
MENU-BASED NATURAL LANGUAGE UNDERSTANDING

Harry R. Tennant, Kenneth M. Ross,
Richard M. Saenz, Craig W. Thompson,

and James R. M i l le r
Computer Science Laboratory

Central Research Laboratories
Texas Instruments Incorporated

Dallas, Texas

ABSTRACT

This paper describes the NLMenu System, a
menu-based natural language understanding system.
Rather than requiring the user to type his input
to the system, input to NLMenu is made by selec-
t ing items from a set of dynamically changing
menus. Active menus and items are determined by
a predictive left-corner parser that accesses a
semantic grammar and lexicon. The advantage of
this approach is that al l inputs to the NLMenu
System can be understood thus giving a 0% fa i lu re
rate. A companion system that can automatically
generate interfaces to relational databases is
also discussed.

re la t ive ly straightforward queries that PLANES
could understand. Addi t ional ly, users did not
successfully adapt to the system's l imitat ions
after some amount of use.

One class of problem that caused negative and
false user expectations was the user's ab i l i t y to
distinguish between the l imi tat ions in the system's
conceptual coverage and the system's l i ngu is t i c
coverage. Often, users would attempt to para-
phrase a sentence many times when the reason for
the system's lack of understanding was due to th~
fact that the system did not have data about the
query being asked (i .e . the question exceeded the
conceptual coverage of the system). Conversely,
users' queries would often fa i l because they were
phrased in a way that the system could not handle
(i .e . the question exceeded the l i ngu is t i c
coverage of the system).

I INTRODUCTION

Much research into the building of natural
language interfaces has been going on for the past
15 years. The primary direction that this re-
search has taken is to improve and extend the
capabi l i t ies and coverage of natural language
interfaces. Thus, work has focused on constructing
and using new formalisms (both syntact ical ly and
semantically based) and on improving the grammars
and/or semantics necessary for characterizing the
range of sentences to be handled by the system.
The ultimate goal of this work is to give natural
language interfaces the ab i l i t y to understand
larger and larger classes of input sentences.

Tennant (1980) is one of the few attempts to
consider the problem of evaluating natural
language interfaces. The results reported by
Tennant concerning his evaluation of the PLANES
System are discouraging. These results show that
a major problem with PLANES was the negative
expectations created by the system's i nab i l i t y to
understand input sentences. The i nab i l i t y of
PLANES to handle sentences that were input caused
the users to infer that many other sentences wou|d
not be correctly handled. These inferences about
PLANES' capabil i t ies resulted in much user frus-
trat ion because of their very limited assumptions
about what PLANES could understand. I t rendered
them unable to successfully solve many of the
problems they were assigned as part of the evalu-
ation of PLANES, even though these problems had
been speci f ical ly designed to correspond to some

The problem pointed out by Tennant seems to be
a general problem that must be faced by any natural
language interface. I f the system is unable to
understand user inputs, then the user w i l l infer
that many other sentences cannot be understood.
Often, these expectations serve to severely l im i t
the classes of sentences that users input, thus
making the natural language interface v i r t ua l l y
unusable for them. I f natural language interfaces
are to be made usable for novice users, with l i t t l e
or no knowledge of the domain of the system to
which they are interfacing, then negative and false
expectations about system capabi l i t ies and per-
formance must be prevented.

The most obvious way to prevent users of a
natural language interface from having negative
expectations is expand the coverage of that inter-
face to the point where pract ical ly al l inputs
are understood. By doing th is , most sentences that
are input w i l l be understood and few negative
expectations w i l l be created for the user. Then
users w i l l have enough confidence in the natural
language interface to attempt to input a wide range
of sentences, most of which w i l l be understood.
However, natural language interfaces with the
ab i l i t y to understand v i r t ua l l y al l input sentences
are far beyond current technology. Thus, users
~vill continue to have many negative expectations
about system coverage.

A possible solution to this problem is the use
of a set of training sessions to teach the user the
syntax of the system. However, there are several
problems with this. F i rs t , i t does not allow

151

untrained novices to use such a system. Second,
i t assumes that infrequent users w i l l take with
them and remember what they learned about the
coverage of the system. Both of these are
unreasonable restrictions.

