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Introduction

Welcome to the Tutorials Session of ACL 2019 in Florence, Italy.

The tutorials session at ACL offers attendees the opportunity to learn about new research areas
through focused and comprehensive introductions given by expert researchers. The tutorials range from
introductory topics of general interest to many areas of our field to specific, cutting-edge topics. It is our
hope that these tutorials will be useful to novice researchers and experts alike, and that they will help
participants stay informed about the latest developments in our rapidly-growing and rapidly-changing
field.

This year, as has been the tradition over the past few years, the tutorials committee included tutorial chairs
from three conferences: NAACL-HLT, ACL, and EMNLP-IJCNLP. A total of 46 tutorial proposals were
submitted, and these were jointly reviewed by the six tutorial chairs. Nine tutorials were selected for
presentation at ACL 2019.

Roughly half of the tutorials selected for ACL this year focus on innovative approaches to modeling
language, ranging from deep Bayesian models to unsupervised learning of cross-lingual representations.
A second focus area is the computational analysis of discourse, with tutorials on the foundations of
discourse analysis as well as interdisciplinary applications of text analysis, from argument mining
to analysis of political texts. We hope that this selection of tutorials will be both educational and
inspirational.

Many thanks are in order to the people who have made it possible to put together this tutorials session.
First, thanks to the ACL general chair Lluís Màrquez and the Web manager Sacha Bourdeaud’Hui.
Thanks also to the publication co-chairs Douwe Kiele, Ivan Vulić, Shay Cohen, and Kevin Gimpel.
We further thank the local organization co-chairs Alessandro Lenci, Bernardo Magnini, and Simonetta
Montemagni, as well as ACL’s business manager Priscilla Rasmussen who provided invaluable support
– not the least in helping us to accommodate the nine excellent tutorials we selected. Finally, thanks to
our co-chairs and co-reviewers Anoop Sarkar and Michael Strube (NAACL-HLT), and also Tim Baldwin
and Marine Carpuat (EMNLP-IJCNLP).

We hope you enjoy the tutorials.

ACL 2019 Tutorial Co-chairs
Preslav Nakov
Alexis Palmer
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1 Description

Latent structure models are a powerful tool for
modeling compositional data, discovering linguis-
tic structure, and building NLP pipelines (Smith,
2011). Words, sentences, paragraphs, and docu-
ments represent the fundamental units in NLP, and
their discrete, compositional nature is well suited
to combinatorial representations such as trees, se-
quences, segments, or alignments. When available
from human experts, such structured annotations
(like syntactic parse trees or part-of-speech infor-
mation) can help higher-level models perform or
generalize better. However, linguistic structure is
often hidden from practitioners, in which case it
becomes useful to model it as a latent variable.

While it is possible to build powerful models
that obliviate linguistic structure almost completely
(such as LSTMs and Transformer architectures),
there are two main reasons why modeling it is de-
sirable: first, incorporating structural bias during
training can lead to better generalization, since it
corresponds to a more informed and more appropri-
ate prior. Second, discovering hidden structure
provides better interpretability: this is particu-
larly useful when used in conjunction with neu-
ral networks, whose typical architectures are not
amenable to interpretation. The learnt structure
offers highly valuable insight into how the model
organizes and composes information.

This tutorial will cover recent advances in latent
structure models in NLP. In the last couple of years,
the general idea of hidden linguistic structure has
been married to latent representation learning
via neural networks. This has allowed powerful
modern NLP models to learn to uncover, for exam-
ple, latent word alignments or parse trees, jointly,

in an unsupervised or semi-supervised fashion,
from the signal of higher-level downstream tasks
like sentiment analysis or machine translation. This
avoids the need for preprocessing data with off-
the-shelf tools (e.g., parsers, word aligners) and
engineering features based on their outputs; and it
is an alternative to techniques based on parameter
sharing, transfer learning, multi-task learning, or
scaffolding (Swayamdipta et al., 2018; Peters et al.,
2018; Devlin et al., 2019; Strubell et al., 2018), as
well as techniques that incorporate structural bias
directly in model design (Dyer et al., 2016; Shen
et al., 2019).

The proposed tutorial is about such discrete la-
tent structure models. We discuss their motiva-
tion, potential, and limitations, then explore in de-
tail three strategies for designing such models:

• Reinforcement learning;

• Surrogate gradients;

• End-to-end differentiable methods.

A challenge with structured latent models is that
they typically involve computing an “argmax” (i.e.
finding a best scoring discrete structure such as a
parse tree) in the middle of a computation graph.
Since this operation has null gradients almost ev-
erywhere, gradient backpropagation cannot be used
out of the box for training. The methods we cover
in this tutorial differ among each other by the way
they handle this issue.

Reinforcement learning. In a stochastic compu-
tation graph, such methods seek the hidden dis-
crete structures that minimize an expected loss on a
downstream task (Yogatama et al., 2017); similar to
maximizing an expected reward in reinforcement
learning with discrete actions. Estimated stochastic
gradients are typically obtained with a combination
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of Monte Carlo sampling and the score function es-
timator (a.k.a. REINFORCE, Williams, 1992). Such
estimators often suffer from instability and high
variance, requiring care (Havrylov et al., 2019).

Surrogate gradients. Such techniques usually
involve approximating the gradient of a discrete,
argmax-like mapping by the gradient of a continu-
ous relaxation. Examples are the straight-through
estimator (Bengio et al., 2013) and the structured
projection of intermediate gradients optimization
technique (SPIGOT; Peng et al. 2018). In stochas-
tic graphs, surrogate gradients yield biased but
lower-variance gradient estimators compared to the
score function estimator. Related is the Gumbel
softmax (Jang et al., 2017; Maddison et al., 2017;
Choi et al., 2018; Maillard and Clark, 2018), which
uses the reparametrization trick and a temperature
parameter to build a continuous surrogate of the
argmax operation, which one can then differentiate
over. Structured versions were recently explored
by Corro and Titov (2019a,b). One limitation of
straight-through estimators is that backpropagat-
ing with respect to the sample-independent means
may cause discrepancies between the forward and
backward pass, which biases learning.

End-to-end differentiable approaches. Here,
we directly replace the argmax by a continuous
relaxation for which the exact gradient can be com-
puted and backpropagated normally. Examples
are structured attention networks and related work
(Kim et al., 2017; Maillard et al., 2017; Liu and La-
pata, 2018; Mensch and Blondel, 2018), which use
marginal inference, or SparseMAP (Niculae et al.,
2018a,b), a new inference strategy which yields a
sparse set of structures. While the former is usually
limited in which the downstream model can only
depend on local substructures (not the entire latent
structure), the latter allows combining the best of
both worlds. Another line of work imbues structure
into neural attention via sparsity-inducing priors
(Martins and Astudillo, 2016; Niculae and Blondel,
2017; Malaviya et al., 2018).

This tutorial will highlight connections among
all these methods, enumerating their strengths and
weaknesses. The models we present and analyze
have been applied to a wide variety of NLP tasks,
including sentiment analysis, natural language in-
ference, language modeling, machine translation,
and semantic parsing. In addition, evaluations spe-
cific to latent structure recovery have been pro-

posed (Nangia and Bowman, 2018; Williams et al.,
2018). Examples and evaluation will be covered
throughout the tutorial. After attending the tutorial,
a practitioner will be better informed about which
method is best suited for their problem.

2 Type of Tutorial & Relationship to
Recent Tutorials

The proposed tutorial mixes the introductory
and cutting-edge types. It will offer a gen-
tle introduction to recent advances in struc-
tured modeling with discrete latent variables,
which were not previously covered in any
ACL/EMNLP/IJCNLP/NAACL related tutorial.

The closest related topics covered in recent tuto-
rials at NLP conferences are:

• Variational inference and deep generative models
(Aziz and Schulz, 2018); 1

• Deep latent-variable models of natural language
(Kim et al., 2018).2

Our tutorial offers a complementary perspective
in which the latent variables are structured and
discrete, corresponding to linguistic structure. We
will briefly discuss the modeling alternatives above
in the final discussion.

3 Outline

Below we sketch an outline of the tutorial, which
will take three hours, separated by a 30-minutes
coffee break.

1. Introduction (30 min)

• Why latent variables?
• Motivation and examples of latent structure in

NLP
• Continuous vs. discrete latent variables
• Bypassing latent variables

– Pipelines / external classifiers
– Transfer learning / parameter sharing
– Multi-task learning

• Challenges: gradients of argmax
• Categorical versus structured: the simplex and

the marginal polytope

2. Reinforcement learning methods (30 min)
1https://github.com/philschulz/VITutorial
2http://nlp.seas.harvard.edu/

latent-nlp-tutorial.html
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• SPINN: parsing and classification with shared
parameters

• Stochastic computation graphs
• The Score Function Estimator and REIN-

FORCE (application: RL-SPINN with unsu-
pervised parsing)

• Example: the ListOps diagnostic dataset
benchmark

• Actor-critic methods & variance reduction

3. Surrogate gradient methods (30 min)

• Unstructured: straight-through estimators
• Structured: SPIGOT
• Sampling categoricals with Gumbel-argmax
• Gumbel-softmax: reparametrization and

straight-through variants
• Example: Gumbel Tree-LSTM to compose

tree structures
• Perturb-and-MAP / Perturb-and-parse

Coffee break (30 min)

4. End-to-end differentiable formulations (60 min)

• Attention mechanisms & hidden alignments
• Sparse and grouped attention mechanisms
• Structured attention networks
• Example: dense / sparse differentiable dy-

namic programming
• SparseMAP
• Relationships with gradient approximation
• Example: Natural language inference with

latent structure (matchings and trees)

5. Closing Remarks and Discussion (30 min)

• Is it Syntax? Addressing if existing methods
learn recognizable grammars

• Alternative perspectives:
– Structural bias in model design
– Deep generative models with continuous

latent variables
• Current open problems and discussion.

4 Breadth

We aim to provide the first unified perspective into
multiple related approaches. Of the 31 referenced
works, only 6 are co-authored by the presenters. In
the outline, the first half presents exclusively work
by other researchers and the second half present a
mix of our own work and other people’s work.

5 Prerequisites and reading

The audience should be comfortable with:

• math: basics of differentiability.

• language: basic familiarity with the building
blocks of structured prediction problems in NLP,
e.g., syntax trees and dependency parsing.

• machine learning: familiarity with neural net-
works for NLP, basic understanding of backprop-
agation and computation graphs.

6 Instructors

André Martins3 is the Head of Research at
Unbabel, a research scientist at Instituto de
Telecomunicações, and an invited professor at In-
stituto Superior Técnico in the University of Lis-
bon. He received his dual-degree PhD in Lan-
guage Technologies in 2012 from Carnegie Mellon
University and Instituto Superior Técnico. His re-
search interests include natural language process-
ing, machine learning, deep learning, and opti-
mization. He received a best paper award at the
Annual Meeting of the Association for Compu-
tational Linguistics (ACL) for his work in natu-
ral language syntax, and a SCS Honorable Men-
tion at CMU for his PhD dissertation. He is one
of the co-founders and organizers of the Lisbon
Machine Learning Summer School (LxMLS). He
co-presented tutorials at NAACL in 2012, EACL
in 2014, and EMNLP in 2014. He co-organized
the NAACL 2019 Workshop on Structured Predic-
tion for NLP (http://structuredprediction.
github.io/SPNLP19) and the ICLR 2019 Work-
shop “Deep Reinforcement Learning Meets Struc-
tured Prediction”.

Tsvetomila Mihaylova4 is a PhD student in the
DeepSPIN project at Instituto de Telecomunicações
in Lisbon, Portugal, supervised by André Martins.
She is working on empowering neural networks
with a planning mechanism for structural search.
She has a master’s degree in Information Retrieval
from the Sofia University, where she was also a
teaching assistant in Artificial Intelligence. She is
part of the organizers of a shared task in SemEval
2019.

3https://andre-martins.github.io
4https://tsvm.github.io
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Nikita Nangia5 is a PhD student at New York Uni-
versity, advised by Samuel Bowman. She is work-
ing on building neural network systems in NLP
that simultaneously do structured prediction and
representation learning. This work focuses on find-
ing structure in language without direct supervision
and using it for semantic tasks like natural language
inference and summarization.

Vlad Niculae6 is a postdoc in the DeepSPIN
project at the Instituto de Telecomunicações in Lis-
bon, Portugal. His research aims to bring struc-
ture and sparsity to neural network hidden layers
and latent variables, using ideas from convex opti-
mization, and motivations from natural language
processing. He earned a PhD in Computer Sci-
ence from Cornell University in 2018. He received
the inaugural Cornell CS Doctoral Dissertation
Award, and co-organized the NAACL 2019 Work-
shop on Structured Prediction for NLP (http://
structuredprediction.github.io/SPNLP19).
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Abstract

This tutorial is on representing and process-
ing sentence meaning in the form of labeled
directed graphs. The tutorial will (a) briefly
review relevant background in formal and lin-
guistic semantics; (b) semi-formally define a
unified abstract view on different flavors of se-
mantic graphs and associated terminology; (c)
survey common frameworks for graph-based
meaning representation and available graph
banks; and (d) offer a technical overview of
a representative selection of different parsing
approaches.

