Formulation support re3
- Multi-Lingual Databases and Search Assistance re4
- re5 Public Information Systems
- Integration of Reference Retrieval and qu1 Question Answering Systems
- qu2 Linguistic Modeling of Question/Answer Interaction
- qu3 Formal Dialogue Behavior
- Belief Structures
- qu4 Belief Structures qu5 Heuristic/Common Sense Knowledge
- Change of Roles in Man-Machine Communication qu6
- qu7 Automatic Analysis of Phatic Expressions
- qu8 Inferencing
- qu9 Variable Depth of System Answers
- quio Natural Language Answer Generation

Each topic was defined by textual paraphrase, e.g. for ab4: "procedures of text condensation that stress the overall, true-to-scale compression of a given text; although varying in length (according to the degree of reduction); can be used as a substitute for original texts".

3. Answer parameters for the sub-areas

3.1 Competence (=CO)

At the beginning of every sub-area participants were requested to rate their competence accord-ing to three parameters "good" (with a specialist's knowledge), "fair" (with a and "superficial" (with a working knowledge), Tab.8 knowledge). shows lavman's the self-estimation of competence within the sub-areas (data taken from Set C):

Tab. 8 Competence

Tab.9 Desirability

	good	1	fair	ອນ	perf	icial	
	re	ank	r	ank	r	ank	
Ac	4 1	1	14	8	34	1	
Mo	25	3	17	5	8	7	
Se	24	4	17	5	10	5	
Ha	13 1	IÓ –	23	1	14	3	
So	18	7	22	2	8	7	
11	18	Ż	18	4	12	4	
In	21	6	17	5	9	6	
Ab	14	9	20	3	16	2	
Tr	24	4	5	11	0	11	
Re	31	2	12	10	8	7	
Qu	32	1	13	9	7	10	

1		++	+	-	
	In	19	19	1	0
	Ab	21	22	4	0
	\mathbf{Tr}	33	11	1	0
	Re	35	13	0	0
	Qu	35	8	3	О

3.2 Desirability (=DE)

With respect to the application oriented subject areas the category of desirability was used in order to determine the social desirability according to the following 4-point scale: "very desirable"/++ (will have a positive social effect, little or no negative social effect, extremely beneficial), "desirable"/+ (in general positive, minor negative social effects), "undesirable"/-(negative social effects), "undesirable"/-(negative social effect, socially harmful), "very undesirable"/-- (major negative social effect, socially not justifiable).

Tab.9 (data from Set C) shows that the negative parameters (-, -) were never or only seldom used. Information linguistics is not judged according to the estimation of the experts - as a socially harmful scientific discipline.

4. Answer parameters for the single topics

The following parameters were used as ratings for the sub-areas and the single topics. Their definitions were given in more detail in the questionnaire.

Tab.10 Evaluation parameters

IMPORTANCE(=I) FEASIBILITY(=F) DATE OF REALIZ. (=DR)

++ very i.	++ def. f.	realized
+ i.	+ poss. f.	1984 +/-2
		1989 +/-3
		1996 +/-10
- slightly i.	- doubtf. f.	2010 +/-10
	-def. un-f.	non-realistic

These categories of scientific importance, feasibility, and date of realization were to be judged from two points of view:

research(=R) - defined as: basic groundwork, mainly of theoretical interest

application/development (=A) - defined as: mainly of interest for working systems, applicable to routine tasks

Therefore every single topic was evaluated according to six parameters:

Importance for research I/R Importance for application I/A Feasibility for research F/R Feasibility for application A/A Date of realization considering research DR/R Date of realization considering application DR/A

5. More detailed results

5.1 Sub-areas

5.1.1 Competence

Competence was an important influence on evaluation. In general one can say that people with "good" competence (or more correctly: with competence estimation of "good") in a sub-area gave topics higher ratings for importance and feasibility both from the research and the application points of view. Nevertheless, there were differences. Those with "good" competence differed more widely in evaluations of research-oriented topics than in application-oriented topics, whereas those with "superficial" competence in the sub-areas were closer to the average in their evaluations of application-oriented topics than of research-oriented topics. Here are some examples of the differences (as reflected in the averages of the sub-areas). Tab. 11 is to be read as follows: (line 1) in the sub-area "Acoustic" those with "good" competence evaluated 5.6% higher than the average with respect to importance for research, whereas people with "superficial" competence in the same sub-area evaluated 6.9% lower than average.

