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Abstract

We introduce Texar, an open-source toolkit
aiming to support the broad set of text genera-
tion tasks that transform any inputs into natural
language, such as machine translation, sum-
marization, dialog, content manipulation, and
so forth. With the design goals of modularity,
versatility, and extensibility in mind, Texar ex-
tracts common patterns underlying the diverse
tasks and methodologies, creates a library of
highly reusable modules and functionalities,
and allows arbitrary model architectures and
algorithmic paradigms. In Texar, model archi-
tecture, inference, and learning processes are
properly decomposed. Modules at a high con-
cept level can be freely assembled or plugged
in/swapped out. Texar is thus particularly suit-
able for researchers and practitioners to do
fast prototyping and experimentation. The
versatile toolkit also fosters technique sharing
across different text generation tasks. Texar
supports both TensorFlow and PyTorch, and is
released under Apache License 2.0 at https:
//www.texar.io.1

1 Introduction

Text generation spans a broad set of natural lan-
guage processing tasks that aim to generate nat-
ural language from input data or machine repre-
sentations. Such tasks include machine transla-
tion (Brown et al., 1990; Bahdanau et al., 2014),
dialog systems (Williams and Young, 2007; Ser-
ban et al., 2016; Tang et al., 2019), text summa-
rization (Hovy and Lin, 1998), text paraphrasing
and manipulation (Madnani and Dorr, 2010; Hu
et al., 2017; Lin et al., 2019), and more. Recent
years have seen rapid progress of this active area,
in part due to the integration of modern deep learn-
ing approaches in many of the tasks. On the other
hand, considerable research efforts are still needed

1An expanded version of the tech report can be found at
https://arxiv.org/abs/1809.00794

in order to improve techniques and enable real-
world applications.

A few remarkable open-source toolkits have
been developed (section 2) which largely focus on
one or a few specific tasks or algorithms. Emerg-
ing new applications and approaches instead are
often developed by individual teams in a more ad-
hoc manner, which can easily result in hard-to-
maintain custom code and duplicated efforts.

The variety of text generation tasks indeed have
many common properties and share a set of key
underlying techniques, such as neural encoder-
decoders (Sutskever et al., 2014), attentions (Bah-
danau et al., 2014; Luong et al., 2015; Vaswani
et al., 2017), memory networks (Sukhbaatar et al.,
2015), adversarial methods (Goodfellow et al.,
2014; Lamb et al., 2016), reinforcement learn-
ing (Ranzato et al., 2015; Tan et al., 2018), struc-
tured supervision (Hu et al., 2018; Yang et al.,
2018), as well as optimization techniques, data
pre-processing and result post-processing, evalu-
ations, etc. These techniques are often combined
together in various ways to tackle different prob-
lems. Figure 1 summarizes examples of various
model architectures.

It is therefore highly desirable to have an open-
source platform that unifies the development of the
diverse yet closely-related applications, backed
with clean and consistent implementations of the
core algorithms. Such a platform would enable
reuse of common components; standardize de-
sign, implementation, and experimentation; foster
reproducibility; and importantly, encourage tech-
nique sharing among tasks so that an algorithmic
advance developed for a specific task can quickly
be evaluated and generalized to many others.

We introduce Texar, a general-purpose text gen-
eration toolkit aiming to support popular and
emerging applications in the field, by provid-
ing researchers and practitioners a unified and

https://www.texar.io
https://www.texar.io
https://arxiv.org/abs/1809.00794
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Figure 1: Examples of model architectures in recent text generation literatures (E: encoder, D: decoder, C: clas-
sifier). (a): The canonical encoder-decoder, sometimes with attentions A (Sutskever et al., 2014; Bahdanau
et al., 2014; Vaswani et al., 2017) or copy mechanisms (Gu et al., 2016; Vinyals et al., 2015). (b): Variational
encoder-decoder (Bowman et al., 2015). (c): Augmenting with external memory (Sukhbaatar et al., 2015). (d):
Adversarial model using a binary discriminator C, w/ or w/o reinforcement learning (Zhang et al., 2017; Yu et al.,
2017). (e): Multi-task learning with multiple encoders/decoders (Luong et al., 2016). (f): Augmenting with
cyclic loss (Hu et al., 2017). (g): Adversarial alignment, either on samples y or hidden states (Lamb et al., 2016).

flexible framework for building their models.
Texar has two versions, building upon TensorFlow
(tensorflow.org) and PyTorch (pytorch.
org), respectively, with the same uniform design.