1 Tutorial Content and Relevance

All things semantic are receiving heightened at-
tention in recent years. Despite remarkable ad-
vances in vector-based (continuous, dense, and
distributed) encodings of meaning, ‘classic’ (hier-
archically structured and discrete) semantic rep-
resentations will continue to play an impor-
tant role in ‘making sense’ of natural language.
While parsing has long been dominated by tree-
structured target representations, there is now
growing interest in general graphs as more ex-
pressive and arguably more adequate target struc-
tures for sentence-level grammatical analysis be-
yond surface syntax and in particular for the rep-
resentation of semantic structure.

Today, the landscape of meaning representation
approaches, annotated graph banks, and parsing
techniques into these structures is complex and di-
verse. Graph-based semantic parsing has been a
task in almost every Semantic Evaluation (Sem-
Eval) exercise since 2014. These shared tasks
were based on a variety of different corpora with
graph-based meaning annotations (graph banks),
which differ both in their formal properties and in
the facets of meaning they aim to represent. The
relevance of this tutorial is to clarify this landscape

for our research community by providing a unify-
ing view on these graph banks and their associated
parsing problems, while working out similarities
and differences between common frameworks and
techniques.

Based on common-sense linguistic and formal
dimensions established in its first part, the tutorial
will provide a coherent, systematized overview of
this field. Participants will be enabled to identify
genuine content differences between frameworks
as well as to tease apart more superficial variation,
for example in terminology or packaging. Fur-
thermore, major current processing techniques for
semantic graphs will be reviewed against a high-
level inventory of families of approaches. This part
of the tutorial will emphasize reflections on co-
dependencies with specific graph flavors or frame-
works, on worst-case and typical time and space
complexity, as well as on what guarantees (if any)
are obtained on the wellformedness and correct-
ness of output structures.

Kate and Wong (2010) suggest a definition of
semantic parsing as “the task of mapping natural
language sentences into complete formal mean-
ing representations which a computer can execute
for some domain-specific application.” This view
brings along a tacit expectation to map (more or
less) directly from a linguistic surface form to an
actionable encoding of its intended meaning, e.g.
in a database query or even programming lan-
guage. In this tutorial, we embrace a broader per-
spective on semantic parsing as it has come to be
viewed commonly in recent years. We will review
graph-based meaning representations that aim to
be application- and domain-independent, i.e. seek
to provide a reusable intermediate layer of inter-
pretation that captures, in suitably abstract form,
relevant constraints that the linguistic signal im-
poses on interpretation.
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Tutorial slides and additional materials are
available at the following address:

https://github.com/cfmrp/tutorial

2 Semantic Graph Banks

In the first part of the tutorial, we will give a sys-
tematic overview of the available semantic graph
banks. On the one hand, we will distinguish graph
banks with respect to the facets of natural language
meaning they aim to represent. For instance, some
graph banks focus on predicate–argument struc-
ture, perhaps with some extensions for polarity or
tense, whereas others capture (some) scopal phe-
nomena. Furthermore, while the graphs in most
graph banks do not have a precisely defined model
theory in the sense of classical linguistic seman-
tics, there are still underlying intuitions about what
the nodes of the graphs mean (individual entities
and eventualities in the world vs. more abstract ob-
jects to which statements about scope and presup-
position can attach). We will discuss the different
intuitions that underly different graph banks.

On the other hand, we will follow Kuhlmann
and Oepen (2016) in classifying graph banks with
respect to the relationship they assume between
the tokens of the sentence and the nodes of the
graph (called anchoring of graph fragments onto
input sub-strings). We will distinguish three fla-
vors of semantic graphs, which by degree of an-
choring we will call type (0) to type (2). While we
use ‘flavor’ to refer to formally defined sub-classes
of semantic graphs, we will reserve the term
‘framework’ for a specific linguistic approach
to graph-based meaning representation (typically
cast in a particular graph flavor, of course).

Type (0) The strongest form of anchoring is
obtained in bi-lexical dependency graphs, where
graph nodes injectively correspond to surface lex-
ical units (tokens). In such graphs, each node
is directly linked to a specific token (conversely,
there may be semantically empty tokens), and the
nodes inherit the linear order of their correspond-
ing tokens. This flavor of semantic graphs was
popularized in part through a series of Seman-
tic Dependency Parsing (SDP) tasks at the Se-
mEval exercises in 2014–16 (Oepen et al., 2014,
2015; Che et al., 2016). Prominent linguistic
frameworks instantiating this graph flavor include
CCG word–word dependencies (CCD; Hocken-
maier and Steedman, 2007), Enju Predicate–
Argument Structures (PAS; Miyao and Tsujii,

2008), DELPH-IN MRS Bi-Lexical Dependencies
(DM; Ivanova et al., 2012) and Prague Semantic
Dependencies (PSD; a simplification of the tecto-
grammatical structures of Hajič et al., 2012).

Type (1) A more general form of anchored se-
mantic graphs is characterized by relaxing the
correspondence relations between nodes and to-
kens, while still explicitly annotating the corre-
spondence between nodes and parts of the sen-
tence. Some graph banks of this flavor align nodes
with arbitrary parts of the sentence, including sub-
token or multi-token sequences, which affords
more flexibility in the representation of meaning
contributed by, for example, (derivational) affixes
or phrasal constructions. Some further allow mul-
tiple nodes to correspond to overlapping spans,
enabling lexical decomposition (e.g. of causatives
or comparatives). Frameworks instantiating this
flavor of semantic graphs include Universal Con-
ceptual Cognitive Annotation (UCCA; Abend and
Rappoport, 2013; featured in a SemEval 2019
task) and two variants of ‘reducing’ the under-
specified logical forms of Flickinger (2000) and
Copestake et al. (2005) into directed graphs, viz.
Elementary Dependency Structures (EDS; Oepen
and Lønning, 2006) and Dependency Minimal Re-
cursion Semantics (DMRS; Copestake, 2009). All
three frameworks serve as target representations in
recent parsing research (e.g. Buys and Blunsom,
2017; Chen et al., 2018; Hershcovich et al., 2018).

Type (2) Finally, our framework review will in-
clude Abstract Meaning Representation (AMR;
Banarescu et al., 2013), which in our hierarchy of
graph flavors is considered unanchored, in that the
correspondence between nodes and tokens is not
explicitly annotated. The AMR framework de-
liberately backgrounds notions of compositional-
ity and derivation. At the same time, AMR fre-
quently invokes lexical decomposition and repre-
sents some implicitly expressed elements of mean-
ing, such that AMR graphs quite generally appear
to ‘abstract’ furthest from the surface signal. Since
the first general release of an AMR graph bank in
2014, the framework has provided a popular target
for semantic parsing and has been the subject of
two consecutive tasks at SemEval 2016 and 2017
(May, 2016; May and Priyadarshi, 2017).
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3 Processing Semantic Graphs

The creation of large-scale, high-quality seman-
tic graph banks has driven research on semantic
parsing, where a system is trained to map from
natural-language sentences to graphs. There is
now a dizzying array of different semantic parsing
algorithms, and it is a challenge to keep track of
their respective strengths and weaknesses. Differ-
ent parsing approaches are, of course, more or less
effective for graph banks of different flavors (and,
at times, even specific frameworks). We will dis-
cuss these interactions in the tutorial and organize
the research landscape on graph-based semantic
parsing along three dimensions.

Decoding strategy Semantic parsers differ with
respect to the type of algorithm that is used to
compute the graph. These include factorization-
based methods, which factorize the score of a
graph into parts for smaller substrings and can
then apply dynamic programming to search for the
best graph, as well as transition-based methods,
which learn to make individual parsing decisions
for each token in the sentence. Some neural tech-
niques also make use of an encoder-decoder archi-
tecture, as in neural machine translation.

Compositionality Semantic parsers also differ
with respect to whether they assume that the
graph-based semantic representations are con-
structed compositionally. Some approaches fol-
low standard linguistic practice in assuming that
the graphs have a latent compositional structure
and try to reconstruct it explicitly or implicitly dur-
ing parsing. Others are more agnostic and simply
predict the edges of the target graph without regard
to such linguistic assumptions.

Structural information Finally, semantic
parsers differ with respect to how structure
information is represented. Some model the target
graph directly, whereas others use probability
models that score a tree which evaluates to the
target graph (e.g. a syntactic derivation tree or a
term over a graph algebra). This choice interacts
with the compositionality dimension, in that
tree-based models for graph parsing go together
well with compositional models.

4 Tutorial Structure

We have organized the content of the tutorial into
the following blocks, which add up to a total of

three hours of presentation. The references be-
low are illustrative of the content in each block;
in the tutorial itself, we will present one or two ap-
proaches per block in detail while treating others
more superficially.

(1) Linguistic Foundations: Layers of Sentence
Meaning

(2) Formal Foundations: Labeled Directed
Graphs

(3) Meaning Representation Frameworks and
Graph Banks

• Bi-Lexical semantic dependencies (Hocken-
maier and Steedman, 2007; Miyao and Tsu-
jii, 2008; Hajič et al., 2012; Ivanova et al.,
2012; Che et al., 2016);

• Universal Conceptual Cognitive Annotation
(UCCA; Abend and Rappoport, 2013);

• Graph-Based Minimal Recursion Semantics
(EDS and DMRS; Oepen and Lønning,
2006; Copestake, 2009);

• Abstract Meaning Representation (AMR;
Banarescu et al., 2013);

• Non-Graph Representations: Discourse Rep-
resentation Structures (DRS; Basile et al.,
2012);

• Contrastive review of selected examples
across frameworks;

• Availability of training and evaluation data;
shared tasks; state-of-the-art empirical re-
sults.

(4) Parsing into Semantic Graphs

• Parser evaluation: quantifying semantic
graph similarity;

• Parsing sub-tasks: segmentation, concept
identification, relation detection, structural
validation;

• Composition-based methods (Callmeier,
2000; Bos et al., 2004; Artzi et al., 2015;
Groschwitz et al., 2018; Lindemann et al.,
2019; Chen et al., 2018);

• Factorization-based methods (Flanigan
et al., 2014; Kuhlmann and Jonsson, 2015;
Peng et al., 2017; Dozat and Manning,
2018);
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• Transition-based methods (Sagae and Tsujii,
2008; Wang et al., 2015; Buys and Blunsom,
2017; Hershcovich et al., 2017);

• Translation-based methods (Konstas et al.,
2017; Peng et al., 2018; Stanovsky and Da-
gan, 2018);

• Cross-framework parsing and multi-task
learning (Peng et al., 2017; Hershcovich
et al., 2018; Stanovsky and Dagan, 2018);

• Cross-lingual parsing methods (Evang and
Bos, 2016; Damonte and Cohen, 2018;
Zhang et al., 2018);

• Contrastive discussion across frameworks,
approaches, and languages.

(5) Outlook: Applications of Semantic Graphs

5 Content Breadth

Each of us has contributed research to the design
of meaning representation frameworks, creation
of semantic graph banks, and and/or the develop-
ment of meaning representation parsing systems.
Nonetheless, both the design and the processing of
graph banks are highly active research areas, and
our own work will not represent more than a fifth
of the total tutorial content.

6 Participant Background

An understanding of basic parsing techniques
(chart-based and transition-based) and a familiar-
ity with basic neural techniques (feed-forward and
recurrent networks, encoder–decoder) will be use-
ful.

7 Presenters

The tutorial will be presented jointly by three ex-
perts with partly overlapping and partly comple-
mentary expertise. Each will contribute about one
third of the content, and each will be involved in
multiple parts of the tutorial.

Alexander Koller
Department of Language Science and

Technology, Saarland University, Germany
koller@coli.uni-saarland.de

http://www.coli.uni-saarland.de/
~koller

Alexander Koller received his PhD in 2004, with
a thesis on underspecified processing of seman-
tic ambiguities using graph-based representations.
His research interests span a variety of topics in-
cluding parsing, generation, the expressive capac-
ity of representation formalisms for natural lan-
guage, and semantics. Within semantics, he has
published extensively on semantic parsing using
both grammar-based and neural approaches. His
most recent work in this field (Groschwitz et al.,
2018) achieved state-of-the-art semantic parsing
accuracy for AMR using neural supertagging and
dependency in the context of a compositional
model.

Stephan Oepen
Department of Informatics, University of Oslo,

Norway
oe@ifi.uio.no

https://www.mn.uio.no/ifi/
english/people/aca/oe/

Stephan Oepen studied Linguistics, German and
Russian Philology, Computer Science, and Com-
putational Linguistics at Berlin, Volgograd, and
Saarbrücken. He has worked extensively on
constraint-based parsing and realization, on the
design of broad-coverage meaning representa-
tions and the syntax–semantics interface, and on
the use of syntactico-semantic structure in natu-
ral language understanding applications. He has
been a co-developer of the LinGO English Re-
source Grammar (ERG) since the mid-1990s, has
helped create the Redwoods Treebank of scope-
underspecified MRS meaning representations, and
has chaired two SemEval tasks on Semantic De-
pendency Parsing as well as the First Shared
Task on Cross-Framework Meaning Representa-
tion Parsing (MRP) at the 2019 Conference for
Computational Language Learning.

