
Crossed Ser ia l Dependencies:
i low-power parseable extension to GPSG

Henry Thompson
Department of Artificial Intelligence

and
Program in Cognitive Science

Univers i ty of Edinburgh
Hope Park Square, Meadow Lane

Edinburgh EH8 9NW
SCOTLAND

ABSTRACT

An extension to the GPSG grammatical formalism is

proposed, allowing non-terminals to consist of

finite sequences of category labels, and allowing

schematic variables to range over such sequences.

The extension is shown to be sufficient to provide

a strongly adequate grammar for crossed serial

dependencies, as found in e.g. Dutch subordinate

clauses. The structures induced for such

constructions are argued to be more appropriate to

data involving conjunction than some previous

proposals have been. The extension is shown to be

parseable by a simple extension to an existing

parsing method for GPSG.

I. INTRODUCTION

There has been considerable interest in the

community lately with the implications of crossed

serial dependencies in e.g. Dutch subordinate

clauses for non-transformational theories of

grammar. Although context-free phrase structure

grammars under the standard interpretations are

weakly adequate to generate such languages as anb n,

they are not capable of assigning the correct

dependencies - that is, they are notstrongly

adequate.

In a recent paper (Bresnan Kaplsn Peters end

Zaenen 1982) (hereafter BKPZ), a solution to the

Dutch problem was presented in terms of LFG (Kaplan

and Bresnan 1982), which is known to have

considerably more than context-free power.

(Steedman 1983) and (Joshi 1983) have also made

proposals for solutions in terms of Steedman/Ades

grammars and tree adjunction grammars (Ades and

Steedman 1982; Joshi Levy and Yueh 1975). In this

paper I present a minimal extension to the GPSC

formalism (Gazdar 1981c) which also provides a

solution. It induces structures for the relevant

sentences which are non-trivially distinct from

those in BKPZ, and which I argue are more

appropriate. It appears, when suitably

constrained, to be similar to Joshi's proposal in

making only a small increment in power, being

incapable, for instance, of analysing anbnc n with

crossed dependencies. And it can easily be parsed

by a small modification to the parsing mechanisms I

have already developed for GPSG.

II. AN EXTENSION TO GPSG

II.I Extendin G the s~ntax

GPSG includes the idea of compound non-terminals,

composed of pairs of standard category labels. We

can extend this trivially to finite sequences of

category labels. This in itself does not change

the weak generative capacity of the grammar, as the

set of non-terminals remains finite. CPSG also

includes the idea of rule schemata - rules with

variables over categories. If we further allow

variables over sequences, then we get a real

change.

At this point I must introduce some notation. I

will write

[a,b ,c]

for a non-terminal label composed of the categories

a, b, and c. I will write

Za b*

to indicate that the schematic variable Z ranges

over sequences of the category b. We can then give

the following grammar for anb n with crossed

16

dependencies:

S -> e
S:Z -> a SIZ:b . (I)
s:z -> a s z:b (2)
blZ -> b z (3),

where we allow variables over sequences to appear

not only alone, but in simple, that is with

constant terms only, concatenation, notated with a

vertical bar (I). This grammar gives us the

following analysis for a3b 5, where I have used

subscripts to record the dependencies, and the

marginal numbers give the rule which admits the

adjacent node:

S (I)

al/~[S,bl] (I)

a ~ (2)

s" [bI, 2, b] (3)

3

With the aid of this example, we see that rule I

generates a's while accumulating b's, rule 2 brings

this process to an end, and rule 5 successively

generates the accumulated b's, in the correct,

'crossed', order. This is essentially the

structure we will produce for the Dutch examples as

well, so it is important to point out exactly how

the crossed dependencies are captured. This must

come out in two ways in GPSG - subcategorisation

restrictions, and interpretation. That the

subcategorisation is handled properly should be

clear from the above example. Suppose that the

categories a and b are pre-terminals rather than

terminals, and that there are actually three sorts

of a's and three sorts of b's, subcategorised for

each other. If one used the standard GPSG

mechanism for recording this dependency, namely by

providing three rules, whose rule number would then

appear as a feature on those pre-terminals

appearing in them directly, we would get the above

structure, where we can reinterpret the subscripts

as the rule numbers so introduced, and see that the

dependencies are correctly reflected.

II.2 Semantic interpretation

As for the semantics no actual extension is

required - the untyped lambda calculus is still

sufficient to the task, albeit with a fair amount

of work. We can use what amounts to apa 6 and

unpacking approach. The compound b nodes have

compound interpretations, which are distributed
appropriately higher up the tree. For this, we

need pairs and sequences of interpretations.

Following Church, we can represent a pair <l,r> as

~f(1)(r)]. If P is such a pair, then PO

P(~x~x[x]) and PI = P(kxXx[y]). Using pairs we

can of course produce arbitrary sequences, as in

Lisp. In what follows I will use a Lisp-based

shorthand, using CAR, CDR, CONS, and so on. These

usages are discharged in Appendix I.