Tab.11 Competence differences

(g=good;s=superficial)

I/R CO/g	C0/s	I/A CO/g	C0/s	F/R CO/g	CO/8	F/A CO/g	CO/s
Ac5.6+ Ha1.8+	3.0- 9.3-	In4.7+ Ab4.3+	5.1- 13.8-	Ac25.1+ Se1.1-	3.9- 5.8+	Ac9.4+ Ha7.5+	0.6-7.0-
Ab7.2+	8.4-			110.2+	19.4-	10.0+	19+4-

As can be seen in the column F/R, sometimes the general trend is reversed (Semantic: values from "competent" participants are lower than from participants with "superficial" competence).

5.1.2 Desirability

There is also a connection between desirability and the values of importance and feasibility. Those who gave high ratings for desirability (DE++) in general gave higher values to the single topics in the respective sub-areas, both in comparison to the average values and to the values of those who gave only high desirability (DE+) to a given sub-area. The differences between DE++ and DE+ are even higher than those between C/g und C/s. Only the F/R data in the translation and retrieval areas are lower for D++ than for D+, in all other cases the D++ values are higher. Some examples:

Tab.12 Desirability differences

	I/R DE++	DE+	I/A DE++	DE+	F/R DE++	DE≁	F/A DE++	DE+
In Ab Tr Re Qu	6.6+ 6.8+ 2.8+ 1.9+ 4.0+	4.3- 0.6- 5.9- 8.3- 8.1-	4.5+ 13.2+ 0.4+ 0.1+ 7.5+	4.9- 5.8- 1.1- 14.2-	6.9+ 0.9+ 2.1- 0.2- 3.8+	10.9- 0.2+ 8.3+ 0.6+ 11.4-	11.4+ 7.9+ 2.9+ 2.0+ 7.7+	15.3- 4.3- 3.2- 4.1- 23.5-

5.1.3 Importance, Feasibility, Date of Realization

(In the following tables the values of the answers ++ (very important, definitely feasible) and + (important, possibly feasible) have been added

together, and the values from the single topics have been averaged. Exact year-data were calculated from the answers on the 6-point rating scale, cf. Tab.10. In order to show the Delphi effect the data in Tab. 13 are taken from Set_A, in Tab.14 from Set_C)

Tab.13 Averaged I-, F-, DR-values from Set A

	Importance		Feasi	bility	Reali:	zation		
	I/R I/A		F/R	F/A	DR/R	DR/A		
Ac	85.4	82.5	62.5	49.4	1997	2000		
Mo	84.0	87.7	84.1	75.9	1987	1990		
Se	89.2	81.2	67.5	53.3	1995	1999		
Ha	84.8	87.9	84.6	76.0	1986	1991		
So	88.1	88.9	80.8	72.1	1988	1994		
IL	77.6	79.0	83.1	74.6	1987	1993		
In	90.2	90.0	79.9	74.7	1986	1990		
Ab	79.8	77.7	69.2	58.7	1991	1997		
Tr	87.5	87.1	72.3	63.0	1994	1998		
Re	87.5	90.7	86.8	78.3	1985	1989		
Qu	87.5	80.2	74.2	61.1	1991	19989		
Tab.14 Averaged I-, F-, DR-values from Set C								

	I/R	I/A	F/R	F/A	DR/R	DR/A
Ac Mo	90.9 90.1	84.0 89.3	64.2 88.4	46.4 78.6	1998 1987	2001 1991
Se Ha	92.6 82.4	83.4	70.3	49.4	1996	2000
So	88.0	88.3	80.1	67.5	1989	1995
IL In	82.8 89.4	83.4 90.5	88.0 89.6	77.0 79.2	1988 1986	1997 1991
Ab	75.6	75.0	68.8	52.3	1992	1999
Re	83.8	91.9 91.7	91.7	55.2 83.9	1994 1986	1991
Qu	88.4	80.8	76.8	52.7	1992	1999

The average values in Tab. 13 and 14 should not be over-interpreted. In particular, ranking is unjustified. One cannot simply conclude that, say, the sub-area "Semantics" (92.6) is more important than that of "Abstracting" (75.6) with respect to research because the average value is higher; or that Indexing (79.2) is more feasible from an application point of view than Abstracting (52.3). Such conclusions may be true, and this is why the values in Tab. 13 and 14 are given, but the parameters should actually only be applied to the single topics in the sub-areas. Cross-group ranking is not allowed for methodological reasons.