Weiwei Sun
Institute of Computer Science and Technology,

Peking University, China
ws@pku.edu.cn

https://wsun106.github.io/

Weiwei Sun completed her Ph.D. in the Depart-
ment of Computational Linguistics from Saarland
University under the supervision of Prof. Hans
Uszkoreit. Before that, she studied at Peking Uni-
versity, where she obtained BA in Linguistics, and
BS and MS in Computer Science. Her research
lies at the intersection of computational linguistics
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and natural language processing. The main topic
is symbolic and statistical parsing, with a special
focus on parsing into semantic graphs of various
flavors. She has repeatedly chaired teams that
have submitted top-performing systems to recent
SemEval shared tasks and has continuously ad-
vanced both the state of the art in semantic parsing
in terms of empirical results and the understand-
ing of how design decisions in different schools of
linguistic graph representations impact formal and
algorithmic complexity.
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Abstract

Discourse processing is a suite of Natural Lan-
guage Processing (NLP) tasks to uncover lin-
guistic structures from texts at several levels,
which can support many downstream appli-
cations. This involves identifying the topic
structure, the coherence structure, the coref-
erence structure, and the conversation struc-
ture for conversational discourse. Taken to-
gether, these structures can inform text sum-
marization, machine translation, essay scor-
ing, sentiment analysis, information extrac-
tion, question answering, and thread recov-
ery. The tutorial starts with an overview
of basic concepts in discourse analysis –
monologue vs. conversation, synchronous vs.
asynchronous conversation, and key linguistic
structures in discourse analysis. We also give
an overview of linguistic structures and cor-
responding discourse analysis tasks that dis-
course researchers are generally interested in,
as well as key applications on which these dis-
course structures have an impact.

1 Motivation

Discourse analysis has been a fundamental prob-
lem in the ACL community, where the focus is
to develop tools to automatically model language
phenomena that go beyond the individual sen-
tences. With the ongoing neural revolution, as the
methods become more effective and flexible, anal-
ysis and interpretability beyond the sentence-level
is of particular interests for many core language
processing tasks like language modeling (Ji et al.,
2016) and applications such as machine transla-
tion and its evaluation (Sennrich, 2018; Läubli
et al., 2018; Joty et al., 2017), text categoriza-
tion (Ji and Smith, 2017), and sentiment analysis
(Nejat et al., 2017). With the advent of Internet
technologies, new forms of discourse are emerg-
ing (e.g., emails and discussion forums) with novel
set of challenges for the computational models.

Furthermore, most computational models for dis-
course analysis are also going through a paradigm
shift from traditional statistical models to deep
neural models. Considering all these novel aspects
at once, this tutorial is quite timely for the commu-
nity, by providing the attendees with an up-to-date,
critical overview of existing approaches and their
evaluations, applications, and future challenges.

2 Tutorial Outline

We start with an overview of basic concepts in
discourse analysis – monologue vs. conversation,
synchronous vs. asynchronous conversation, and
key linguistic structures in discourse analysis. At-
tendees then get to learn about coherence struc-
ture and discourse parsers. We give a critical
overview of different discourse theories, and avail-
able datasets annotated according to these for-
malisms. We cover methods for RST- and PDTB-
style discourse parsing. We cover traditional
methods along with the most recent works using
deep neural networks, interpret them and compare
their performances on benchmark datasets.

Next, we discuss coherence models to evaluate
monologues and conversations based on their co-
herence. We then show applications (evaluation
tasks) of coherence models and discourse parsers.
Special attention is paid to the new emerging ap-
plications of discourse analysis such as machine
translation and its evaluation, sentiment analysis,
and abstractive summarization.

In the final part of the tutorial, we cover conver-
sational structures (e.g., speech acts, thread struc-
ture), computational methods to extract such struc-
tures, and their utility in downstream applications
(e.g., conversation summarization). Again, eval-
uation metrics and approaches will be discussed
and compared. We conclude with an interactive
discussion of future challenges for discourse anal-

12



ysis and its applications. In the following, we give
a detailed breakdown of the tutorial content.

A. Introduction [25 mins]

1. Discourse & its different forms

(a) Monologue
(b) Synchronous & asynchronous conversa-

tions
(c) Modalities: written & spoken

2. Two discourse phenomena

(a) Coherence
(b) Cohesion

3. Linguistic structures in discourse & discourse
analysis tasks

(a) Coherence structure ⇒ Discourse seg-
mentation & parsing

(b) Coherence models ⇒ Coherence evalu-
ation

(c) Topic structure ⇒ Topic segmentation
& labeling [not covered in this tutorial]

(d) Coreference structure ⇒ Coreference
resolution [not covered in this tutorial]

(e) Conversational structure ⇒ Disentan-
glement & reply-to structure, speech act
recognition

4. Applications of discourse analysis

B. Coherence Structure, Corpora & Discourse
Parsing [45 mins]

1. Discourse theories & coherence relations

(a) Rhetorical Structure Theory (RST) &
RST Treebank (Carlson et al., 2002) &
Instructional domain (Subba and Di Eu-
genio, 2009)

(b) Discourse Lexicalized Tree Adjoining
Grammar (D-LTAG) & Penn Discourse
Treebank (PDTB) (Prasad et al., 2005)

2. Discourse connectives & unsupervised rela-
tion identification

(a) Role of connectives in RST & PDTB
(b) Identifying discourse connectives
(c) Implicit and explicit relations

3. Discourse parsing in RST

(a) The tasks: discourse segmentation and
parsing

(b) Role of syntax
(c) Traditional models – SPADE (Soricut

and Marcu, 2003), HILDA (duVerle
and Prendinger, 2009), CODRA (Joty
et al., 2015), CRF-based model (Feng
and Hirst, 2014).

(d) Neural models (Ji and Eisenstein, 2014;
Li et al., 2014, 2016; Morey et al., 2017)

(e) State-of-the-Art (Wang et al., 2017; Lin
et al., 2019)

(f) Evaluation & Discussion

4. Discourse parsing in PDTB

(a) The tasks: relation sense identification
and scope disambiguation

(b) Statistical models (Pitler and Nenkova,
2009; Ziheng et al., 2014)

(c) Neural models (Ji and Eisenstein, 2015;
Lan et al., 2017)

(d) Evaluation & Discussion

5. Final remarks

(a) Tree vs. graph structure
(b) Discourse Graphbank

C. Coffee Break [15 mins]

D. Coherence Models & Applications of Dis-
course [45 mins]

1. Overview of coherence models

(a) Entity grid and its extensions (Barzilay
and Lapata, 2008; Elsner and Charniak,
2011b; Guinaudeau and Strube, 2013)

(b) Discourse relation based model (Lin
et al., 2011; Pitler and Nenkova, 2008)

(c) Neural coherence models (Mohiuddin
et al., 2018; Li and Jurafsky, 2017; Mes-
gar and Strube, 2018)

(d) Coherence models for conversations
(Elsner and Charniak, 2011a; Mohiud-
din et al., 2018)

2. Evaluation tasks

(a) Sentence ordering (Discrimination, In-
sertion)

(b) Summary coherence rating
(c) Readability assessment

13



(d) Chat disentanglement
(e) Thread reconstruction

3. Applications of discourse

(a) Summarization
(b) Generation
(c) Sentiment analysis
(d) Machine translation

E. Conversational Structure [35 mins]

1. Conversational structures

(a) Speech (or dialog) acts in synchronous
and asynchronous conversations

(b) Reply-to (thread) structure in asyn-
chronous conversations (Carenini et al.,
2007)

(c) Conversation disentanglement in syn-
chronous conversations

2. Computational models

(a) Speech act recognition models (Stolcke
et al., 2000; Cohen et al., 2004; Ritter
et al., 2010; Joty et al., 2011; Paul, 2012;
Joty and Hoque, 2016; Mohiuddin et al.,
2019)

(b) Thread reconstruction models (Shen
et al., 2006; Wang et al., 2008, 2011a,b)

(c) Conversation disentanglement models
(Elsner and Charniak, 2008, 2011a)

3. Evaluation & Summary of results

F. Future Challenges [15 mins]

1. Learning from limited annotated data

2. Language & domain transfer

3. Discourse generation

4. New emerging applications

Link to the Slides Our tutorial slides will
be made available at https://ntunlpsg.
github.io/project/acl19tutorial/

2.1 Prerequisites

Prior knowledge in basic machine learning, NLP
(e.g., parsing methods, machine translation), and
deep learning models is essential to understand the
content of this tutorial.

2.2 Similar Tutorial

We gave a similar tutorial (shorter version) at
the 2018 IEEE International Conference on Data
Mining (ICDM-2018), a top conference in data
mining. The slides of that tutorial can be
found at https://ntunlpsg.github.io/
project/icdmtutorial/.

3 Instructors

Dr. Shafiq Joty1 is an Assistant Professor at
the School of Computer Science and Engineer-
ing, NTU. He is also a senior research manager
at the Salesforce AI Research lab. He holds a
PhD in Computer Science from the University of
British Columbia. His work has primarily focused
on developing discourse analysis tools (e.g., dis-
course parser, coherence model, topic model, dia-
logue act recognizer), and exploiting these tools
effectively in downstream applications like ma-
chine translation, summarization, and sentiment
analysis. Apart from discourse and its applica-
tions, he has also developed novel machine learn-
ing models for question answering, machine trans-
lation, image/video captioning, visual question an-
swering, and opinion analysis. His work has ap-
peared in major journals and conferences such as
CL, JAIR, CSL, ACL, EMNLP, NAACL, IJCAI,
CVPR, ECCV, and ICWSM. He served as an area
chair for ACL-2019 (QA track) and EMNLP-2019
(Discourse track) and a senior program commit-
tee member for IJCAI 2019. Shafiq is a recipient
of NSERC CGS-D scholarship and Microsoft Re-
search Excellent Intern award.

Dr. Giuseppe Carenini2 is a Professor in Com-
puter Science at UBC. Giuseppe has broad inter-
disciplinary interests. His work on NLP and infor-
mation visualization to support decision making
has been published in over 100 peer-reviewed pa-
pers (including best paper at UMAP-14 and ACM-
TiiS-14). He was the area chair for ACL’09 “Sen-
timent Analysis, Opinion Mining, and Text Classi-
fication” , NAACL’12 and EMNLP’19 for “Sum-
marization and Generation”, ACL’19 for Dis-
course; the Program Co-Chair for IUI 2015, and
the Program Co-Chair for SigDial 2016. He has
also co-edited an ACM-TIST Special Issue on “In-
telligent Visual Interfaces for Text Analysis”. In
2011, he published a co-authored book on “Meth-

1https://raihanjoty.github.io/
2https://www.cs.ubc.ca/∼carenini/
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ods for Mining and Summarizing Text Conversa-
tions”. He has also extensively collaborated with
industrial partners, including Microsoft and IBM.
He was awarded a Google Research Award, an
IBM CASCON Best Exhibit Award, and a Yahoo
Faculty Research Award in 2007, 2010 and 2016
respectively.

Dr. Raymond T. Ng3 is a Professor in Com-
puter Science and the Director of the Data Science
Institute at UBC. His main research area for the
past two decades is on data mining, with a spe-
cific focus on health informatics and text mining.
He has published over 180 peer-reviewed publica-
tions on data clustering, outlier detection, OLAP
processing, health informatics and text mining. He
is the recipient of two best paper awards from
the 2001 ACM SIGKDD conference, the pre-
mier data mining conference in the world, and
the 2005 ACM SIGMOD conference, one of the
top database conferences worldwide. For the past
decade, he has co-led several large-scale genomic
projects funded by Genome Canada, Genome BC
and industrial collaborators. Since the inception
of the PROOF Centre of Excellence, which fo-
cuses on biomarker development for end-stage or-
gan failures, he has held the position of the Chief
Informatics Officer of the Centre. From 2009 to
2014, he was the associate director of the NSERC-
funded strategic network on business intelligence.
Since 2016, he has been the holder of the Canadian
Research Chair on Data Science and Analytics.

Dr. Gabriel Murray4 is an Associate Professor
in Computer Information Systems at the Univer-
sity of the Fraser Valley (UFV). His background
is in computational linguistics and multimodal
speech and language processing. He holds a PhD
in Informatics from the University of Edinburgh,
completed under the supervision of Drs. Steve
Renals and Johanna Moore. His research has fo-
cused on various aspects of multimodal conver-
sational data, including automatic summarization
and sentiment detection for group discussions. Re-
cent research also focuses on predicting group per-
formance and participant affect in conversational
data. In 2011, Dr. Murray co-authored the book
“Methods for Mining and Summarizing Text Con-
versations”.