I I A DESCRIPTION OF THE NLMENU SYSTEM

In this paper, we w i l l employ a technique that
applies current technology (current grammar formal-
isms, parsing techniques, etc.) to make natural
language interface systems meet the cr i ter ia of
usabil i ty by novice users. To do this, user
expectations must closely match system performance.
Thus, the interface system must somehow make i t
clear to the user what the coverage of the system
is. Rather than requiring the user to type his
input to the natural language understanding system,
the user is presented with a set of menus on the
upper half of a high resolution b i t map display.
He can choose the words and phrases that make up
his query with a mouse. As the user chooses items,
they are inserted into a window on the lower half
of the screen so that he can see the sentence he
is constructing. As a sentence is constructed,
the active menus and items in them change to
reflect only. the legal choices, given the portion
of the sentence that has already been input. At
any point in the construction of a natural language
sentence, only those words or phrases that could
legally come next w i l l be displayed for the user
to select.

Sentences which cannot be processed by the
natural language system can never be input to the
system, giving a 0% fai lure rate. In this way, the
scope and limitations of the system are made
immediately clear to the user and only understand-
able sentences can be input. Thus, all queries
fa l l within the l inguist ic and conceptual coverage
of the system.

A. The Grammar Formalism

The grammars used in the NLMenu System are
context-free semantic grammars written with phrase
structure rules. These rules may contain the
standard abbreviatory conventions used by l in -
guists for writing phrase structure rules. Curly
brackets ({} , sometimes called braces) are used to
indicate optional elements in a rule. Addition-
a l ly , square brackets ([]) are used as well. They
have two uses. First, in conjunction with curly
brackets. Since i t is d i f f i cu l t to allow rules to
be written in two dimensions as l inguists do,
where alternatives in curly brackets are written
one below the other, we require that each alter-
native be put in square brackets. Thus, the rule
below in (i) would be written as shown in (2).

(2) A --> B {[C X] [E Y]} D

Note that for single alternatives, the square
brackets can be deleted without loss of informa-
tion. We permit this and therefore {A B} is
equivalent to { [A] [B] } . The second use of square
brackets is inside of parentheses. An example of
this appears in rule (3) below.

(3) Q --> R ([M N] V)

This rule is an abbreviation for two rules, Q -->
R M N and Q --> R V.

Any arbitrary context-free grammar is per-
mitted except for those grammars containing two
classes of rules. These are rules of the form X
--> null and rules that generate cycles, for
example, A --> B, B --> C, C --> D and D --> A.
The elimination of the second class of rules causes
no d i f f i cu l t y and does not impair a grammar writer
in any way. I f the second class of rules were
permitted, an i n f i n i t e number of parses would
result for sentences of grarm~ars using them. The
elimination of the f i r s t class of rules causes a
small inconvenience in that i t prevents grammar
writers from using the existence of null nodes in
parse trees to account for certainunbounded
dependencies l ike those found in questions l ike
"Who do you think I saw?" which are said in some
l inguist ic theories to contain a null noun phrase
after the word "saw". However, alternative
grammatical treatments, not requiring a null noun
phrase, are also commonly used. Thus, the
prohibition of such rules requires that these
alternative grammatical treatments be used.

In addition to synactic information indicating
the allowable sentences, the grammar formalism
also contains semantic information that determines
what the meaning of each input sentence is. This
is done by using lambda calculus. The mechanism is
similar to the one used in Montague Grammar and
the various theories that build on Montague's
work. Associated with every word in the lexicon,
there is a translation. This translation is a
portion of the meaning of a sentence in which the
word appears. In order to properly combine the
translations of the words in a sentence together,
there is a rule associated with each context-free
rule indicating the order in which the transla-
tions of the symbols on the right side of the
arrow of a context-free rule are to be combined.
These rules are parenthesized l i s ts of numbers
where the number i refers to the f i r s t item a f te r
the arrow, the number 2 to the second, etc.