But nevertheless the data are interesting enough. It is obvious that the following relation is in general true:

I/R (-values) > I/A > F/R > F/A

There are some exceptions to this general rule, such as Re-I/A>I/R (both in Set A and Set C); Ha-F/R>I/R (in Set C); (Re-F/R and F/A)>I/R (in Set_C); and I1-F/R>I/R(both in Set_A and Set_C).

There seems to be a non-trivial gap between importance and feasibility (both with respect to research and application). In other words, there are more problems than solutions. And there is an even broader gap between application and research. From a practical point of view there is some skepsis concerning the possibility of solving important research problems. And what seems to be feasible from a research point of view looks different from an application one.

The values in the second round are in general higher than in the first one. This is an argument against the oft cited Delphi hypothesis that the feedback-mechanism - i.e. that the data of the previous round are made known at the start of the following round - has an averaging effect. The increase-effect can probably be explained by the fact that the percentage of qualified and "competent" people was higher in the second round (perhaps these were the ones who were motivated to take on the burden of a second round) - and, as Tab.11 shows, people who rated themselves "competent" tend to evaluate higher.

Between the two rounds the decline in the sub-areas "Software" and "Hardware" (apart from the parameter F/R) is striking. There is an overall increase for "Morphology" and "Information Languages" for all parameters, and a dramatic increase for the topics in "Indexing" for F/R (9.7%), and a dramatic decline for the "Translation"- and "Question-Answering"-topics for the parameter F/A (9.8 and 8.4%).

The dates of realization do not change dramatically. On the average there is a difference of one year (and this makes sense because there was almost one year between round 1 and 2). There is a tendency from a research point of view for the expectation of realization to be somewhat earlier from an application standpoint. But the differences are not so dramatic as to justify the conclusion that researchers are more optimistic than developers/practitioners.

5.2 Single topics

Tab.15 and 16 show the two highest rated topics in each sub-area in the first two columns and the two lowest rated topics in each sub-area in the last two columns. These represent average data from Set C. The four columns in the middle show the estimation of participants who work in research or application, respectively. As part of the demoscopic data it was determined whether participants work more in research or in application (cf. Tab.6). Notice that both groups answered from a research and application point of view. In a more detailed analysis (which will be published later) this - and other aspects - can be pursued. In Tab.15 and 16 the data for very high importance (++) and high importance (+) have been added together.

Tab.15 Topics according to importance

Tab.17 Short term and long term topics

most important topics (++^+) average research application					+) Cation	less important average(^-)		
I/R	I/A	I/R	I/A	I/R	I/A	I/R	I/A	
ac1	ac7	ac1	ac1	ac1	ac2	acc	ac6	
ac3	ac2	ac3	ac2	ac2	ac3	ac7	ac5	
mo8	mol	mo8	mo1	mo8	mol	mot	mo9	
mo11	molO	mo11	mo3	mo9	mo2	mo7	mo4	
se5	se3	se5	se3	se2	se2	se15	se15	
se2	se12	se8	se2	se3	se5	se7	se11	
ha7	ha7	ha4	ha3	ha7	ha5	ha6	hab	
ha4	ha5	ha2	ha7	ha2	ha7	hai	ha2	
SO 6	so7	SO 6	so5	so3	so4	sol	so3	
so7	so5	so5	so7	so4	SO 6	so3	so4	
i110	i110	i14	il1	il1	ill	i15	il11	
i14	il1	il1	i 14	i17	i16	il11	i15	
in3	ini	in3	in6	in3	in3	in4	in5	
in2	in6	in6	in3	in6	in6	in5	in4	
ab4	ab3	ab4	ab2	ab3	ab3	ab2	ab6	
ab5	ab2	ab5	ab3	ab1	ab4	ab6	ab5	
tr3	tr3	tr2	tr3	tr3	tr1	tri	tr5	
tr5	tr2	tr5	tr2	tr4	tr3	tr6	tr1	
re2	re1	re2	re1	re1	re1	re3	re3	
re1	re5	ret	re2	re2	re5	re4	re4	
qu5	qul	qu2	qul	qu1	qu1	qu7	qu7	
qu2	qu8	qu5	qu8	qu5	qu2	quJ	qu3	
Tab. 16 Most feasible, less feasible topics								
most	feas	ible t	opics	(++^+)	less :	feasible	
avera	age	resea	rch	appli	cation	avera	ge(^_)	
F/R	F/A	F/R	F/A	F/R	F/A	F/R	F/A	
ac7	ac7	ac2	ac7	ac2	ac2	ac6	ac6	
ac2	ac2	ac5	act	ac7	ac7	ac4	ac4	
тоз	mo3	mo3	mo3	mo1	mo1	mo9	mo11	
mo1 0	mo1 0	mo10	mo10	mo2	mo2	m05	mo5	
se3	se2	se3	se9	se2	se2	se15	se15	
se6	se6	se2	se2	se6	se6	se11	se11	
ha5	ha5	ha5	ha5	ha4	ha4	ha6	ha6	