Underlying the core of Texar’s design is prin-
cipled anatomy of extensive text generation mod-
els and learning algorithms, which subsumes the
diverse cases in Figures 1 and beyond, enabling
a unified formulation and consistent implementa-
tion. Texar emphasizes three key properties:
Versatility. Texar contains a wide range of
features and functionalities for 1) arbitrary model
architectures as a combination of encoders, de-
coders, embedders, discriminators, memories, and
many other modules; and 2) different model-
ing and learning paradigms such as sequence-to-
sequence, probabilistic models, adversarial meth-
ods, and reinforcement learning. Based on these,
both workhorse and cutting-edge solutions to the
broad spectrum of text generation tasks are either
already included or can be easily constructed.
Modularity. Users can construct models at a
high conceptual level just like assembling build-
ing blocks. It is convenient to plug in or swap
out modules, configure rich module options, or
even switch between distinct modeling paradigms.
For example, switching from adversarial learning
to reinforcement learning involves only minimal
code changes (e.g., Figure 4). Modularity makes
Texar particularly suitable for fast prototyping and
experimentation.
Extensibility. The toolkit provides interfaces
ranging from simple configuration files to full li-
brary APIs. Users of different needs and expertise
are free to choose different interfaces for appro-
priate programmability and internal accessibility.
The library APIs are fully compatible with the na-

tive TensorFlow/PyTorch interfaces, which allows
seamless integration of user-customized modules,
and enables the toolkit to take advantage of the vi-
brant open-source community by effortlessly im-
porting any external components as needed.

Furthermore, Texar emphasizes on well-
structured code, clean documentation, rich tutorial
examples, and distributed GPU training.

2 Related Work

There exist several toolkits that focus on one or
a few specific tasks. For neural machine transla-
tion and alike, there are Tensor2Tensor (Vaswani
et al., 2018) on TensorFlow, OpenNMT (Klein
et al., 2017) on PyTorch, Nematus (Sennrich
et al., 2017) on Theano, MarianNMT (Junczys-
Dowmunt et al., 2018) on C++, etc. ParlAI (Miller
et al., 2017) is a specialized platform for dialogue.
Differing from the task-focusing tools, Texar aims
to cover as many text generation tasks as possible.
The goal of versatility poses unique design chal-
lenges.

On the other end of the spectrum, there are
libraries for more general NLP or ML applica-
tions: AllenNLP (allennlp.org), GluonNLP
(gluon-nlp.mxnet.io) and others are de-
signed for the broad NLP tasks in general, while
Keras (keras.io) is for high conceptual-level
programming without specific task focuses. In
comparison, Texar has a proper focus on the text
generation sub-area, and provide a comprehensive
set of modules and functionalities that are well-
tailored and readily-usable for relevant tasks. For
example, Texar provides rich text docoder
with optimized interfaces to support over ten de-
coding methods (see section 3.3 for an example).

tensorflow.org
pytorch.org
pytorch.org
allennlp.org
gluon-nlp.mxnet.io
keras.io
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Figure 2: Left: The stack of main modules and functionalities in Texar. Right: The learning-inference-architecture
anatomy, taking decoder for example. A sequence decoder can have an arbitrary architecture; all architectures
expose uniform interfaces for specifying one of the tens of inference (decoding) strategies to generate samples or
infer probabilities; a learning procedure repeated calls specified inference procedure during training.

3 Structure and Design

Figure 2, left panel, shows the stack of main mod-
ules and functionalities in Texar. In the following,
we first present the design principles (sec 3.1) of
the toolkit, and then describe the detailed structure
of Texar with running examples to demonstrate the
key properties (sec 3.2-3.4).

3.1 The Design of Texar

Designing a versatile toolkit is challenging due to
the large variety of text generation tasks and fast-
growing new models. We tackle the challenges
by adopting principled anatomy of the modeling
and experimentation pipeline. Specifically, we
break down the complexity of rich tasks into three
dimensions of variations, namely, varying data
types/formats, arbitrary combinational model ar-
chitectures and inference procedures, and diverse
learning algorithms. Within the unified abstrac-
tion, all learning paradigms are each specifying
one or multiple loss functions (e.g., cross-entropy
loss, policy gradient loss), along with an optimiza-
tion procedure that improves the losses:

minθ L(fθ, D) (1)

where fθ is the model that defines the model archi-
tecture and the inference procedure; D is the data;
L is the learning objectives (losses); and min de-
notes the optimization procedure. Note that the
above can have multiple losses imposed on differ-
ent model parts (e.g., adversarial learning).