Using this shorthand, we can give the following

example of a set of semantic rules for association

with the syntactic rules given above, which

preserves the appropriate dependency, assuming that

the b'(a',S') is the desired result at each level:

CONS(CADR (Q')(a')(CA~(Q')),CDDR (Q ')) (~
where Q' is short for SI, Z~,b ' ,

CO~S(CAR (Q ')(a') (S') ,CDR(Q ')) (2
where Q' is short for Ziqh ' ,

ADJOIN(Z' ,b'). (3

These rules are most easily understood in reverse

order. Rule 3 simply appends the interpretation of

the immediately dominated b to the sequence of

interpretations of the dominated sequence of b's.

Rule 2 takes the first interpretation of such a

sequence, applies it to the interpretations of the

immediately dominated a and S, and prepends the

result to the unused balance of the sequence of b

interpretations. We now have a sequence consisting

of first a sentential interpretation, and then a

number of h interpretations. Rule I thus applies

the second (b type) element of such a sequence to

the interpretation of the immediately dominated a,

and the first (S type) element of the sequence.

The result is again prepended to the unused

balance, if any. The patient reader can satisfy

himself that this will produce the following

(crossed) interpretation:

17

II.3 Parsin~

As for parsing context-free grammars with the

non-terminals and schemata this proposal allows,

very little needs to be added to the mechanisms I

have provided to deal with non-sequence schemata in

GPSG, as described in (Thompson 1981 b). We simply

treat all non-terminals as sequences, many of only

one element. The same basic technique of a bottom-

up chart parsing strategy, which substitutes for

matched variables in the active version of the

rule, will do the job. By restricting only one

sequence variable to occur once in each non-

terminal, the task of matching is kept simple and

deterministic. Thus we allow e.g. SIZIb but not

ZlblZ. The substitutions take place by

concatenation, so that if we have an instance of

rule (~) matching first [a] and then [3,b,b,b] in

the course of bottom-up processing, the Z on the

right hand side will match [b,b], and the resulting

substitution into the left hand side will cause the

constituent to be labeled [S,b,b].

In making this extension to my existing system,

the changes required were all localised to that

part of the code which matches rule parts against

nodes, and here the price is paid only if a

sequence variable is encountered. This suggests

that the impact of this mechanism on the parsing

complexity of the system is quite small.

III. APPLICATION TO DUTCH

Given the limited space available, I can present

only a very high-level account of how this

extension to GPSG can provide an account of crossed

serial dependencies in Dutch. In particular I will

have nothing to say about the difficult issue of

the precise distribution of tensed and untensed

verb forms.

III. 1 The Dutch data

Discussion of the phenomenon of crossed serial

dependencies in Dutch subordinate clauses is

bedeviled by considerable disagreement about just

what the facts are. The following five examples

form the core of the basis for my analysis:

I) omdat ik probeer Nikki te leren Nederlands
te spreken

2) omdat ik probeer Nikki Nederlands te leren
spreken

3) omdat ik Nikki probeer te leren Nederlands
te spreken

4) omdat ik Nikki Nederlands probeer te leren
spreken

5) * omdat ik Nikki probeer Nederlands te leren
spreken.

With the proviso that (I) is often judged

questionable, at least on stylistic grounds, this

pattern of judgements seems fairly stable among

native speakers of Dutch from the Netherlands.

There is some suggestion that this is not the

pattern of judgements typical of native speakers of

Dutch from Belgium.

III.2 Grammar rules for the Dutch data

This pattern leads us to propose the following

basic rules for subordinate clauses:

A) S' -> omdat NP VP
B) VP -> V VP (probeer)
C) VP -> NP V VP (leren)
D) VP -> NP V (spreken).

Taken straight, these give us (I) only. For (2)

- (4), we propose what amounts to a verb lowering

approach, where verbs are lowered onto VPs, whence

they lower again to form compound verbs. (5) is

ruled out by requiring that a lowered verb must

have a target verb to compound with. The resulting

compound may itself be lowered, but only as a unit.

This approach is partially inspired by Seuren's

transformational account in terms of predicate

raising (Seuren 1972).

So the interpretation of the compound labels is

that e.g. [V,V] is a compound verb, and [VP,V,V! is

a VP with a compound verb lowered onto it. It

follows that for each VP rule, we need an

associated compound version which allows the

lowering of (possibly compound) verbs from the VP

onto the verb, so we would have e.g.

Di) VPIZ -> NP ZIV,

where we now use Z as a variable over sequences of

VS. The other half of the process must be

18

reflected in rules associated with each VP rule

which introduces a VP complement, allowing the verb

to be lowered onto the complement. As this rule

must also expand VPs with verbs lowered onto them,

we want e.g.

cii) vPlz -> ~P wlzlv.