For example, for the rule X --> A B C 0,
a possible rule ind ica t ing how to combine trans-
la t ions might be (3 (I 2 4)) . This ru le means
that the t rans la t i on of A is taken as a funct ion
and appl ied to the t rans la t ion of B as i t s
argument. This resu l t ing new t rans la t i on is then
taken as a funct ion and appl ied to the t rans la -
t ion of 4 as i t s argument. This resu l t ing trans-
l a t i on is then the argument to the t rans la t i on of
3 which is the funct ion. In general, the t rans la -
t ion of le f tmost number appl ies to the t r ans la t i on
of the number to i t s r i gh t as the argument. The
resu l t of th is then is a funct ion which appl ies
to the t rans la t i on of the item to i t s r i gh t as the

152

argument. However, parentheses can override this
as in the example above. For rules containing
abbreviatory conventions, one translation rule
must be written for every possible expansion of
the rule.

Translations that are functions are of the
form "(lambda x (. . . x . . .)) . When this is
applied to an item l ike "c" as the argument, "c"
is plugged in for every occurrence of x after the
"lambda x" that is not within the scope of a more
deeply embedded "lambda x". This is called lambda
conversion and the result is just the expression
with the "lambda x" stripped of f of the front and
the substitution made.

B. The Parser

The parser used in the NLMenu system is an
implementation of an enhanced version of the modi-
fied left-corner algorithm described in Ross
(1982). Ross (1982) is a continuation of the work
described in Ross (1981) and builds on that work
and on the work of Gri f f i ths and Petrick (1965).
The enhancements enable the parser to parse a word
at a time and to predict the set of next possible
words in a sentence, given the input that has come
before.

Gri f f i ths and Petrick (1965) propose several
algorithms for recognizing sentences of context-
free grammars in the general case. One of these
algorithms, the NBT (Non-selective Bottom to Top)
Algorithm, has since been called the "left-corner"
algorithm. Of late, interest has been rekindled
in left-corner parsers. Slocum (1981) shows that
a left-corner parser inspired by Gri f f i ths and
Petrick's algorithm performs quite well when
compared with parsers based on a Cocke-Kasami-
Younger algorithm (see Younger 1967).

Although algorithms to recognize or parse
context-free grammars can be stated in terms of
push-down store automata, G+P state their
algorithm in terms of Turing machines to make
i ts operation clearer. A somewhat modified
version of their algorithm wi l l be given in the
next section. These modifications transform the
recognition algorithm into a parsing algorithm.

The G+P algorithm employs two push down
stacks. The modified algorithm to be given below
wi l l use three, called alpha, beta and gamma.
Turing machine instructions are of the following
form, where A, B, C, D, E and F can be arbitrary
strings of symbols from the terminal and non-
terminal alphabet.

[A,B,C] ---> [D,E,F] i f "Conditions"

This is to be in terpreted as fo l lows-

I f A is on top of stack alpha,
B is on top of stack beta,
C is on top of stack gamma,
and "Conditions" are satisfied
then replace A by D, B by E, and C by F.

The modified algorithm follows-

(1 [VI,X,Y] ---> [B,V2 .. . Vn t X,A Y]
i f A --- Vl V2 . . . Vn is a
rule of the phrase structure
grammar X is in the set of
nonterminals and Y is
anything

(2 [X,t,A] ---> [A X,~,~]
i f A is in the set of
nonterminals

(3 [B,B,Y] ---> [B,B,Y]
i f B is in the set of
nonterminals or terminals

To begln, put the terminal string to be
parsed followed by END on stack alpha. Put the
nonterminal which is to be the root node of the
tree to be constructed followed by END on stack
beta. Put END on stack gamma. The symbol t is
neither a terminal nor a nonterminal. When END is
on top of each stack, the string has been recog-
nized. I f none of the turing machine instructions
apply and END is not on the top of each stack,
the path which led to this situation was a bad
path and does not yield a valid parse.

The rules necessary to give a parse tree can
be stated informally (i .e. not in terms of turing
machine instructions) as follows:

When (I) is applied, attach Vl beneath A.

When (3) is applied, attach the B on alpha
B as the right daughter of the top symbol
on gamma.