Further, as illustrated in Figure 2 right panel,
we decouple learning, inference, and model archi-
tecture, forming abstraction layers of learning –
inference – architecture. That is, different ar-
chitectures implement the same set of inference

procedures and provide the same interfaces, so
that learning algorithms can call proper inference
procedures as subroutines while staying agnos-
tic to the underlying architecture and implemen-
tation details. For example, maximum likelihood
learning uses teacher-forcing decoding (Mikolov
et al., 2010); a policy gradient algorithm can in-
voke stochastic or greedy decoding (Ranzato et al.,
2015); and adversarial learning can use either
stochastic decoding for policy gradient-based up-
dates (Yu et al., 2017) or Gumbel-softmax repa-
rameterized decoding (Jang et al., 2016) for direct
gradient back-propagation. Users can switch be-
tween different learning algorithms for the same
model, by simply specifying the corresponding in-
ference strategy and plugging into a new learning
module, without adapting the model architecture
(see section 3.3 for a running example).

3.2 Assemble Arbitrary Model Architectures

We develop an extensive set of frequently-used
modules (e.g., various encoders, decoders,
embedders, classifiers, etc). Crucially,
Texar allows free concatenation between these
modules in order to assemble arbitrary model ar-
chitectures. Such concatenation can be done by
directly interfacing two modules, or through an
intermediate connector module that provides
general functionalities of reshaping, reparameteri-
zation, sampling, and others.

Besides the flexibility of arbitrary assembling,
it is critical for the toolkit to provide proper ab-
stractions to relieve users from overly concerning
low-level implementations. Texar provides two
major types of user interfaces with different ab-
stract levels, i.e., YAML configuration files and
full Python library APIs. Figure 3 shows an exam-
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 1 # Read data 

2 dataset = PairedTextData(data_hparams) 
3 batch = DataIterator(dataset).get_next() 
4  
5 # Encode 
6 embedder = WordEmbedder(dataset.vocab.size, hparams=embedder_hparams) 
7 encoder = TransformerEncoder(hparams=encoder_hparams) 
8 enc_outputs = encoder(embedder(batch['source_text_ids']),  
9                      batch['source_length']) 

10  
11 # Decode 
12 decoder = AttentionRNNDecoder(memory=enc_outputs, 
13                               hparams=decoder_hparams) 
14 outputs, length, _ = decoder(inputs=embedder(batch['target_text_ids']), 
15                           seq_length=batch['target_length']-1) 
16  
17 # Loss 
18 loss = sequence_sparse_softmax_cross_entropy( 
19   labels=batch['target_text_ids'][:,1:], logits=outputs.logits, seq_length=length) 
20  

1 source_embedder: WordEmbedder 
2 source_embedder_hparams: 
3   dim: 300 
4 encoder: UnidirectionalRNNEncoder 
5 encoder_hparams: 
6   rnn_cell: 
7     type: BasicLSTMCell 
8     kwargs: 
9       num_units: 300 

10     num_layers: 1 
11     dropout: 
12       output_dropout: 0.5 
13       variational_recurrent: True 
14 embedder_share: True 
15 decoder: AttentionRNNDecoder 
16 decoder_hparams: 
17   attention: 
18     type: LuongAttention 
19 beam_search_width: 5 
20 optimization: … 

 
 Figure 3: Two ways of specifying an attentional encoder-decoder model. Left: Part of an example YAML config

file of the model template. Hyperparameters taking default values can be omitted in the file. Right: Python code
assembling an encoder-decoder model using library APIs. Modules are created as Python objects, and called as
functions to create computation operations and return output tensors. Other code such as optimization is omitted.

ple of specifying an attentional encoder-decoder
model through the two interfaces, respectively.

Configuration file passes hyperparameters to
a predefined model template, which instantiates
the model for training and evaluation. Text high-
lighted in blue in the figure (left panel) specifies
the names of modules to use. Most hyperparame-
ters have sensible default values. Users only have
to specify hyperparameter values that differ from
the default. The interface is easily understandable
for non-expert users, and has also been adopted in
other tools (e.g., Klein et al., 2017).

Library APIs offer clean function calls. Users
can efficiently build any desired pipelines at a high
conceptual level. Power users have the option to
access the full internal states for low-level manip-
ulations. Texar modules support convenient vari-
able re-use. That is, each module instance creates
its own sets of variables, and automatically re-uses
them on subsequent calls. Hence TensorFlow vari-
able scope is transparent to users.

3.3 Plug-in and Swap-out Modules

It is convenient to change from one model-
ing paradigm to another by simply plugging
in/swapping out a single or few modules, or even
merely changing a configuration parameter. For
example, given the base code of an encoder-
decoder model in Figure 3 (right panel), Figure 4
illustrates how one can switch between different
learning paradigms by changing only Lines.14–19
of the original code (maximum-likelihood learn-

ing). In particular, Figure 4 shows adversar-
ial learning and reinforcement learning, which
invokes Gumbel-softmax decoding and random-
sample decoding, respectively.