Rather than enumerate such rules, we can use

metarules to conveniently express what is wanted:

I) VP -> ... V ... ==> VPIZ -> ... ZlV ...

H) vP -> ... v vP o-> vPlz -> ... vP:z:v.

(I) will apply to all three of (B) - (D), allowing

compound verbs to be discharged at any point. (II)

will apply to (B) and (C), allowing the lowering

(with compounding if needed) of verbs onto

complements. We need one more rule, to unpack the

compound verbs, and the syntactic part of our

effort is complete:

E) wlz -> W Z,

where W is an ordinary variable whose range

consists of V. This slight indirection is necessary

to insure that subcategorisation information

propagates correctly.

By suitably combining the rules (A) - (E),

together with the meta-generated rules (Bi) - (Di),

(Bii) and (Cii), we can now generate examples (2)

(4). (4), which is fully crossed, is very

similar to the example in section II.1, and uses

meta-generated expansions for all its VP nodes:

S'

Nikki

Nederlands V b [Vc,Vd]

probeer V c V d

i I
te leren spreken

(A)

(Bii)

(Cii)

(Di)

(E)

(E)

Once again I include the relevant rule name in the

margin, and indicate with subscripts the rule name

feature introduced to enforce subcategorisation.

Sentences (2) and (3) each involve two meta-

generated rules and one ordinary one. For reasons

of space, only (3) is illustrated below. (2) is

similar, but using rules (B), (Cii), and (Di).

s' (A)

~P vP (Rii) a
ik [vP,Zb] (ci)

.~Pc [Vb,Vc]~ ~ ~ (E),(Di)

Nikki V b ~d Vd

pro~eer ~c . !preken te leren Nederlands te

III.3 Semantic rules for the Dutch data

The semantics follows that in section II.2 quite

closely. For our purposes simple interpretations

of (B) - (D) will suffice:

B') v'(vP')
c') v' (NP' , ~ ')
D') v'(NP').

The semantics for the metarules is also reasonably

straightforward, given that we know where we are

going:

I ') F(V') ==> CONS(F(CAR(Z:V')),CDR(Z',V'))
II') F(V',VP') ==> CONS(F(CADR(Q'),CAR(Q')),

cm~(Q')),

where Q' is short for VPlZl, V '. (I') will give

semantics very much like those of rule (2) in

section II.2, while (II') will give semantics like

those of rule (I). (E °) is just like (3):

E') ADJ01N(Z' ,W ')

It is left to the enthusiastic reader to work

through the examples and see that all of sentences

(I) - (4) above in fact receive the same

interpretation.

III.4 Which structure is right - evidence from
conjunction

The careful reader will have noted that the

structures proposed are not the same as those of

BKPZ. Their structures have the compound verb

depending from the highest VP, while ours depend

from the lowest possible. With the exception of

BKPZ's example (~3), which none of my sources judge

grammatical with the 'root Marie' as given, I

19

believe my proposal accounts for all the judgements

cited in their paper. On the other hand, I do not

believe they can account for all of the following

conjunction judgement, the first three based on

(4), the next two on (3), whereas under the

standard GPSG treatment of conjunction they all

fall out of our analysis:

6) omdat ik Nikki Nederlanda wil leren spreken
en Frans wil laten schrijven

because I want to teach Nikki to speak Dutch
and let [Nikki] write French

7) * omdat ik Nikki Nedrelands wil leren spreken
en Frans laten schrijven

8) omdat ik Nikki Nederlands wil leren spreken
en Carla Frans wil laten schrijven

because I want to teach Nikki to speak Dutch
and let Carla write French.

9) omdat ik Nikki wil leren Nederlands te spreken
en Frans te schrijven

because I want to teach Nikki to speak Dutch
and to write French

IO) * omdat ik Nikki wil leren Nederlands te
spreken en Carla Frans te schrijven

or
... en Frans (ts) laten schrijven

(6) contains a conjoined [VP,V,V], (8) a conjoined

[VP,V], and (7) fails because it attempts to

conjoin a [VP,V,V] with a [VP,V]. (9) conjoins an

ordinary VP iaside a [VP,V], and (10) fails by

trying to conjoin a VP with either a non-

constituent or a [VP,V].

It is certainly not the case that adding this

small amount of 'evidence' to the small amount

already published establishes the case for the deep

embedding, but I think it is suggestive. Taken

together with the obvious way in which the deep

embedding allows some vestige of compositionality

to persist in the semantics, I think that at the

very least a serious reconsideration of the BKPZ

proposal is in order.

IV. CONCLUSIONS

It is of course too early to tell whether this

augmentation will be of general use or

significance. It does seem to me to offer a

reasonably concise and satisfying account of at

least the Dutch phenomena without radically

altering the grammatical framework of GPSG.