3https://www.cs.ubc.ca/∼rng
4https://www.ufv.ca/cis/faculty-and-staff/murray-

gabriel.htm
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1 Introduction

The development and adoption of natural language
processing (NLP) methods by the political science
community dates back to over twenty years ago. In
the last decade the usage of computational meth-
ods for text analysis has drastically expanded in
scope and has become the focus of many social
science studies, allowing for a sustained growth of
the text-as-data community (Grimmer and Stew-
art, 2013). Political scientists have in particular
focused on exploiting available texts as a valu-
able (additional) data source for a number of anal-
yses types and tasks, including inferring policy
positions of actors from textual evidence (Laver
et al., 2003; Slapin and Proksch, 2008; Lowe et al.,
2011, inter alia), detecting topics (King and Lowe,
2003; Hopkins and King, 2010; Grimmer, 2010;
Roberts et al., 2014), and analyzing stylistic as-
pects of texts, e.g., assessing the role of language
ambiguity in framing the political agenda (Page,
1976; Campbell, 1983) or measuring the level of
vagueness and concreteness in political statements
(Baerg et al., 2018; Eichorst and Lin, 2018).

Just like in many other domains, much of the
work on computational analysis of political texts
has been enabled and facilitated by the develop-
ment of dedicated resources and datasets such as,
the topically coded electoral programmes (i.e., the
Manifesto Corpus) (Merz et al., 2016) developed
within the scope of the Comparative Manifesto
Project (CMP) (Werner et al., 2014; Mikhaylov
et al., 2012) or the topically coded legislative texts
annotated for numerous countries within the scope
of the Comparative Agenda Project (Baumgartner
et al., 2006; Bevan, 2019).

While political scientists have dedicated a lot of
effort to creating resources and using NLP meth-
ods to automatically process textual data, they
have largely done so in isolation from the NLP

community. For example, political text scaling –
one of the central tasks in quantitative political sci-
ence, where the goal is to quantify positions of
politicians and/or parties on a scale based on the
textual content they produce – has not received any
attention by the NLP community until last year,
whereas it has been at the core of political science
research for almost two decades. At the same time,
NLP researchers have addressed closely related
tasks such as election prediction (O’Connor et al.,
2010), ideology classification (Hirst et al., 2010),
stance detection (Thomas et al., 2006), and agree-
ment measurement (Gottipati et al., 2013), all
rarely considered in the same format by the text-
as-data political science community. In summary,
these two communities have been largely agnostic
of one another, resulting in NLP researchers not
contributing to relevant research questions in po-
litical science and political scientists not employ-
ing cutting-edge NLP methodology for their tasks.

The main goal of this tutorial is to systematize
and analyze the body of research work on compu-
tational analysis of political texts from both com-
munities. We aim to provide a gentle, all-round
introduction to methods and tasks related to com-
putational analysis of political texts. Our vision
is to bring the two research communities closer to
each other and contribute to faster and more sig-
nificant developments in this interdisciplinary re-
search area. To that effect, this tutorial presents
a continuation of our efforts which started with a
very successful cross-community event organized
in December 2017 (Nanni et al., 2018). In paral-
lel with this tutorial at the 57th Annual Meeting
of the Association for Computational Linguistics
(ACL 2019), we will give a complementary tuto-
rial at the 5th International Conference on Com-
putational Social Science (IC2S2 2019).
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2 Tutorial Overview

This introductory tutorial aims to systematically
organise and analyse the overall body of research
in computational analysis of political texts. This
body of work has been split between two largely
disjoint research communities – researchers in nat-
ural language processing and researchers in polit-
ical science – and the tutorial is designed bearing
this in mind. We first explain the role that textual
data plays in political analyses and then proceed
to examine the concrete resources and tasks ad-
dressed by the text-as-data political science com-
munity. Continuing, we present the research ef-
forts carried out by the NLP researchers. We close
the tutorial by presenting text scaling, a challeng-
ing task that is at the center of the quantitative po-
litical science and has recently also attracted atten-
tion of NLP scholars. Accordingly, we divide the
tutorial into the following four parts:

1. Text as Data in Political Science. We begin
with an overview of the role that textual data
has always played in political science research
as a source for determining leader’s positions
(Winter and Stewart, 1977), campaign strate-
gies (Petrocik, 1996), media attention (Semetko
and Valkenburg, 2000), and crowd perception of
the democratic process (Miller, 1990). We will
further analyze the inherent difficulties in col-
lecting political texts and political data in gen-
eral and analyze crowdsourcing as an efficient
and agile method for producing political data
(Benoit et al., 2016).

2. Resources and Tasks. We then present com-
putational research tasks based on textual data,
which are relevant for the political science com-
munity (Grimmer and Stewart, 2013). We ex-
amine the type of applications and discuss the
complex challenges currently faced, especially
concerning cross-lingual and topic-based stud-
ies. We will analyze in detail the corpora de-
veloped within the scope of two major anno-
tation projects: Comparative Manifesto Project
(Werner et al., 2014; Mikhaylov et al., 2012)
and Comparative Agendas Project (Baumgart-
ner et al., 2006; Bevan, 2019). We will also
describe other datasets, annotated corpora, gold
standards, and benchmarks that are already
promptly available (Bakker et al., 2015; Merz
et al., 2016; Schumacher et al., 2016; Van Agge-
len et al., 2017; Döring and Regel, 2019).

3. Topical Analysis of Political Texts. Next,
we focus on a large body of work of topi-
cal analysis of political texts, covering unsu-
pervised topic induction, including dictionary-
based, topic-modelling and text segmentation
approaches (Quinn et al., 2006, 2010; Grim-
mer, 2010; Albaugh et al., 2013; Glavaš et al.,
2016; Menini et al., 2017), as well as supervised
topic classification studies (Hillard et al., 2008;
Collingwood and Wilkerson, 2012; Karan et al.,
2016). We will also cover more recent work
on cross-lingual topic classification in political
texts (Glavaš et al., 2017a; Subramanian et al.,
2018). We will further emphasize topic classifi-
cation models that exploit large manually ano-
tated corpora from CMP (Zirn et al., 2016; Sub-
ramanian et al., 2017) and CAP (Karan et al.,
2016; Albaugh et al., 2013) projects, which we
cover in the previous part.

4. Political Text Scaling. Finally, we present a
detailed overview of the task of political text
scaling, which has the goal of inferring policy
position of actors from textual evidence. Af-
ter introducing the text scaling task, we will
present in detail the traditional scaling models
that operate on lexical text representations such
as Wordscores (Laver et al., 2003) and Word-
Fish (Slapin and Proksch, 2008; Lowe et al.,
2011) as well as a more recent scaling approach
that exploits latent semantic text representations
(Glavaš et al., 2017b; Nanni et al., 2019). Fur-
thermore, we will discuss the task of scaling
multilingual text collections, presenting poten-
tial approaches and inherent issues. We con-
clude the tutorial with a short discussion of key
challenges and foreseeable future developments
in computational analysis of political texts.

3 Tutorial Outline

Part I: Text-as-Data in Political Science (30 min)

• Quick introduction to quantitative methods in
political science

• Reliability and suitability of textual data for
political analyses

• Constructing corpora of political texts

• Crowdsourcing political data: advantages
and potential pitfalls
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Part II: Resources and Tasks (30 minutes)

• Overview of computational analysis of polit-
ical texts in the political science community

• International annotation projects: Compara-
tive Manifesto Project (CMP) and Compara-
tive Agendas Project (CAP)

• Other large collection of political texts (Eu-
roParl, UK Hansard Corpus, etc.) and associ-
ated tasks

Part III: Topical Analysis of Political Texts
(60 minutes)

• Dictionary-based approaches to classification
of political text

• Unsupervised topical analysis of political
texts with topic models

• Models for supervised topic classification of
political texts

• Hierarchical and fine-grained topic classifica-
tion

• Cross-lingual topic classification

Part IV: Political Text Scaling and Conclusion
(60 minutes)

• Lexical models for political text scaling:
Wordscores and WordFish

• Text scaling using latent semantic text repre-
sentations

• Policy dimensions in scaling: pitfalls and
artefacts

• Cross-lingual scaling

• Conslusion: short discussion of key chal-
lenges and presumed future developments

4 Tutorial Breadth

In our previous work, we contributed to the re-
search efforts on topic classification (Nanni et al.,
2016; Zirn et al., 2016; Glavaš et al., 2017a), se-
mantic scaling of political texts (Glavaš et al.,
2017b) as well as (dis-)agreement detection in
party manifestos (Menini et al., 2017). However,
the key objective of this tutorial is to provide a

comprehensive overview of recent and current re-
search on computational analysis of political texts,
both in NLP and political science communities.
We estimate that at most one quarter of the tuto-
rial will be dedicated to covering our own work.

5 Presenters

Goran Glavaš is an Assistant Professor for Sta-
tistical Natural Language Processing at the Data
and Web Science group, University of Mannheim.
He obtained his Ph.D. at the Text Analysis and
Knowledge Engineering Lab (TakeLab), Univer-
sity of Zagreb. His research efforts and interests
are in the areas of statistical natural language pro-
cessing (NLP) and information retrieval (IR), with
focus on lexical and computational semantics,
multi-lingual and cross-lingual NLP and IR, infor-
mation extraction, and NLP applications for social
sciences. He has (co-)authored over 60 publica-
tions in the areas of NLP and IR, publishing at top-
tier NLP and IR venues (ACL, EMNLP, NAACL,
EACL, SIGIR, ECIR). He is a co-organizer of the
TextGraphs workshop series on graph-based NLP.
He is a research associate at the Collaborative Re-
search Center SFB 884 ”Political Economy of Re-
forms” where he participates in two projects.

Federico Nanni is a Post-Doctoral researcher in
Political Text Analyisis at the Collaborative Re-
search Center SFB 884 ”Political Economy of Re-
forms” and at the Data and Web Science Group
of the University of Mannheim. He obtained his
Ph.D. in History of Technology from the Univer-
sity of Bologna. The focus of his research is on
adopting (and adapting) Natural Language Pro-
cessing methods for supporting studies in Compu-
tational Social Sciences and Digital Humanities.
Currently, he works on developing new methods
for cross-lingual topic detection and scaling in po-
litical texts. He actively works as a researcher on
two projects of the Collaborative Research Cen-
ter SFB 884 – Project C4: “Measuring a common
space and the dynamics of reform positions: Non-
standard tools, non-standard actors” and Project
B6: “Nonparametric and nonlinear panel data and
time series analysis”.

Simone Paolo Ponzetto is Professor of Informa-
tion Systems at the University of Mannheim and
member of the Data and Web Science Group,
where he leads the NLP and IR group. Simone ob-
tained his Ph.D. from the Institute for Natural Lan-
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guage Processing, University of Stuttgart and has
spent almost 15 years of service in the ACL com-
munity, enthusiastically contributing as reviewer,
area chair and tutorial presenter at various *ACL
events. His main research interests lie in the ar-
eas of knowledge acquisition, text understanding,
and the application of NLP methods for research
in the digital humanities and computational social
sciences. Simone is currently a principal inves-
tigator of the Collaborative Research Center SFB
884 ”Political Economy of Reforms” where he is
a co-PI on two projects (Project C4: “Measuring
a common space and the dynamics of reform po-
sitions: Non-standard tools, non-standard actors’;
and Project B6: “Nonparametric and nonlinear
panel data and time series analysis”).

6 Target audience / prerequisites

This tutorial is designed for students and re-
searchers in Computer Science and Natural Lan-
guage Processing. We assume only a basic,
graduate-level understanding of NLP problems
and machine learning techniques for NLP, as com-
monly possessed by the typical ACL event at-
tendee. No prior knowledge of computational so-
cial science or political science is assumed.

Prerequisites

• Math: Basic knowledge of linear algebra,
graph theory, and numeric optimization.

• Linguistics: None.

• Machine Learning: The tutorial will not go
into the basics of underlying machine learn-
ing models. Knowledge of basic (supervised)
machine learning concepts is required.

7 Recommended reading list

1. Justin Grimmer and Brandon M. Stewart. 2013.
Text as data: The Promise and Pitfalls of Au-
tomatic Content Analysis Methods for political
texts.Political Analysis, 21(3): 267–297.

2. Michael Laver, Kenneth Benoit, and John
Garry. 2003. Extracting Policy Positions from
Political Texts Using Words as Data. American
Political Science Review, 97(02): 311–331.

3. Jonathan B. Slapin and Sven-Oliver Proksch.
2008. A Scaling Model for Estimating Time-
Series Party Positions from Texts. American
Journal of Political Science, 52(3): 705–722.

8 Other Information

Tutorial type: Introductory.

Tutorial materials: All tutorial materials and
other information related to the tutorial are avail-
able at: https://poltexttutorial.wordpress.com
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Glavaš. 2016. Analysis of policy agendas: Lessons
learned from automatic topic classification of croat-
ian political texts. In Proc. of SIGHUM.

Gary King and Will Lowe. 2003. An automated infor-
mation extraction tool for international conflict data
with performance as good as human coders: A rare
events evaluation design. International Organiza-
tion 57(3).

Michael Laver, Kenneth Benoit, and John Garry. 2003.
Extracting policy positions from political texts using
words as data. American Political Science Review
97(02).

Will Lowe, Kenneth Benoit, Slava Mikhaylov, and
Michael Laver. 2011. Scaling Policy Preferences
from Coded Political Texts. Legislative Studies
Quarterly 36(1).