Note that there is a formal statement of the
parsing version of NBT in Gr i f f i ths (1965).
However, i t is somewhat more complicated and
obscures what is going on during the parse.
Therefore, the informal procedure given above
wi l l be used instead.

The SBT (Selective Bottom to Top) algorithm
is a selective version of the NBT algorithm and
is also given in G+P. The only difference between
the two is that the SBT algorithm employs a selec-
tive technique for increasing the efficiency of
the algorithm. In the terminology of G+P, a
selective technique is one that eliminates bad
parse paths before trying them. The selective
technique employed is the use of a reachability
matrix. A reachability matrix indicates whether
each non-terminal node in the grammar can dominate
each terminal or non-terminal in the grammar in a
tree where that terminal or non-terminal is on the
left-most branch. To use i t , an additional con-
di t ion is put on rule (i) requiring that X can
reach down to A.

Ross (1981) modifies the SBT Algori thm to
d i r e c t l y handle grammar rules u t i l i z i n g several
abbreviatory conventions that are often used when
w r i t i ng grammars. Thus, parentheses (i nd i ca t i ng
opt ional nodes) and cur ly brackets (i nd i ca t i ng
that the items w i t h i n are a l te rna t i ves) can appear

153

in rules that the parser accesses when parsing a
string. These modifications wi l l not be discussed
in this paper but the parser employed in the
NLMenu System incorporates them because efficiency
is increased, as discussed in Ross (1981).

At this point, the statement of the algorithm
is completely neutral with respect to control
structure. At the beginning of a parse, there is
only one 3-tuple. However, because the algorithm
is non-deterministic, there are potentially
points during a parse at which more than one
turing machine instruction can apply. Each of the
parse paths resulting from an application of a
different turing machine instruction to the same
parser state sends the parser off on a possible
parse path. Each of these possible paths could
result in a valid parse and al l must be followed
to completion. In order to assure this, i t is
necessary to proceed in some principled way.

One strategy is to push one state as far as
i t w i l l go. That is, apply one of the rules that
are applicable, get a new state, and then apply
one of the applicable rules to that new state.
This can continue unti l either no rules apply or
a parse is found. I f no rules apply, i t was a
bad parse path. I f a parse is found, i t is one
of possibly many parses for the sentence. In
either case, the algorithm must continue on and
pursue all other alternative paths. One way to
do this and assure that al l alternatives are
pursued is to backtrack to the last choice point,
pick another applicable rule, and continue in the
manner described earlier. By doing this unti l the
parser has backed up throughall possible choice
points, al l parses of the sentence wi l l be found.
A parser that works in this manner is a depth-
f i r s t backtracking parser. This is probably the
most straightforward control structure for a le f t -
corner parser.

Alternative control structures are possible.
Rather than pursuing one path as far as possible,
one could go down one parse path, leave that path
before i t is finished and then start another. The
f i r s t parse path could then be pursued later from
the point at which i t was stopped. I t is neces-
sary to use an alternative control structure to
enable parsing to begin before the entire input
string is available.

To enable the parser to function as described
above, the control structure for a depth-first
parser described earl ier is used. To introduce
the ab i l i ty to begin parsing given only a subset
of the input string, the item MORE is inserted
after the last input item that is given to the
parser. I f no other instructions apply and MORE
is on top of stack alpha, the parser must begin
to backtrack as described earlier. Additionally,
the contents of stack beta and gamma must be
saved. Once all backtracking is completed,
additional input is put on alpha and parsing
begins again with a set of states, each containing
the new input string on alpha and one of the saved
tuples containing beta and gamma. Each of these
states is a dist inct parse path.

To parse a word at a time, the f i r s t word of
the sentence followed by MORE is put on alpha.
The parser w i l l then go as far as i t can, given
this word, and a set of tuples containing beta
and gamma w i l l result. Then, each of these tuples
along with the next word is passed to the parser.
The ab i l i t y to parse a word at a time is essential
for the NLMenu System. However, i t is also
beneficial for more traditional natural language
interfaces. I t can increase the perceived speed
of any parser since work can proceed as the user
is typing and composing his input. Note that a
rubout f ac i l i t y can be added by saving the beta-
gamma tuples that result after parsing for each
of the words. Such a f a c i l i t y is used by the
NLMenu System.