Further work is clearly needed to exactly

establish the status of this augmented GPSG with

respect to generative capacity and parsability. It

is intriguing to speculate as to its weak

equivalence with the tree adjunction grammars of

Joahi et al. Even in the weakest augmentation,

allowing only one occurence of one variable over

sequences in any constituent of any rule, the

apparent similarity of their power remains to be

formally established, but it at least appears that

like tree adjunction grammars, these grammars

cannot generate anbncn with both dependencies

crossed, and like them, it can generate it with any

one set crossed and the other nested. Neither can

it generate WW, although it can with a sequence

variable ranging over the entire alphabet, if it

can be shown that it is indeed weakly equivalent to

TAG, then strong support will be lent to the claim

that an interesting new point on the Chomsky

hierarchy between CFGs and the indexed grammars has

been found.

ACKNOWLEDGEMENTS

The work described herein was partially supported

by SERC Grant GR/B/93086. My thanks to Han

Reichgelt, for renewing my interest in this problem

by presenting a version of Seuren's analysis in a

seminar, and providing the initial sentential data;

to Ewan Klein, for telling me about Church's

'implementation' of pairs and conditionals in the

lambda calculus; to Brian Smith, for introducing me

to the wonderfully obscure power of the Y operator;

and to Gerald Gazdar, Aravind Joshi, Martin Kay and

Mark Steedman, for helpful discussion on various

aspects of this work.

APPENDIX I
SEQUENCES IN THE UNTYPED LAMBDA CALCULUS

To imbed enough of Lisp in the lambda cslculus

for our needs, we require not just pairs, but NIL

and conditionals as well. Conditionals are

implemented similarly to pairs - "if p then q else

20

r" is simply p applied to the pair <q,r>, where

TRUE and FALSE are the left and right pair element

selectors respectively. In order to effectively

construct and manipulate lists, some method of

determining their end is required. Numerous

possibilities exist, of which we have chosen a

relatively inefficient but conceptually clear

approach. We compose lists of triples, rather than

pairs. Normal CONS pairs are given as

<TRUE,car,cdr>, while NIL is <FALSE,,>.

Given this approach, we can define the following

shorthand, with which the semantic rules given in

sections II.2 and III.3 can be translated into the

lambda calculus:

TR= - Ix [~y [~]]
FALSE- ~x.Lky.LyJ]

NIL- ~f.Ef(FALSE)(kp.[p])(~p.[p])l
C0NS(A,B) - ~f.Ef(TRUE)(A)(B)J

CAe(L) - L(~x.[~y[~z[y]]3)
CDR(L) L()~x.t),y.L),z.[z]] j)

C0NSP(L) - T(~x [~y.[~z.[x]]])

CADR(L) - CAR(CDR(L))

ADJOINFORM - la.[IL. [~N. [
CONSP(L)(CONS(CA~(L),

a(CD~(L))(N)))
(CONS(N,NIL))]]]

- ~f.[~.[f(x(~))] (~x.[f(x(x))])]

ADJOIN(L,N) - Y(ADJOI~0~M)(T)(N)

Joshi, A. 1983. How much context-sensitivity is
required to provide reasonable structural
descriptions: Tree adjoining
gran~nars, version submitted to this
conference.

Joehi, A.K., Levy, L. So and Yueh, K. 1975. Tree
adjunct grammars. Journal of Comp and
System Sciences.

Kaplan, R.M. and Bresnan, J. 1982. Lexical-
functional grammar: A formal system of
grammatical representation. In J. Bresnan,
editor, The mental representation of
grammatical relations. MIT Press,
Cambridge, MA.

Seuren, P. 1972. Predicate Raising in French and
Sundry Languages. ms., Nijmegen.

Steedman, M. 1983. On the Generality of the
Nested Dependency Constraint and the
reason for an Exception in Dutch. In
Butterworth, B., Comrie, E. and Dahl, 0.,
editors, Explanations of Language
Universals. Mouton.

Thompson, H.S. 1981b. Chart Parsing and Rule
Schemata in GPSG. In Proceedings of the
Nineteenth Annual Meeting of the
Association for Computational Linguistics.
ACL, Stanford, CA. Also DAI Research Paper
165, Dept. of Artificial Intelligence,
Univ. of Edinburgh.

Note that we use Church's Y operator to produce the

required recursive definition of ADJOIN.

REFERENCES

Ades, A. and Steedman, M. 1982. On the order of
words. Linguistics and Philosophy. to
appear.

Bresnan, J.W., Kaplan, R., Peters, S. and Zaenen,
A. 1982. Cross-serial dependencies in
Dutch. Linguistic Inquir[13.

Cazdar, G. 1981c. Phrase structure grammar. In P.
Jacobson and G. Pullum, editors, The
nature of syntactic representation. D.
Reidel, Dordrecht.

21