3.4 Customize with Extensible Interfaces

Texar emphasizes on extensibility and allows easy
addition of customized/external modules without
editing the Texar codebase. Specifically, with the
YAML configuration file, users can directly in-
sert their own modules by providing the Python
importing path to the module. For example,
to use a customized RNN cell in the encoder,
one can simply change Line.7 of Figure 3 (left
panel) to type: path.to.MyCell, as long as
MyCell has a compatible interface to other parts
of the model. Using customized modules with the
library APIs is even more flexible, since the APIs
are designed to be fully compatible with native
TensorFlow/PyTorch programming interfaces.

4 Case Study: Transformer on Different
Tasks

We present a case study to show that Texar can
greatly reduce implementation efforts and enable
technique sharing among different tasks. Trans-
former, as first introduced in (Vaswani et al.,
2017), has greatly improved the machine transla-
tion results and created other successful models
such as BERT for text embedding (Devlin et al.,
2019) and GPT-2 for language modeling (Radford
et al., 2018). Texar supports easy construction of
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helper = GumbelSoftmaxTrainingHelper(       # Gumbel-softmax decoding
start_tokens=[BOS]*batch_size, end_token=EOS, embedding=embedder)

outputs, _, _ = decoder(helper=helper)

discriminator = Conv1DClassifier(hparams=conv_hparams)

G_loss, D_loss = binary_adversarial_losses(
embedder(batch[‘target_text_ids’][:, 1:]),
embedder(soft_ids=softmax(outputs.logits)),
discriminator)

outputs, length, _ = decoder(                 # Random sample decoding
start_tokens=[BOS]*batch_size, end_token=EOS,
embedding=embedder, decoding_strategy=‘infer_sample')

agent = SeqPGAgent(
samples=outputs.sample_id, logits=outputs.logits, seq_length=length)

for _ in range(STEPS):
samples = agent.get_samples()
rewards = BLEU(batch[‘target_text_ids’], samples)
agent.observe(rewards) # Train the policy (decoder)

(a) Adversarial learning

(b) Reinforcement learning

Figure 4: Switching between different learning paradigms of a decoder involves only modification of Line.14-19 of
Figure 3 (maximum-likelihood learning). The same decoder is called with different decoding modes, and discrim-
inator or reinforcement learning agent is added as needed. (Left): Module structure of each paradigm; (Right):
The respective code snippets. For adversarial learning in (b), continuous Gumbel-softmax approximation (Jang
et al., 2016) to generated samples is used to enable gradient propagation from the discriminator to the decoder.

these models and fine-tuning pretrained weights.
We can also deploy the Transformer components
to various other tasks and get improved results.

The first task we explored is the variational
autoencoder (VAE) language modeling (Bowman
et al., 2015). We test two models, one with an
LSTM RNN decoder which is traditionally used
in the task, and the other with a Transformer de-
coder. All other model configurations including
parameter size are the same across the two mod-
els. Table 1, top panel, shows the Transformer
VAE consistently improves over the LSTM VAE.
With Texar, changing the decoder from an LSTM
to a Transformer is easily achieved by modifying
only 3 lines of code. It is also worth noting that,
building the VAE language model (including data
reading, model construction, and optimization) on
Texar uses only 70 lines of code (with the length
of each line < 80 chars). As a (rough) reference, a
popular public TensorFlow code (Li, 2017) of the
same model has used around 400 lines of code for
the same part (without line length limit).

The second task is conversation genera-
tion. The dialog history is encoded with the
HierarchicalRNNEncoder module which is
followed by a decoder to generate the response.
We study the performance of a Transformer de-
coder v.s. a conventional GRU RNN decoder. Ta-
ble 1, bottom panel, shows the Transformer out-
performs GRU. Regarding the implementation ef-
fort, the Texar code has around 100 lines of code,
while the reference TensorFlow code (Zhao et al.,
2017) involves over 600 lines.

Dataset Metrics VAE-LSTM VAE-Tran

Yahoo PPL 68.31 61.26
(Yang et al.) NLL 337.36 328.67

PTB PPL 105.27 102.46
(Bowman et al.) NLL 102.06 101.46

Dataset Metrics HERD-GRU HERD-Tran

Switchboard BLEU4-p 0.228 0.232
(Zhao et al.) BLEU4-r 0.205 0.214

Table 1: Top: Transformer vs LSTM for VAE LM.
Perplexity (PPL) and sentence negative log likelihood
(NLL) are evaluated (The lower the better). Bottom:
Transformer vs GRU decoders in HERD (Serban et al.,
2016) for conversation response generation. BLEU4-p
and -r are precision and recall (Zhao et al., 2017).
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