Stefano Menini, Federico Nanni, Simone Paolo
Ponzetto, and Sara Tonelli. 2017. Topic-based
agreement and disagreement in us electoral mani-
festos. In Proc. of EMNLP.

Nicolas Merz, Sven Regel, and Jirka Lewandowski.
2016. The manifesto corpus: A new resource for re-
search on political parties and quantitative text anal-
ysis. Research & Politics 3(2).

Slava Mikhaylov, Michael Laver, and Kenneth R.
Benoit. 2012. Coder reliability and misclassification
in the human coding of party manifestos. Political
Analysis 20(01).

William Lockley Miller. 1990. How Voters Change:
the 1987 British election campaign in perspective.
Oxford University Press.

Federico Nanni, Goran Glavaš, Simone Paolo Ponzetto,
and Heiner Stuckenschmidt. 2019. Political text
scaling meets computational semantics. Work in
Progress.

Federico Nanni, Goran Glavaš, Simone Paolo
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1 Tutorial Description

As a counterpart to expert-created knowledge re-
sources such as WordNet or Cyc, non-expert users
may collaboratively create large resources of un-
structured or semi-structured knowledge, a lead-
ing representative of which is Wikipedia. Collec-
tively, articles within Wikipedia form an easily-
editable collection, reflecting an ever-growing
number of topics of interest to Web users.

This tutorial examines the characteristics of
Wikipedia relative to other human-curated re-
sources of knowledge; and the role of Wikipedia
and resources derived from it in text analysis
and in enhancing information retrieval. Appli-
cable text analysis tasks include coreference
resolution (Ratinov and Roth, 2012), word sense
and entity disambiguation (Ganea and Hofmann,
2017). More prominently, they include in-
formation extraction (Zhu et al., 2019). In
information retrieval, a better understanding of
the structure and meaning of queries (Hu et al.,
2009; Pantel and Fuxman, 2011; Tan et al.,
2017) helps in matching queries against
documents (Ensan and Bagheri, 2017), clus-
tering search results (Scaiella et al., 2012),
answer (Chen et al., 2017) and entity re-
trieval (Ma et al., 2018) and retrieving knowledge
panels for queries asking about popular entities.

2 Outline

1. Human-curated resources
(a) Expert resources
(b) Collaborative, non-expert resources
(c) Hybrid resources

2. Knowledge within Wikipedia
(a) Articles, infoboxes, links, categories
(b) Resources derived from Wikipedia

3. Role in text analysis

(a) Information extraction
(b) Beyond information extraction

4. Role in information retrieval
(a) Query and document analysis
(b) Retrieval and ranking

A copy will be at http://tinyurl.com/acl19wi.

3 Presenter

Marius Paşca is a research scientist at Google
in Mountain View, California. He graduated
with a Ph.D. in Computer Science from South-
ern Methodist University in Dallas, Texas and an
M.Sc. in Computer Science from Joseph Fourier
University in Grenoble, France. Current re-
search interests include factual information extrac-
tion from unstructured text and natural-language
matching functions for information retrieval.
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1 Introduction

This introductory tutorial addresses the advances
in deep Bayesian learning for natural language
with ubiquitous applications ranging from speech
recognition (Saon and Chien, 2012; Chan et al.,
2016) to document summarization (Chang and
Chien, 2009), text classification (Blei et al.,
2003; Zhang et al., 2015), text segmentation
(Chien and Chueh, 2012), information extraction
(Narasimhan et al., 2016), image caption genera-
tion (Vinyals et al., 2015; Xu et al., 2015), sen-
tence generation (Li et al., 2016), dialogue control
(Zhao and Eskenazi, 2016), sentiment classifica-
tion, recommendation system, question answering
(Sukhbaatar et al., 2015) and machine translation
(Bahdanau et al., 2014), to name a few. Tradi-
tionally, “deep learning” is taken to be a learn-
ing process where the inference or optimization
is based on the real-valued deterministic model.
The “semantic structure” in words, sentences, en-
tities, actions and documents drawn from a large
vocabulary may not be well expressed or correctly
optimized in mathematical logic or computer pro-
grams. The “distribution function” in discrete or
continuous latent variable model for natural lan-
guage may not be properly decomposed or esti-
mated. This tutorial addresses the fundamentals
of statistical models and neural networks, and fo-
cus on a series of advanced Bayesian models and
deep models including hierarchical Dirichlet pro-
cess (Teh et al., 2006), Chinese restaurant process
(Blei et al., 2010), hierarchical Pitman-Yor pro-
cess (Teh, 2006), Indian buffet process (Ghahra-
mani and Griffiths, 2005), recurrent neural net-
work (Mikolov et al., 2010; Van Den Oord et al.,
2016), long short-term memory (Hochreiter and
Schmidhuber, 1997; Cho et al., 2014), sequence-
to-sequence model (Sutskever et al., 2014), varia-
tional auto-encoder (Kingma and Welling, 2014),

generative adversarial network (Goodfellow et al.,
2014), attention mechanism (Chorowski et al.,
2015; Seo et al., 2016), memory-augmented neu-
ral network (Graves et al., 2014; Sukhbaatar et al.,
2015), skip neural network (Campos et al., 2018),
stochastic neural network (Bengio et al., 2014;
Miao et al., 2016), predictive state neural network
(Downey et al., 2017) and policy neural network
(Mnih et al., 2015; Yu et al., 2017). We present
how these models are connected and why they
work for a variety of applications on symbolic and
complex patterns in natural language. The varia-
tional inference and sampling method are formu-
lated to tackle the optimization for complicated
models (Rezende et al., 2014). The word and sen-
tence embeddings, clustering and co-clustering are
merged with linguistic and semantic constraints.
A series of case studies and domain applications
are presented to tackle different issues in deep
Bayesian processing, learning and understanding.
At last, we will point out a number of directions
and outlooks for future studies.

2 Objective of tutorial

Owing to the current growth in research and re-
lated emerging technologies in machine learning
and deep learning, it is timely to introduce this tu-
torial to a large number of researchers and prac-
titioners who are attending ACL 2019 and work-
ing on statistical models, deep neural networks, se-
quential learning and natural language processing
and understanding. To the best of our knowledge,
there is no similar tutorial presented in previous
ACLs. This three-hour tutorial will concentrate
on a wide range of theories and applications and
systematically present the recent advances in deep
Bayesian learning which are impacting the com-
munities of machine learning, natural language
processing and human language technology.
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3 Tutorial outline

• Introduction

– motivation and background
– probabilistic models
– neural networks
– modern natural language models

• Bayesian Learning

– inference and optimization
– variational Bayesian (VB) inference
– Monte Carlo Markov chain (MCMC)
– Bayesian nonparametrics (BNP)
– hierarchical theme and topic model
– hierarchical Pitman-Yor-Dirichlet proc.
– nested Indian buffet process

• Deep Learning

– deep unfolded topic model
– gated recurrent neural network (RNN)
– generative adversarial network (GAN)
– memory-augmented neural network
– sequence-to-sequence learning
– convolutional neural network (CNN)

(Coffee Break)
– dilated recurrent neural network
– attention network using transformer

• Deep Bayesian Processing and Learning

– Bayesian recurrent neural network
– variational auto-encoder (VAE)
– variational recurrent auto-encoder
– stochastic temporal convolutional net
– stochastic recurrent neural network
– regularized recurrent neural network
– stochastic learning & normalizing flows
– VAE with VampPrior
– skip recurrent neural network
– temporal difference VAE
– Markov recurrent neural network
– reinforcement learning & understanding
– sequence GAN

• Summarization and Future Trend

4 Target audience

This tutorial will be useful to research students
working in natural language processing and re-
searchers who would like to explore machine
learning, deep learning and sequential learning.
The prerequisite knowledge includes calculus, lin-
ear algebra, probability and statistics. This tuto-
rial serves the objectives to introduce novices to
major topics within deep Bayesian learning, moti-
vate and explain a topic of emerging importance
for natural language understanding, and present
a novel synthesis combining distinct lines of ma-
chine learning work.

5 Description of tutorial content

The presentation of this tutorial is arranged into
five parts. First of all, we share the current
status of researches and applications on natu-
ral language processing, statistical modeling and
deep neural network (Bahdanau et al., 2014), and
address the key issues in deep Bayesian learn-
ing for discrete-valued observation data and la-
tent semantics. Modern natural language mod-
els are introduced to address how data analysis is
performed from language processing to semantic
learning, memory networking, knowledge mining
and understanding. Secondly, we address a num-
ber of Bayesian models ranging from latent vari-
able model to VB inference (Chien and Chueh,
2011; Chien, 2015b; Chien and Chang, 2014),
MCMC sampling and BNP learning (Chien, 2016,
2015a, 2018; Watanabe and Chien, 2015) for hi-
erarchical, thematic and sparse topics from nat-
ural language. In the third part, a series of
deep models including deep unfolding (Chien and
Lee, 2018), RNN (Hochreiter and Schmidhuber,
1997), GAN (Goodfellow et al., 2014), mem-
ory network (Weston et al., 2015; Chien and
Lin, 2018; Tsou and Chien, 2017), sequence-to-
sequence learning (Graves et al., 2006; Gehring
et al., 2017), CNN (Kalchbrenner et al., 2014;
Xingjian et al., 2015; Dauphin et al., 2017), di-
lated RNN (Chang et al., 2017) and attention net-
work with transformer (Vaswani et al., 2017; De-
vlin et al., 2018) are introduced. The coffee break
is arranged within this part. Next, the fourth part
focuses on a variety of advanced studies which
illustrate how deep Bayesian learning is devel-
oped to infer the sophisticated recurrent models
for natural language understanding. In partic-
ular, the Bayesian RNN (Gal and Ghahramani,

26



2016; Chien and Ku, 2016), VAE (Kingma and
Welling, 2014), variational recurrent auto-encoder
(Chien and Wang, 2019), neural variational learn-
ing (Serban et al., 2017; Chung et al., 2015),
stochastic temporal convolutional network (Ak-
san and Hilliges, 2019), neural discrete represen-
tation (Jang et al., 2017; van den Oord et al.,
2017), recurrent ladder network (Rasmus et al.,
2015; Prémont-Schwarz et al., 2017), stochastic
recurrent neural network (Fraccaro et al., 2016;
Goyal et al., 2017; Chien and Kuo, 2017), predic-
tive state neural network (Downey et al., 2017),
Markov recurrent neural network (Venkatraman
et al., 2017; Kuo and Chien, 2018), reinforcement
learning (Tegho et al., 2017), sequence GAN (Yu
et al., 2017), and temporal difference VAE (Gregor
et al., 2019) are introduced in various deep mod-
els. Enhancing the prior/posterior representation
in variational inference is addressed (Rezende and
Mohamed, 2015; Tomczak and Welling, 2018).
These sophisticated models open a window to nu-
merous practical tasks such as reading comprehen-
sion, sentence generation, dialogue system, ques-
tion answering and machine translation. Vari-
ational inference methods based on normalizing
flows (Rezende and Mohamed, 2015) and “vari-
ational mixture of posteriors” prior (VampPrior)
(Tomczak and Welling, 2018) are addressed. Pos-
terior collapse problem in variational sequential
learning is compensated. In the final part, we spot-
light on some future directions for deep language
understanding which can handle the challenges of
big data, heterogeneous condition and dynamic
system. In particular, deep learning, structural
learning, temporal and spatial modeling, long his-
tory representation and stochastic learning are em-
phasized. Slides of this tutorial are available at
(http://chien.cm.nctu.edu.tw/home/acl-tutorial).

6 Instructor

Jen-Tzung Chien is now with the Department of
Electrical and Computer Engineering, National
Chiao Tung University, Taiwan, where he is cur-
rently the University Chair Professor. He held
the visiting researcher position with the IBM T.
J. Watson Research Center, Yorktown Heights,
NY, in 2010. His research interests include ma-
chine learning, deep learning, natural language
processing and computer vision. He served as
the associate editor of the IEEE Signal Process-
ing Letters in 2008-2011, the guest editor of the

IEEE Transactions on Audio, Speech and Lan-
guage Processing in 2012, the organization com-
mittee member of ICASSP 2009, the area coordi-
nator of Interspeech 2012, EUSIPCO 2017-2019,
the program chair of ISCSLP 2018, the general
chair of MLSP 2017, and currently serves as an
elected member of the IEEE Machine Learning
for Signal Processing (MLSP) Technical Commit-
tee. He received the Best Paper Award of IEEE
Automatic Speech Recognition and Understand-
ing Workshop in 2011 and the AAPM Farring-
ton Daniels Award in 2018. Dr. Chien has pub-
lished extensively including the books “Bayesian
Speech and Language Processing”, Cambridge
University Press, in 2015, and “Source Separa-
tion and Machine Learning”, Academic Press, in
2018. He has served as the Tutorial Speaker
for APSIPA 2013, ISCSLP 2014, Interspeech
2013, 2016, ICASSP 2012, 2015, 2017, COLING
2018, AAAI 2019, KDD 2019, and IJCAI 2019.
(http://chien.cm.nctu.edu.tw/)
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1 Motivation and Objectives

Cross-lingual word representations offer an elegant
and language-pair independent way to represent
content across different languages. They enable
us to reason about word meaning in multilingual
contexts and serve as an integral source of knowl-
edge for multilingual applications such as machine
translation (Artetxe et al., 2018d; Qi et al., 2018;
Lample et al., 2018b) or multilingual search and
question answering (Vulić and Moens, 2015). In
addition, they are a key facilitator of cross-lingual
transfer and joint multilingual training, offering
support to NLP applications in a large spectrum
of languages (Søgaard et al., 2015; Ammar et al.,
2016a). While NLP is increasingly more embedded
into a variety of products related to, e.g., translation,
conversational or search tasks, resources such as an-
notated training data are still lacking or insufficient
to induce satisfying models for many resource-poor
languages. There are often no trained linguistic
annotators for these languages, and markets may
be too small or premature to invest in such train-
ing. This is a major challenge, but cross-lingual
modelling and transfer can help by exploiting ob-
servable correlations between major languages and
low-resource languages.