The ab i l i t y to predict the set of possible
nth words of a sentence, given the f i r s t n-1
words of the sentence is the f inal modification
necessary to enable this parser to be used for
menu-based natural language understanding. This
feature can be added in a straightforward way.
Given any beta-gamma pair representing one of the
parse paths active after n-1 words of the sentence
have been input, i t is possible to determine the
set of words that w i l l allow that state to con-
tinue. This is by examing the top-most symbol on
stack beta of the tuple. I t represents the most
immediate goal of that parse state. To determine
al l the words that can come next, given that goal,
the set of al l nodes that are reachable from that
node as a le f t daughter must be determined. This
information is easily obtainable from the reach-
ab i l i t y matrix discussed earl ier. Once the set
of reachable nodes is determined, all that need
be done is find the subset of these that can
dominate lexical material. I f this is done for
al l of the beta-gamma pairs that resulted after
parsing the f i r s t n-1 words and the union of the
sets that result is taken, the resulting set is
a l i s t of al l of the lexical categories that
could come next. The l i s t of next words is easily
determined from this.

I l l APPLICATIONS OF THE NLMENU SYSTEMS

Although a wide class of applications are
appropriate for menu-based natural language
interfaces, our effort thus far has concentrated
on building interfaces to relational databases.
This has had several important consequences.
First, i t has made i t easy to compare our inter-
faces to those that have been bui l t by others
because a prime application area for natural
language interfaces has been to databases.
Second, the process of producing an interface to
any arbitrary set of relations has been automated.

A. Comparison to Existin 9 Systems

We have run a series of p i lo t studies to
evaluate the performance of an NLMenu interface to

154

the parts-suppliers database described in Data
(1977). These studies were similar to the ones
described in Tennant (1980) that evaluated the
PLANES system. Our results were more encouraging
than Tennant's. They indicated that both
experienced computer users and naive subjects
can successfully use a menu-based natural language
interface to a database to solve problems. All
subjects were successfully able to solve a l l of
their problems.

Comments from subjects indicated that al-
though the phrasing of a query might not have been
exactly how the subject would have chosen to ask
the question in an unconstrained, t radi t ional
system, the subjects were not bothered by this and
could find the alternative phrasing without any
d i f f i cu l t y . One factor that appeared to be
important in this was the displaying of the entire
set of menus at a l l times. In cases where i t was
not clear which item on an active menu would lead
to the users desired query, users looked at the
inactive menus for hints on how to proceed.
Addit ionally, the existence of a rubout f a c i l i t y
that enabled users to rubout phrases they had
input as far back as desired encouraged them to
explore the system to determine how a sentence
might be phrased. There was no penalty for choos-
ing an item which did not allow a user to continue
his question in the way he desired. All that the
user had to do was rub i t out and pick again.

B. Automatically Buildin~ NLMenu Interfaces To
Relational Databases

The system outlined in this section is a com-
panion system to NLMenu. I t allows NLMenu inter-
faces to an arbitrary set of relations to be
constructed in a quick and concise way. Other
researchers have examined the problem of construc-
ting portable natural language interfaces. These
include Kaplan (1979), Harris (1979), Hendrix and
Lewis (1981), and Grosz et. al. (1982). While
the work described here shares s imi lar i t ies , i t
dif fers in several ways. Our interface specif i-
cation dialogue is simple, short, and is supported
by the database data dictionary. I t is intended
for the informed user, not necessarily a database
designer and certainly Dot a grammar expert.
Information is obtained from this informed user
through a menu-based natural language dialogue.
Thus, the interface that builds interfaces is
extremely easy to use.

i . Implementation

The system for automatically generating
NLMenu interfaces to relational databases is
divided into two basic components. One component,
BUILD-INTERFACE, produces a domain specific data
structure called a "portable spec" by engaging the
user in an NLMenu dialog. The other component,
MAKE-PORTABLE-INTERFACE, generates a semantic
grammar and lexicon from the "portable spec".