most feasible top: average research		opics rch	(++^+) application		less feasible average(^-)		
F/R	F/A	F/R	F/A	F/R	F/A	F/R	F/A
ac7 ac2 mo10 se3 se6 ha5 ha7 so2 so1 il10 il19 in1 in2 ab3 tr3 re1 re3 qu1	ac7 ac2 mo3 mo10 se2 se6 ha5 ha1 so2 so1 il10 il9 in4 in1 ab2 ab3 tr1 re3 re5 qu1	ac2 ac5 mo3 mo10 se3 se2 ha5 ha7 so2 so1 il9 il8 in4 in5 ab2 ab3 tr3 tr2 re1 re3 qu1	ac7 ac1 mo3 mo10 se9 se2 ha5 ha3 so1 il6 il9 in4 in5 ab3 tr1 re3 re5 qu1	ac2 ac7 mo1 mo2 se2 se6 ha4 ha5 so2 so7 il1 il7 in3 in4 ab2 ab1 tr2 re1 re2 cu1	ac2 ac7 mo1 mo2 se2 se6 ha4 ha5 so2 so5 il1 il7 in4 in3 ab2 ab3 tr3 tr2 re1 re3 au10	ac6 ac4 mo9 mo5 se15 se11 ha6 ha2 so3 so4 il16 in6 in3 ab4 ab5 tr4 tr5 re4 re5 gu4	ac6 ac4 mo11 mo5 se15 se11 ha6 ha2 so3 so4 il4 il5 in3 in6 ab5 ab6 tr4 tr5 re4 re2 ou4
qu2	qu10	qu2	qu10	qu5	qu1	qu9	qu9

A final Table shows the data for short term and long term topics, only the two closest and the two most distant topics in each sub-area are given (data from Set_C).

short R/R	term	R/A		long R/R	term	R/A	
ac7	1987	ac7	1992	ac4	2003	ac4	2006
ac2	1991	ac2	1997	ac6	2003	ac6	2006
mo3	1984	mo3	1984	mo9	1997	mo9	2000
mo10	1984	mo6	1986	mo11	1992	mo11	1997
se2 se1 ha5 ha7 so1 so2 il2 il9 in1 in4 aa2 aa3 at2 re2	1987 1988 1984 1984 1984 1984 1984 1986 1986 1988 1985 1985 1985	se1 se6 ha5 so1 so2 i19 i12 in1 in4 aa2 at3 at2 re3	1992 1995 1985 1988 1987 1990 1991 1986 1987 1996 1996 1992 1987 1992	se15 se11 ha6 ha2 so3 so4 i110 i15 in3 in6 aa5 aa6 at4 at5 re4	2000 2000 1996 1991 1998 1993 1989 1989 1989 1988 1996 2000 1998 1992	se11 se14 ha6 ha2 so3 so4 i14 i13 in6 aa4 aa6 at4 at5 re5	2005 2005 1999 1997 2001 1998 1997 1996 1997 2002 2001 2006 2005 1998
rei	1984	rei	1988	re5	1986	re5	1990
qui	1988	qui	1997	qu9	1997	qu4	2001
qu2	1988	qu2	1997	qu4	1997	qu5	2001

Finally I would like to thank all those who participated in the Delphi rounds. It was an extremely time-consuming task to answer the questionnaire, which was more like a book than a folder. I hope the results justify the efforts. The analysis would not have been possible without the help of my colleagues - Udo Hahn for the conceptual design, and Dr.J.Staud together with Annette Woehrle, Frank Dittmar and Gerhard Schneider for the statistical analysis. This project has been partially financed by the FID/ID-committee and by the "Bundesministerium fuer Forschung und Technologie/ Gesellschaft fuer Information und Dokumentation", Grant PT 200.08.