Recent work has already verified the usefulness
of cross-lingual word representations in a wide va-
riety of downstream tasks, and has provided exten-
sive model classifications in several survey papers
(Upadhyay et al., 2016; Ruder et al., 2018b). They
cluster supervised cross-lingual word representa-
tion models according to the bilingual supervision
required to induce such shared cross-lingual se-
mantic spaces, covering models based on word
alignments and readily available bilingual dictio-
naries (Mikolov et al., 2013; Smith et al., 2017),
sentence-aligned parallel data (Gouws et al., 2015),
document-aligned data (Søgaard et al., 2015; Vulić

and Moens, 2016), or even image tags and cap-
tions (Rotman et al., 2018). The current trend (or
rather ‘obsession’) in cross-lingual word embed-
ding learning, however, concerns models that re-
quire a tiny amount of supervision (i.e., weakly-
supervised alignment models that require only
dozens of word translation pairs) or no supervision
at all (fully unsupervised models).1 Such resource-
light unsupervised methods are based on the as-
sumption that monolingual word vector spaces are
approximately isomorphic (Conneau et al., 2018a).
Therefore, they require only monolingual data and
hold promise to enable cross-lingual NLP model-
ing in the absence of any bilingual resources. As
a consequence, they offer support to a wider ar-
ray of language pairs than supervised models, and
promise to deliver language technology to truly
resource-poor languages and dialects. However,
due to the strong assumption on the similarity of
space topology, these models often diverge to non-
optimal solutions, and their robustness is one of
the crucial research questions at present (Søgaard
et al., 2018).

In this tutorial, we provide a comprehensive
survey of the exciting recent work on cutting-
edge weakly-supervised and unsupervised cross-
lingual word representations. After providing
a brief history of supervised cross-lingual word
representations, we focus on: 1) how to induce
weakly-supervised and unsupervised cross-lingual
word representations in truly resource-poor settings
where bilingual supervision cannot be guaranteed;
2) critical examinations of different training condi-
tions and requirements under which unsupervised
algorithms can and cannot work effectively; 3)
more robust methods for distant language pairs that

1Learning unsupervised cross-lingual models has indeed
taken the field by storm: there are 10+ papers on this very
topic published in EMNLP 2018 proceedings alone, with even
more papers available on arXiv.

31



can mitigate instability issues and low performance
for distant language pairs; 4) how to comprehen-
sively evaluate such representations; and 5) diverse
applications that benefit from cross-lingual word
representations (e.g., MT, dialogue, cross-lingual
sequence labeling and structured prediction appli-
cations, cross-lingual IR).

We will introduce researchers to state-of-the-
art methods for constructing resource-light cross-
lingual word representations and discuss their ap-
plicability in a broad range of downstream NLP
applications, covering bilingual lexicon induction,
machine translation (both neural and phrase-based),
dialogue, and information retrieval tasks. We will
deliver a detailed survey of the current cutting-
edge methods, discuss best training and evaluation
practices and use-cases, and provide links to pub-
licly available implementations, datasets, and pre-
trained models and word embedding collections.2

2 Tutorial Overview

Part I: Introduction We first present an
overview of cross-lingual NLP research, situating
the current work on unsupervised cross-lingual rep-
resentation learning, and motivating the need for
multilingual training and cross-lingual transfer for
resource-poor languages with weak supervision or
no bilingual supervision at all. We also present key
downstream applications for cross-lingual word
representations, such as bilingual lexicon induc-
tion and unsupervised MT (Lample et al., 2018b).
These tasks will be used throughout the tutorial to
analyze the performance of different methods.

Almost all of the work on unsupervised cross-
lingual representation learning fall into the cate-
gory of mapping-based approaches (Ruder et al.,
2018b). Such approaches to cross-lingual learn-
ing learn mapping functions between pretrained
monolingual word embedding spaces; this is in
contrast with approaches based on joint learning,
data augmentation, or grounding. We show that
such approaches to cross-lingual learning, while
so far unexplored, can also be unsupervised. We
will put focus on a standardized two-step mapping-
based framework (Artetxe et al., 2018a) that gener-
alizes all mapping-based approaches, and analyze
the importance of each component of the frame-
work. The two-step framework decomposes unsu-
pervised cross-lingual representation learning into

2Slides of the tutorial are available at https://
tinyurl.com/xlingual.

initial seed induction and iterative supervised boot-
strapping.

Part II: Unsupervised and Weakly Supervised
Alignment as Initial Seed Induction + Iterative
Supervised Alignment We will analyze the im-
pact of seed bilingual lexicon size and quality (e.g.,
cognates, named entities, or shared numerals) on
the quality of weakly supervised cross-lingual word
representations. Unsupervised and weakly super-
vised approaches can be directly compared by com-
pared the quality of the learned dictionary seeds
(Parts III and IV) to using cognates, named entities,
etc.

Part III: Adversarial Seed Induction The un-
derlying modus operandi of all adversarial meth-
ods will be demonstrated on the example of the
MUSE architecture (Conneau et al., 2018a); this
is by far the most cited adversarial seed induction
method. We will then present similar adversarial
methods and discuss their modeling choices, imple-
mentation tricks, and various trade-offs. We will
also present our own direct comparisons of various
GAN algorithms (e.g., WGAN, GP-WGAN, and
CT-GAN) within the MUSE framework.

Part IV: Non-Adversarial Seed Induction In
the next part, we will present several non-
adversarial alternatives for unsupervised seed in-
duction based on convex relaxations, point set reg-
istration methods, and evolutionary strategies. We
will again dissect all components of the unsuper-
vised methods and point to minor, but important
implementation tricks and hyper-parameters that of-
ten slip under the radar (e.g., vocabulary size, post-
mapping refinements, preprocessing steps such as
mean centering and unit length normalisation, se-
lected semantic similarity measures, hubness re-
duction mechanisms). We will also introduce the
newest research that extends these methods from
bilingual settings to multilingual settings (with
more than 2 languages represented in the same
shared space).

Part V: Stochastic Dictionary Induction im-
proves Iterative Alignment We will then dis-
cuss stochastic approaches to improve the iterative
refinement of the dictionary. Stochastic dictionary
induction was introduced in Artetxe et al. (2018b),
and we show that this bootstrapping technique im-
proves performance and robustness, and is the main
reason Artetxe et al. (2018b) achieves state-of-the-
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art performance for many language pairs. This
part of our tutorial explores variation of stochastic
dictionary induction.

Part VI: Robustness and (In)stability Unsu-
pervised methods rely on the assumption that mono-
lingual word vector spaces are approximately iso-
morphic and there exists a linear mapping between
the two spaces. This assumption is not true for
many cases, which leads to degenerate or subopti-
mal solutions. The efficacy and stability of unsu-
pervised methods relies on multiple factors such
as: monolingual representation models, domain
(dis)similarity, language pair proximity and other
typological properties, chosen hyper-parameters,
etc. In this part, we will analyze the current
problems with robustness and stability of weakly-
supervised and unsupervised alignment methods
in relation to all these factors, and introduce latest
solutions to alleviate these problems. We will pro-
vide advice on how to approach weakly-supervised
and unsupervised training based on a series of em-
pirical observations available in recent literature
(Søgaard et al., 2018; Hartmann et al., 2018). We
will also discuss the (im)possibility of learning non-
linear mappings using either non-linear generators
or locally linear maps (Nakashole, 2018).

We will conclude by providing publicly avail-
able software packages and implementations, as
well as available training datasets and evaluation
protocols and systems. We will also list cur-
rent state-of-the-art results on standard evaluation
datasets, and sketch future research paths.

3 Outline

Part I: Introduction: Motivating and situating
cross-lingual word representation learning; presen-
tation of mapping-based approaches (30 minutes)

• Current challenges in cross-lingual NLP. NLP
for resource-poor languages.

• Bilingual data and cross-lingual supervision.
Why do we need weakly supervised and un-
supervised cross-lingual representation learn-
ing?

• Bilingual supervision and typology of super-
vised cross-lingual representation models.

• Learning with word-level supervision:
mapping-based approaches.

Part II: Unsupervised and Weakly Supervised
Alignment as Initial Seed Induction + Iterative
Supervised Alignment (30 minutes)

• A general framework for mapping-based ap-
proaches.

• Importance of seed bilingual lexicons.

• Learning alignment with weak supervision:
small seed lexicons, shared words, numerals.

Part III: Adversarial Seed Induction (30 min-
utes)

• Fully unsupervised models using adversarial
training; MUSE and related approaches.

Part IV: Non-Adversarial Seed Induction (25
minutes)

• Fully unsupervised models using optimal
transport, Wasserstein distance, Sinkhorn dis-
tance, and other alternatives.

• Importance of minor technical “tricks”: pre-
mapping and post-mapping steps: length nor-
malisation, mean centering, whitening and de-
whitening, making the methods more robust

Part V: Stochastic Dictionary Induction im-
proves Iterative Alignment (15 minutes)

• An overview of methods to improve iterative
refinement of the dictionary.

Part VI: Robustness and (In)stability (35 min-
utes)

• Impact of language similarity and typological
properties.

• Impact of chosen monolingual models, do-
main similarity, and hyper-parameters.

• Convergence criteria, possible and impossible
setups for unsupervised methods.

• How to build more robust and more stable
unsupervised methods?

Discussion and Final Remarks (15 minutes)

• Towards cross-lingual contextualised word
embeddings.

• Publicly available software and training data.

• Publicly available evaluation systems.

• Concluding remarks, remaining challenges,
future work, a short discussion.
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4 Tutorial Breadth

Based on the representative set of papers listed in
the selected bibliography, we anticipate that the
75%-80% of the tutorial will cover other people’s
work, while the rest concerns the work where at
least one of the three presenters has been actively
involved in. Note that the three presenters have
been the main authors of the recent book on cross-
lingual word representations which aimed at mak-
ing a systematic overview of the field.

5 Prerequisites

• Machine Learning: Basic knowledge of com-
mon neural network components like word
embeddings, RNNs, CNNs, denoising autoen-
coders, and encoder-decoder models.

• Computational Linguistics: Familiarity with
standard NLP tasks such as machine transla-
tion.

6 Presenters

Ivan Vulić, PhD, Senior Research Associate,
Language Technology Lab, University of Cam-
bridge. 9 West Road, CB3 9DP, Cambridge,
UK; Senior Scientist, PolyAI, London, UK.
iv250@cam.ac.uk. Ivan is interested in rep-
resentation learning, distributional, lexical, and
multi-modal semantics in monolingual and multi-
lingual contexts, and transfer learning for enabling
cross-lingual NLP applications. His work has been
published at top-tier *ACL and *IR conferences.
Ivan co-lectured a tutorial on multilingual topic
models and applications at ECIR 2013 and WSDM
2014, a tutorial on cross-lingual word representa-
tions at EMNLP 2017, and a tutorial on language
understanding for conversational AI at NAACL
2018. He also co-organised a workshop on Vision
and Language at EMNLP 2015 and co-organises
the ACL 2019 workshop on linguistic typology
for cross-lingual NLP. He serves as an area chair
for the multilinguality track at NAACL 2019 and
word-level semantics at ACL 2019.

Sebastian Ruder is a research scientist at Deep-
Mind. His research focuses on transfer learning in
NLP and transferring models to low-resource lan-
guages. He has published widely read reviews of
related areas, co-organised the NLP Session at the
Deep Learning Indaba 2018, and co-organises the
ACL 2019 workshop on representation learning and
the European NLP Summit 2019 (EurNLP-2019).

Anders Søgaard, PhD, Dr.Phil, Full Professor
in NLP and Machine Learning, Department of
Computer Science, University of Copenhagen.
soegaard@di.ku.dk. Anders is interested in
machine learning for NLP. He currently holds a
Google Focused Research Award and a Facebook
Research Award and has won best paper awards at
NAACL, EACL, CoNLL and *SEM. He has previ-
ously given tutorials at COLING and EMNLP, as
well as an ESSLLI course. He has been an area
chair of many top NLP/AI conferences.

The presenters have recently published a handbook
for Morgan & Claypool on cross-lingual word em-
beddings.