The MAKEZPORTABLE-INTERFACE component
takes as input a "portable spec", uses i t to

instantiate a domain independent core grammar and
lexicon, and returns a semantic grammar and a
semantic lexicon pair, which defines an NLMENU
interface. The core grammar and lexicon can be
small (21 grammar rules and 40 lexical entries at
present), but the size of the resulting semantic
grammars and lexicons w i l l depend on the portable
spec.

A portable-spec consists of a l i s t of
categories. The categories are as follows. The
COVERED TABLES l i s t specifies a l l relations or
views that the interface w i l l cover. The ret r ie-
val, insertion, deletion and modification rela-
tions specify ACCESS RIGHTS for the covered
tables. Non-numeric attr ibutes, CLASSIFY ATTRI-
BUTES according to type. Computable attributes
are numeric attributes that are averageable,
summable, etc. A user may choose not to cover
some attributes in interface. IDENTIFYING ATTRI-
BUTES are attributes that can be used to ident i fy
the rows. Typically, ident i fy ing-attr ibutes w i l l
include the key attr ibutes, but may include other
attributes i f they better ident i fy tuples (rows)
or may even not include a fu l l key i f one seeks to
ident i fy sets of rows together. TWO TABLE JOINS
specify supported join paths between tables.
THREE TABLE JOINS specify supported "relat ion-
ships" (in the ent i ty-relat ionship data model
sense) where one relation relates 2 others. The
EDITED ITEMS specification records old and new
values for menu phrases and the window they appear
in. The EDITED HELP provides a way for users to
add to, modify or replace automatically generated
help messages associated with a menu item. Values
to these last categories record changes that a
user makes to his default menu screen to customize
phrasings or help messages for an application.

The BUILD-INTERFACES component is a menu-
based natural language interface and thus is
real ly another application of the NLMenu system to
an interface problem. I t e l i c i t s the information
required to build up a "portable spec" from the
user. In addition to allowing the user to create
an interface, i t also allows the user to modify or
combine existing interfaces. The user may also
grant interfaces to other users, revoke them, or
drop them. The database management system controls
which users have access to which interfaces.

2. Advantages

The system for automatically constructing
NLMenu interfaces enjoys seyeral practical and
theoretical advantages. These advantages are
outlined below.

End-users can construct natural language
interfaces to their own data in minutes, notweeks
or years, and without the aid of a grammar special-
ist . There is heavy dependence on a data dict ion-
ary but not on l inguist ic information.

The interface builder can control cover-
age. He can decide to make an interface that
covers only a semantically related subset of his

155

tables. He can choose to include some attr ibutes
and hide other attr ibutes so that they cannot be
mentioned. He can choose to support various kinds
of joins with natural language phrases. He can
mirror the access rights of a user in his in ter-
face, so that the interface w i l l allow him to
insert, delete, and modify as well as just re-
tr ieve and only from those tables that he has the
specified privi leges on. Thus, interfaces are
highly tunable and the term "coverage" can be
given precise def in i t ion . Patchy coverage is
avoided because of the uniform way in which the
interface is constructed.

Automatically generated natural language
interfaces are robust with respect to database
changes; interfaces are easy to change i f the user
adds or deletes tables or changes table descrip-
t ions. One need only modify the portable spec
to ref lect the changes and regenerate the in ter-
face.

Automatically generated NLMenu interfaces
are guaranteed to be correct (bug free). The in-
teraction in which users specify the parameters
defining an interface, ensures that parameters
are val id , i .e . they correspond to real tables,
attr ibutes and domains. Instant iat ing a
debugged core grammar with val id parameters
yields a correct interface.

Natural language interfaces are con-
structed from semantically related tables that the
user owns or has been granted and they ref lect his
access privi leges (re t r ieva l) , insert ion, etc).
By extension, natural language interfaces become
database objects in thei r own r ight . They are
sharable (grantable and revokable) in a controlled
way. A user can have several such NLMenu in ter -
faces. Each gives him a user-view of a semanti-
cal ly related set of data. This notion of a view
is l ike the notion of a database schema found in
network and hierarchical but not relat ional
systems. In relat ional systems, there is no
convenient way for grouping tables together that
are semantically related. Furthermore, an NLMenu
interface can be treated as an object and can be
granted to other users, so a user acting as a
database administrator can make NLMenu interfaces
for classes of users too naive to build them
themselves (l ike executives). Furthermore, in ter-
faces can be combined by merging portable specs
and so user's can combine d i f ferent , related user-
views i f they wish.