7 Other Important Information

Previous Tutorial Editions The EMNLP 2017 tu-
torial on cross-lingual word embeddings presented
much of the earlier work from 2013-2016 that re-
quire large amounts of parallel data (i.e., supervised
cross-lingual representations). In contrast, this tu-
torial focuses on cutting-edge unsupervised and
weakly supervised approaches from the period of
2016-2018, which will be highly relevant to the
audience, and will provide a complete overview of
the current cutting-edge research in the field.
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1 Description

This course aims to introduce students to an excit-
ing and dynamic area that has witnessed remark-
able growth over the past 36 months. Argument
mining builds on opinion mining, sentiment anal-
ysis and related to tasks to automatically extract
not just what people think, but why they hold the
opinions they do. From being largely beyond the
state of the art barely five years ago, there are now
many hundreds of papers on the topic, millions
of dollars of commercial and research investment,
and the 6th ACL workshop on the topic will be in
Florence in 2019. The tutors have delivered tuto-
rials on argument mining at ACL 2016, at IJCAI
2016 and at ESSLLI 2017; for ACL 2019, we have
developed a tutorial that provides a synthesis of
the major advances in the area over the past three
years.

Argument and debate form cornerstones of
civilised society and of intellectual life. Processes
of argumentation run our governments, structure
scientific endeavour and frame religious belief.
Recognising and understanding argument are cen-
tral to decision-making and professional activity
in all walks of life, which is why we place them at
the centre of academic pedagogy and practice; it’s
why such a premium is placed upon these skills;
and it’s why rationality is one of the very defining
notions of what it is to be human.

As our understanding of how arguments are as-
sembled, are interpreted and have impact has im-
proved, so it has become possible to frame compu-
tational questions about how it might be possible
for machines to model and replicate the processes
involved in identifying, reconstructing, interpret-
ing and evaluating reasoning expressed in natural
language arguments. This, then, is argument min-
ing: identifying that an argument is present, de-

composing an argument into its constituent parts,
determining how those parts are connected and
structured – and how they connect with other ar-
guments and argument parts – and finally, evalu-
ating the quality of those connections. Thorough
overviews are provided in, e.g., (Stede and Schnei-
der, 2018; Lippi and Torroni, 2016) with a wide
range of more detailed themes covered elsewhere,
such as premise-conclusion recovery (Stab and
Gurevych, 2017), types of argumentation pattern
(Walton et al., 2008), relationships between se-
mantic and argumentative structures (Becker et al.,
2017), how ethos of speakers interacts with argu-
ment structure (Duthie and Budzynska, 2018) and
automated assessment of argument persuasiveness
(Carlile et al., 2018).

Growth. From just a handful of papers in
print around 2010, argument mining has grown
rapidly with Google Scholar now reporting around
2,000 articles mentioning the topic in their title.
ACL, EMNLP and NAACL have included over
50 articles on argument mining in the past three
years alone, in addition to the 92 articles pub-
lished at the ACL workshop series on Argument
Mining (co-founded by Reed). Argument min-
ing has been building momentum both within the
ACL community and further afield, with both spe-
cialist conferences (such as Computational Mod-
els of Argument, COMMA, co-chaired in 2018 by
Budzynska) and generalist conferences (such as
IJCAI) devoting increasing time to papers, work-
shops and graduate-level training on argument
mining. The creation and publication of datasets
has been an important contributor to the vitality
of the field, with papers at LREC and in LRE in-
creasing the breadth of this foundational aspect to
the field (Abbott et al., 2016). By the same token,
new SEMEVAL tasks have also started to set the
goalposts and shape robust comparative evalua-
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tions (https://competitions.codalab.
org/competitions/17327).

Challenge. Argument mining is a particularly
challenging task and is an exciting domain in
which to work because it is increasingly clear that
deep learning and distributional techniques alone
are not delivering the same kind of successes that
have been enjoyed in some other areas of NLP.
Many labs working with algorithms for argument
mining are finding that hybrid approaches that in-
tegrate rule-based and statistical methods are more
likely to deliver the strongest performance. As a
result, recent argument mining has been pushing
the boundaries of approaches to NLP in general.

Argument mining in the press. The past year
has seen a rapidly accelerating public profile for
argument technologies in general, with Reed com-
missioned to produce articles that have appeared
in Newsweek (arg.tech/newsweek) and on
the BBC (arg.tech/bbcnews), and media
events such as IBM’s Project Debater launch
(e.g., www.wired.com/story/now-the-
computer-can-argue-with-you). The
BBC too has commissioned technology that in-
cludes the first live deployment of argument min-
ing (www.bbc.co.uk/taster/pilots/
evidence-toolkit-moral-maze) in sup-
porting identification of fake news. The tutorial
will make use of these high-profile applications
of argument mining to contextualise and motivate
the topics covered.

2 Type

As argument mining has been covered at an ACL
tutorial previously, in 2016. This tutorial is classi-
fied as ’Introductory’ and the syllabus is designed
to minimise preprequisites. We aim, however, to
focus heavily on results from the past three years
during which time significant progress has been
made.

3 Outline

The tutorial is structured in two parts, each of
which mixes lecturing with practical work. In the
first part, we will cover theory of argument struc-
ture from (i) the basics in argumentation theory;
through (ii) recent results in computational mod-
els of argument; to (iii) the latest (as yet largely
unpublished) techniques that allow modelling of

dialogical argumentation. To consolidate under-
standing of the material in each of these 20 minute
blocks, the first part concludes with a 30 minute
practical session in which students will get an op-
portunity to apply the theory to an example drawn
from a real-life setting.

In the second part, we will cover techniques for
argument mining from (i) straightforward applica-
tion of machine learning techniques; through (ii)
use of BiLSTMs in particular for exploiting se-
quence structure latent in argument presentation;
to (iii) the development of hybrid approaches to
argument mining. We will again encourage deep
understanding from the students through a short
practical implementation exercise making use of
R.

The outline syllabus runs thus:

Part A: Foundations

• A1 (20 mins). Theory of argument structure
– linked, convergent, serial, divergent, rebut,
undercut – indicators – enthymemes – logos,
ethos, pathos.

• A2 (20 mins). Semantic types – argumenta-
tion schemes – ADU segmentation – datasets,
corpora and shared tasks.

• A3 (20 mins). Argument in dialogue – Infer-
ence Anchoring Theory – reported speech –
complex and implicit speech acts.

• A4 (30 mins). Practical session: Analysing
natural argument.

Break

Part B: Applications

• B1 (20 mins). Simple machine learning. IOB
schema for segmentation – classifiers for arg-
nonarg – classifiers for premise-conclusion.

• B2 (20 mins). Advanced machine learn-
ing. Word embeddings for argumentation
schemes – BiLSTM models for argumenta-
tion sequence patterns.

• B3 (20 mins). Hybrid approaches. Argu-
ment structure parsing – illocutionary struc-
ture parsing – dialogical priors.

• B4 (30 mins). Practical session: Argument
mining in R.
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All materials will be made available at a
dedicated tutorial website as they were for our
ACL2016, IJCAI 2016 and ESSLLI 2017 tutori-
als.

This website will be located at
http://arg.tech/acl2019tut.

4 Prerequisites

The tutorial is intended to be accessible to most
ACL attendees, so has straightforward prerequi-
sites:

• Basic familiarity with supervised machine
learning techniques and the way they are em-
ployed and assessed

• Experience of using R will be an advantage,
but is not required, for practical session B4.

Attendees are expected to have or to be working
towards a PhD in computational linguistics or a
closely cognate area, but no previous experience
of academic investigation of argument is expected.

5 Tutors

Katarzyna Budzynska (Computational
Ethos Lab, Polish Academy of Sci-
ences, budzynska.argdiap@gmail.com,
www.computationalethos.org).
Katarzyna is an associate professor in phi-
losophy at the National Polish Academy of
Sciences and an associate professor in com-
puting at the University of Dundee (UK). Her
work focuses on communication structures of
argumentation, dialogue and ethos. She has
published two books and over 80 peer-reviewed
papers including articles in journals such as
Artificial Intelligence, Association for Computing
Machinery (ACM TOIT) and Synthese. Katarzyna
founded a national movement, the Polish School
of Argumentation, and sits in the steering commit-
tees of a new initiative, the European Conference
on Argumentation (ecargument.org), and
the ArgDiaP Association for Argumentation,
Dialogue and Persuasion (argdiap.pl). Most
recently, she established her research group –
the Computational Ethos Lab which develops
innovative technologies to process the use of
ethos in natural language in order to predict the
results of presidential elections, detect trolls and
cyber-bullies in social media, and uncover poten-
tial terrorist threats. With Villata, she delivered

a tutorial on Argument Mining at IJCAI 2016,
and with Reed an extensive week-long course
at the 29th European Summer School in Logic,
Language, and Information (ESSLLI2017).

Chris Reed (Centre for Argument Technology,
University of Dundee, c.a.reed@dundee.ac.uk,
www.arg.tech). Chris is Full Professor of
Computer Science and Philosophy at the Univer-
sity of Dundee, where he heads the Centre for Ar-
gument Technology. Chris has been working at
the overlap between argumentation theory and ar-
tificial intelligence for over twenty years, has won
over £6m of funding from government and com-
mercial sources and has over 200 peer-reviewed
papers in the area (including papers in ACL, COL-
ING, IJCAI, ECAI and AAAI) and five books.
He has also been instrumental in the development
of the Argument Interchange Format, an interna-
tional standard for computational work in the area;
he is spear-heading the major engineering effort
behind the Argument Web; and he was a found-
ing editor of the Journal of Argument & Compu-
tation. He was co-organiser of COMMA 2014, of
the first ACL workshop on Argumentation Mining
in 2014, was the chair of the third workshop on
Argument Mining with ACL in 2016, and has re-
cently won funding for a £1m project on the topic
in collaboration with IBM. With Gurevych, Stein
and Slonim, he delivered a tutorial on Argument
Mining at ACL 2016 which was extremely well
attended, and followed that with a course at ESS-
LLI 2017 with Budzynska.
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1 Goal of the Tutorial

In this tutorial, we wish to cover the foundational,
methodological, and system development aspects
of translating structured data (such as data in tab-
ular form) and knowledge bases (such as knowl-
edge graphs) into natural language. The attendees
of the tutorial will be able to take away from this
tutorial, (1) the basic ideas around how modern
NLP and NLG techniques could be applied to de-
scribe and summarize textual data in format that is
non-linguistic in nature or has some structure, and
(2) a few interesting open-ended questions, which
could lead to significant research contributions in
future.

The tutorial aims to convey challenges and nu-
ances in translation structured data into natural
language forms, data representation techniques,
and domain adaptable solutions. Various solu-
tions, starting from traditional rule based/heuristic
driven and modern data-driven and ultra-modern
deep-neural style architectures will be discussed,
and will be followed by a brief discussion on eval-
uation and quality estimation. A significant por-
tion of the tutorial will be dedicated towards unsu-
pervised, scalable, and adaptable solutions, given
that systems for such an important task will never
naturally enjoy sustainable large scale domain in-
dependent labeled (parallel) data.

2 Tutorial Overview

Natural Language Generation (NLG) has under-
gone significant advancement in the recent past,
and various NLG systems are being used for ei-
ther data-to-text tasks (e.g. generating financial
reports from tables, generating weather reports) or
text-to-text tasks (e.g. summarizing news reports,
text-style transfer).

Structured data and knowledge bases or knowl-
edge graphs are a key machine representation
mechanism used in a wide variety of domains to
capture domain-specific knowledge. For exam-
ple, 1) the financial performance of companies

and industries in financial domain, or 2) informa-
tion about chemical composition of drugs, patient
records, etc. in healthcare domain, or 3) inventory
records of products and their features in retail, are
all captured with domain-specific KGs/KBs. For
AI driven interaction applications, often times it is
important to communicate the content being rep-
resented in such knowledge bases in the form of
natural language (such as English). Take an ex-
ample in question-answering setting in Financial
domain where a question:

“How did XYZ corp. perform compared to its
competitors in North America in last 2 quarters?”
would query a DB/KG and retrieves a result set ta-
ble containing the relevant financial performance
numbers about revenues, profit margin, competi-
tors, technology segments, quarterly breakdown,
etc.. However, it is not just sufficient for an AI
system to simply display such a table of numbers,
but rather, go one step further and explain in plain
natural language the key message that addresses
the user’s question, for example, by saying,

“In the N.A. region, XYZ Corp’s revenues in the
Cloud segment increased by 11% to $8.9B in the
last 2 quarters as compared to its key competitor
Microsoft. However, in the Analytics segment its
revenues declined by 3% while Microsoft revenues
grew by 4% and that of other smaller players in
Analytics increased much more (around 8%).”

Another important use-case is story-telling from
data such as report generation – for example in
weather domain (localized weather reports), fi-
nance (company performance reports) or health-
care (patient reports).