Since an interface covers exactly and
only the data and operations that the user chooses,
i t can be considered to be a "model of the user" in
that i t provide a well-bounded language that re-
f lects a semantically related view of the user's
data and operations.

A f inal advantage is that even i f an
automatically generated interface is for some
reason not quite what is needed for some
application, i t is much easier to f i r s t generate
an interface this way and then modify i t to sui t
specific needs than i t is to build the entire
interface by hand. This has been demonstrated

already in the prototype where an automatically
generated interface required for an appl ict ion
for another group at TI was manually altered to
provide p ic tor ia l database capabi l i t ies.

Taken together, the advantages l is ted
above pave the way for low cost, maintainable
interfaces to relat ional database systems. Many
of the advantages are novel when considered with
respect to past work. This approach makes i t
possible for a much broader class of users and
applications to use menu-based, natural language
interfaces to databases.

3. Features of NLMenu Interfaces to
Databases

The NLMenu system does not store the
words that correspond to open class data base
attr ibutes in the lexicon as many other systems
do. Instead, a meta category called an "expert"
is stored in the lexicon. They may be user
supplied or defaulted and they are arbi t rary
chunks of code. Possible implementations include
d i rec t ly doing a database lookup and presenting
the user with a l i s t of items to choose from or
presenting the user with a type in window which
is constrained to only allow input in the desired
type or format (for example, for a date).

Many systems allow e l l i ps i s to permit the
user to, in ef fect, ask a parameterized query. We
approach this problem by making al l phrases that
were generated by experts be "mouse sensitive" in
the sentence. To change the value of a data item,
a l l that needs to be done is to move the mouse
over the sentence. When a data item is encoun-
tered, i t is boxed by the mouse cursor. To change
i t , one merely cl icks on the mouse. The expert
which o r ig ina l l y produced that data item is then
called, allowing the user to change that item to
something else.

The grammars produced by the automatic
generation system permit ambiguity. However,
the ambiguity occurs in a small set of wel l -
defined situations involving re lat ive clause
attachment. Because of th is , i t has been possible
to define a bracketed and indented format that
clearly indicates the source of ambiguity to the
user and allows him to choose between al ternat ive
readings. Addi t ional ly , by constraining the
parser to obey several human parsing strategies,
as described in Ross (1981), the user is displayed
a set of possible readings in which the most
l i ke l y candidate comes f i r s t . The user is told
that the f i rs ' t bracketed structure is most pro-
bably the one he intended.

IV CONCLUSIONS

The menu approach to natural language input
has many advantages over the tradi t ional typing
approach. Most importantly, every sentence that

156

is input is understood. Thus, a 100% success rate
for queries input is achieved. Implementation
time is greatly decreased because the grammars
required can be much smaller. Generally, writ ing
a thorough grammar for an application of a natural
language understanding system consumes most of
the development time. Note that the reason larger
grammars are needed in tradit ional systems is that
every possible paraphrase of a sentence must be
understood. In a menu-based system, only one
paraphrase is needed. The user w i l l be guided
to this paraphrase by the menus.

The fact that the menu-based natural
language understanding systems guide the user
to the input he desires is also beneficial for
two other reasons. First, confused users who
don't know how to formulate their input need not
compose their input without help. They only need
to recognize their input by looking at the menus.
They need not formulate their input in a vacuum.
Secondly, the extent of the system's conceptual
coverage w i l l be apparent. The user w i l l imme-
diately know what the system knows about and what
i t does not know about.