Motivated by above, this first-of-its kind tutorial
intends to provide the conceptual underpinnings of
the natural language generation (NLG) from a va-
riety of structured representations. We will discuss
various NLG paradigms ranging from heuristics
to the modern data-driven techniques that include
end-to-end neural architectures. A brief overview
of evaluation methods and output quality estima-
tion techniques will also be provided.
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3 Type of the tutorial

Cutting-edge : We believe this topic picked up
steam in the recent years given the deluge of pa-
pers regarding data-to-text. To the best of our
knowledge, this topic has not been covered in any
ACL/EMNLP-IJCNLP/NAACL tutorial.

4 Content of the Tutorial

We plan to organize a three-hour tutorial based on
the following content. We will make efforts to
make the tutorial interactive by having quizzes at
regular intervals and also we hope to accommo-
date questions in between:

4.1 PART-I

1. Introduction to NLG from Structured data
and Knowledge Bases (20 mins)

• Data-to-text and text-to-text paradigms
• Motivation: Why is this problem is im-

portant
• Challenges in structured data transla-

tion: Why known text-to-text methods
can not be applied to this problem?
• Roadmap of the tutorial

2. Heuristic Driven Methods (20 mins)

• Rule-based approaches
• Template-based approaches
• Current industry solutions
• Shortcomings of this paradigm

3. Statistical and Neural Methods (30 mins)

• Probabilistic Generation Models
• Context-free Grammar based Ap-

proaches
• Three-phase Approach : Planning, Se-

lection and Surface Realization
• End-to-end Encoder Decoder Paradigm
• seq2seq approaches with attention

4. Evaluation Methods for NLG (10 mins)

• N-gram based methods : BLEU,
ROUGE
• Document similarity based methods
• Task-specific evaluation
• Human evaluation metrics

4.2 PART-II

1. Hybrid Methods - More adaptable (20
mins)

• Structured data input formats
• Canonicalization
• Simple Language Generation
• Ranking of simple sentences
• Sentence Compounding
• Coreference Replacement

2. Role of Semantics and Pragmatics (15
mins)

• Role of Knowledge Graphs
• Domain-specific ontologies
• Reasoning and Inference in Generation

3. Open Problems and Future Directions (20
mins)

• Structure-aware Generation
• Theme/Topic based Generation
• Argumentative Text Generation
• Controllable Text Generation
• Creative Text Generation

4. Conclusion and Closing Remarks (15
mins)

Below we provide a bit more details about each of
the above proposed sections to be covered in this
tutorial.

Introduction to NLG from Structured data
and Knowledge Bases: According to (Nema
et al., 2018), the approaches for NLG range from
(i) rule based approaches (ii) modular statistical
approaches which divide the process into three
phases (planning, selection and surface realiza-
tion) and use data driven approaches for one or
more of these phases (iii) hybrid approaches which
rely on a combination of handcrafted rules and
corpus statistics and (iv) the more recent neu-
ral network based models. Recent availability of
large-scale parallel datasets like WIKIBIO (Lebret
et al., 2016), WEBNLG (Gardent et al., 2017)
have been like a catalyst for the recent research in
NLG from structured data using data-driven neural
models. However, modern NLG still faces chal-
lenges in various phases of content selection, sur-
face realization and evaluation, as pointed out by
Wiseman et al. (2017).
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Heuristic Driven Methods: This paradigm
was followed by early research in NLP and NLG
(e.g., (Dale et al., 2003; Reiter et al., 2005; Green,
2006; Galanis and Androutsopoulos, 2007; Turner
et al., 2010)). They range from rule-based tech-
niques to template-based techniques. Often these
approaches involve choosing the right set of rules
or retrieving the appropriate template for the gen-
eration task. Many popular industry solutions like
Arria NLG1 and Automated Insights2 also follow
this approach. As evident, there can only be a
limited number of cases which can be handled by
rules or that templates can cover. Hence, this ap-
proaches are not scalable or adaptable, paving the
way for statistical approaches.

Statistical and Neural Methods: These ap-
proaches were formulated to alleviate some lim-
itations of the earlier approaches. Some notable
approaches are based on probabilistic language
generation process (Angeli et al., 2010), context-
free grammar based generation (Konstas and Lap-
ata, 2012) and others (Barzilay and Lapata, 2005;
Belz, 2008; Kim and Mooney, 2010). They pop-
ularized the three-phase paradigm by breaking
the problem into three phases, namely, content
planning, content selection and surface realiza-
tion. The more recent neural approaches follow-
ing the encoder-decoder paradigm, however, have
tried to circumvent the three-phase approach by
using a single-phase end-to-end architecture. This
was mainly popularized by the advent of attention
mechanism for seq2seq (Bahdanau et al., 2014),
later followed by many (Mei et al., 2016; Lebret
et al., 2016; Nema et al., 2018; Jain et al., 2018;
Bao et al., 2018). However, these approaches are
data-hungry and perform miserably on datasets
from unseen domains (Gardent et al., 2017). Real-
izing this, some of the very recent works in data-
to-text generation such as Wiseman et al. (2018)
have focused on learning templates from corpora
for neural NLG.

Evaluation Methods for NLG: Alongside
discussion of methods for automatic genera-
tion of natural language, it is much needed to
acquaint the participants about automatic evalu-
ation metrics like BLEU(Papineni et al., 2002),
ROUGE(Ganesan, 2018), METEOR(Banerjee
and Lavie, 2005), among many others. Often, a
different kind of evaluation is needed to measure

1https://www.arria.com/
2https://automatedinsights.com/

the semantic relatedness which the above N-gram
overlap based metrics may not always capture.
In addition, for various NLG tasks, specialized
metrics have been proposed like FleschKincaid
for readability and SARI (Xu et al., 2016) for text
simplification. However, the automatic metrics
are not always enough to capture nuances like
fluency, adequacy, coherence and correctness,
which many NLG systems fallback on humans for
evaluation.

Hybrid Methods: Some earlier approaches
like (Langkilde and Knight, 1998; Soricut and
Marcu, 2006; Mairesse and Walker, 2011) try to
follow a combination of rules and corpus statis-
tics to overcome the above shortcomings. In this
portion of the tutorial, we are going to present a
hybrid modular approach developed by us which
can be broken down into three simple steps: (1)
Canonicalization, (2) Simple Language Genera-
tion, and (3) Discourse synthesis and Language
Enrichment. This has been developed in a domain-
agnostic way without the need for any parallel cor-
pora to train. This is not very data dependent and
adaptable to various unseen domains as the gen-
eration steps are mostly restricted to linguistic as-
pects. We believe this is how the data-to-text gen-
eration research should progress.

Role of Semantics and Pragmatics: In this
section we point out shortcomings of the above ap-
proaches which consider only surface-level char-
acteristics for generation. Through this we mo-
tivate the necessity of knowledge graphs and
domain-specific ontologies to understand the con-
cepts present in structured data and assist the gen-
eration step through a deeper understanding. In
this section, we will present a unification of litera-
ture from knowledge graphs area, like entity reso-
lution, relation canonicalization, etc., KG embed-
dings as well as heuristics which encode domain-
specific pragmatics coupled with NLG to infer and
produce higher-level and more complex natural
language discourse.

Open Problems and Future Directions: This
part will focus on various aspects of natural lan-
guage generation which are far from being real-
ized. The presenters will get highly creative and
also borrow connections from some recent trends
(Jain et al., 2017; Munigala et al., 2018; Hu et al.,
2017; Jain et al., 2019) in NLG literature to formu-
late future directions for automatic text generation.
The goal of this section is not only to motivate and
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convey open research problems, but mainly to start
a discussion paving the way for newer problems in
the area.

Conclusion and Closing Remarks: We close
with discussions about all approaches and some
practical (as well as funny) observations for prac-
tical NLG realizations.

5 URLs

Slides: https://drive.google.
com/open?id=1HaGCNc6n_
sjyGLdaGzAVPvAeT0ZhhL3Q
Website: https://sites.google.com/
view/acl-19-nlg

6 Breadth

This tutorial has more than 60% material which
are not research outputs of the presenters. Thus
majority of the material covered is discussion of
the work done by other researchers.

7 Prerequisite Knowledge

We would like to ensure that the tutorial is self-
contained. We do not assume any specific exper-
tise from the audience. However, general aware-
ness about Natural Language Processing and Ma-
chine Learning, and Deep Learning methods (such
as Recurrent Neural Network, and Sequence-to-
Sequence models) will be helpful.

8 Presenter Details

Abhijit Mishra
(https://abhijitmishra.github.io)
is currently a part of IBM Research AI, Banga-
lore, India, serving as Research Scientist in the
division of AI-Tech. He is involved in multiple
projects based on Natural Language Generation
(NLG), viz. (1) Controllable Text Transformation
(2) Structured Data Summarization, and (3)
Devising evaluation metrics for quality estimation
of NLG Output. Prior to joining IBM Research,
he was a Ph.D. student in the Department of
Computer Science and Engineering, Indian
Institute of Technology Bombay (graduated in
2017). Since 2013, Abhijit’s works have been
consistently getting published in the proceedings
of prestigious NLP/AI conferences such as ACL,
AAAI, and WWW. He has also given multiple
talks in Cognitive NLP, and Natural Language
Understanding and Generation. The full list of his
publications and talks are available in his website.

Anirban Laha
(https://anirbanl.github.io/)
is currently associated with the AI Tech group at
IBM Research AI - India. He is interested in appli-
cations of machine learning/deep learning in nat-
ural language processing. He has been working
in natural language generation (NLG) project in
IBM for the last two years and has published pa-
pers on abstractive summarization both from un-
structured and structured data in top conferences
like NeurIPS, ACL and NAACL. At IBM, he
has also worked on argumentation mining (IBM
Project Debater3), which received news coverage
worldwide recently because of a live machine vs
human debate4. He was also briefly associated
with machine learning for creativity project at
IBM (SIGKDD workshop5), during which he has
worked on story generation. Before joining IBM,
he had spent some time as Applied Scientist in Mi-
crosoft and SDE at Amazon.com. He had received
his MS degree from Indian Institute of Science
(IISc), Bangalore. He had given talks on NLG,
particularly NLG from structured data in multiple
venues. The full list of his publications and talks
are available in his website.

Karthik Sankaranarayanan
(http://bit.do/gscholar-karthik)
is a Senior Research Scientist and Research Man-
ager working in the area of Artificial Intelligence
at IBM’s India Research Lab in Bangalore. He is
currently leading research projects focused around
Natural Language Generation (NLG), question-
answering (QA), multimodal deep learning, and
information retrieval from domain-specific knowl-
edge graphs (NLQ) as part of IBM Watson. He has
also managed efforts around argumentation min-
ing (IBM Project Debater3), which received news
coverage worldwide recently because of a live ma-
chine vs human debate4. He has published in flag-
ship AI and knowledge management conferences
and journals such as NeurIPS, CVPR, AAAI, IJ-
CAI, ACL, NAACL, Machine Learning Journal,
KDD, SIGMOD, VLDB, among others. He is an
active PC member at several top academic confer-
ences in AI. His innovations have resulted in more
than 30 patents around applications of AI to in-
dustry problems. He is a Senior Member of IEEE.
Before joining IBM Research in 2011, he obtained

3http://bit.do/ibm-project-debater
4http://bit.do/theverge-debater
5https://ml4creativity.mybluemix.net/
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his PhD in Computer Science from The Ohio State
University. Recently, he was the lead organizer
of “Machine Learning for Creativity” workshop5

at SIGKDD 2017, held at Halifax, Canada which
was co-organized by IBM, Google Brain, Sony
CSL. This workshop was attended by around 50
researchers from academia as well as industry and
featured keynote talks by faculty from Harvard,
MIT, amongst other notable researchers.

Parag Jain
(https://parajain.github.io/)
is currently working as a Research Engineer in
IBM India Research Lab. At IBM he has been
working in natural language generation (NLG)
and has published papers on summarization from
tabular data in top NLP conference like NAACL-
HLT. He has also briefly worked on ontology
driven dialog systems focusing on template based
natural language generation from structured out-
puts. Recently, he has also published on Unsu-
pervised Controllable Text Formalization in AAAI
2019. Parag completed his Masters in Computer
Science from IIT Hyderabad in 2015. His M.Tech
thesis was titled “Metric Learning for Clustering
in Streaming Large-Scale Data”. Prior to joining
IBM, he has worked at Amazon.com as an SDE
for a year. His website has all details about his
publications.

Saravanan Krishnan
(http://bit.do/linkedin-saravanan)
is currently associated with the AI Tech group at
IBM Research AI India since 2014. He is inter-
ested in natural language processing generation,
mono and cross lingual information retrieval, in-
formation extraction, data mining and applications
of machine learning. He has been working in natu-
ral language generation (NLG) project in IBM for
the last two years focusing on research-oriented
solutions for industrial deployments. Earlier at
IBM, he was part of information retrieval group in
IBM Project Debater3, which received news cov-
erage worldwide recently because of a live ma-
chine vs human debate4. Before joining IBM,
he was at Microsoft Research India as Software
Development Engineer for 6 years and at Anna
University, Chennai as Project Associate for five
years. He has published many papers in confer-
ences (LREC, CIKM, ECIR, EACL) and journals
(AJIT, LNCS) in the past 15 years of his research
career. His LinkedIn profile has more details.
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