Only allowing for one paraphrase of each
allowable query not only makes the grammar
smaller. The lexicon is smaller as well . NLMenu
lexicons must be smaller because i f they were the
size of a lexicon standardly used for a natural
language interface, the menus would be much too
large and would therefore be unmanageable. Thus,
i t is possible that l imi tat ions w i l l be imposed on
the system by the size of the menus. Menus can
necessarily not be too big or the user w i l l be
swamped with choices and w i l l be unable to find
the r ight one. Several points must be made here.
F i rs t , even though an inactive menu containing,
say, a class of modifiers, might have one hundred
modifiers, i t is l i ke l y that a l l of these w i l l
never be active at the same time. Given a
semantic grammar with f ive di f ferent classes of
nouns, i t w i l l most l i ke ly be the case that only
one f i f t h of the modifiers wi l l make sense as a
modifier for any of those nouns. Thus, an active
modifier menu wi l l have roughly twenty items in
i t . We have constructed NLMenu interfaces to
about ten databases, some reasonably large, and
we have had no problem with the size of the menus
getting unmanageable.

The NLMenu System and the companion system to
automatically build NLMenu interfaces that are
described in this paper are both implemented in
Lisp Machine Lisp on an LMI Lisp Machine. I t has
also proved to be feasible to put them on a micro-
computer. Two factors were responsible for this:
the word by word parse and the smaller grammars.
Parsing a word at a time means that most of the
work necessary to parse a sentence is done before
the sentence has been completely input. Thus,
the perceived parse time is much less than i t
otherwise would be. Parse time is also made
faster by the smaller grammars because i t is a
function of grammar size so the smaller the
grammar, the faster the parse w i l l be performed.
Smaller grammars can be dealt with much more
easily on a microcomputer with limited memory

avai lable. Both systems have been implemented
in C on the Texas Instruments Professional
Computer. These implementation are based on
the Lisp Machine implementations but were done
by another d iv is ion of TI. These second imple-
mentations w i l l be avai lable as a software
package that w i l l interface ei ther loca l ly to
RSI s Oracle relat ional DBMS which uses S
as the query language or to various remote
computers running DBMS's that use SQL 3.0 as
the i r query language.

V REFERENCES

Data, C. J. An introduction to database systems.
New York: Addison-Wesley, 1977.

Gr i f f i t hs , T. On procedures for constructing
structural descriptions for three parsing
algorithms, Communications of the ACM, 1965, 8,
594.

Gri f f i ths, T. and Petrick, S. R., On the relat ive
eff iciencies of context-free grammar recogni-
zers, Communications of the ACM, 1965, 8,
289-300.

Grosz, B., Appelt, D., Archbold, A., Moore, R.,
Hendrix, G., Hobbs, J. , Martin, P., Robinson,
J. , Sagalowicz, D., and Warren, P. TEAM: A
transportable natural language system.
Technical Note 263, SRI Internat ional, Menlo
Park, Cal i fornia. Apr i l , 1982.

Harris, L. Experience with ROBOT in 12 commercial
natural language database query applications.
Proceedings of the sixth IJCAI. 1979.

Hendrix, G. and Lewis, W. Transportable natural
language interfaces to databases. Proceeaings
of the 19th Annual Meetin 9 of the ACL. 1981.

Kaplan, S. J. Cooperative responses from a
portable natural language query system. Ph.D.
Dissertation, University of Pennsylvania,
Computer Science Department, 1979.

Konolige, K. A Framework for a portable NL
interface to large databases. TechnicaiNote
197, SRI Internat ional, Menlo Park, CA,
October, 1979.

Ross, K. Parsing English phrase structure, Ph.D.
Dissertation, Department of Linguist ics,
University of Massachusetts~ 1981.

Ross, K. An improved lef t -corner parsing
algorithm. Proceedings of COLING 82.
333-338.

1982,

Slocum, J. A practical comparison of parsing
strategies, Proceedings o f the 19th Annual
Meeting of the ACL. 1981, I-6.

£57

Tennant, H. R. Evaluation of natural language
processors. Ph.D. Dissertation Department
of Computer Science, University of I l l inois
1980.

Thompson, C. W. SURLY: A single user relational
DBMS. Technical Report, Computer Science
Department, University of Tennessee, Knoxville,
1979.

Ullman, J. Principles of Database Systems
Computer Science Press, 1980.

Younger, D. Recognition and parsing of context-
free language in time n3. Information
and Control, 1967, 10, 189-208

158

