
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 49–57
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

49

An adaptable task-oriented dialog system for stand-alone embedded
devices

Long Duong, Vu Cong Duy Hoang, Tuyen Quang Pham, Yu-Heng Hong,
Vladislavs Dovgalecs, Guy Bashkansky, Jason Black,
Andrew Bleeker, Serge Le Huitouze, Mark Johnson

Oracle Digital Assistant
first.last@oracle.com

Abstract

This paper describes a spoken-language end-
to-end task-oriented dialogue system for small
embedded devices such as home appliances.
While the current system implements a smart
alarm clock with advanced calendar schedul-
ing functionality, the system is designed to
make it easy to port to other application do-
mains (e.g., the dialogue component factors
out domain-specific execution from domain-
general actions such as requesting and updat-
ing slot values). The system does not require
internet connectivity because all components,
including speech recognition, natural language
understanding, dialogue management, execu-
tion and text-to-speech, run locally on the em-
bedded device (our demo uses a Raspberry Pi).
This simplifies deployment, minimizes server
costs and most importantly, eliminates user
privacy risks. The demo video in alarm do-
main is here youtu.be/N3IBMGocvHU.

1 Introduction

Communicating directly using voice is a more nat-
ural way to interact with computer and household
appliances. People already interact with smart ap-
pliances such as microwaves and alarm clocks us-
ing voice control. However, these devices need
to connect to cloud services to process user re-
quests. We focus on building entire task-oriented
dialog applications on cheap edge devices such as
the Raspberry Pi 1 which operate independently
of any internet connection. This approach: a) en-
sures user privacy, b) abolishes server costs, and
c) eliminates network connection latency. Special-
ized neural network chips and generic embedded
CPU devices are becoming significantly cheaper,
making voice interfaces price-competitive with
display-based controllers. Our vision is that in the
next few years, AI-powered devices will be in ap-

1https://www.raspberrypi.org/

pliances throughout everyone’s home. This paper
describes an end-to-end smart alarm clock demo
run offline on a small device as a proof of concept
for our vision. The approach proposed in this pa-
per is general and easily adapted to different lan-
guages and domains.

We describe how we meet the challenges of im-
plementing a complete speech-based task-oriented
dialogue system on a small embedded device with
low memory and computational power. Our de-
sign makes no assumption on the availability of
peripherals such as a display screen or buttons for
user responses. Just as in many cloud-based di-
alogue systems, our system is a pipeline of stan-
dard components, including a wake word detec-
tor, automatic speech recognition (ASR), natu-
ral language understanding (NLU), dialogue man-
ager (includes dialogue state tracker and dialogue
policy, and execution), natural language gener-
ator (NLG) and text-to-speech (TTS). Figure 1
shows the overall organisation of these compo-
nents. ASR converts spoken user requests to text,
which is then fed to NLU components consisting
of a Named Entity Recogniser (NER) and a Se-
mantic Parser. The NLU output is a logical form
(LF1) which encodes the current user request. The
Dialogue State Tracker (DST) integrates LF1 with
the previous dialogue states and dialog acts to pro-
duce an updated dialogue state (LF2). While LF1
only represents a single dialogue turn, LF2 rep-
resents the entire dialogue prior to this point in
time. The domain-specific Execution component
executes LF2, and the results of Execution are re-
turned to Dialog Policy component and also saved
to Context Stack which contains all intermedi-
ate results. The Dialogue Policy uses the execu-
tion results and LF2 to produce a dialogue act re-
sponse (LF3), which is also recorded in the Con-
text Stack. LF3 is used to generate output to the
user which is converted to speech using a Text-To-

50

Speech (TTS).
Given the hardware constraints of embedded

devices, we decided to use rule-based approaches
where possible, and to reserve classifier-based and
deep learning approaches for components such as
the NER and the Semantic Parser, where linguis-
tic variation and construction would be difficult to
capture with hand-written rules. We use a rule-
based Dialogue Manager and a template-based
NLG for this reason. To make it easier to adapt
the system to new domains and languages, the
domain-specific code is concentrated in the ASR,
NER, Semantic Parser, Execution and NLG com-
ponents. The system is implemented in C++11 to
simplify deployment on embedded devices.

2 Logical Forms Design

Information is exchanged between components
using representations that we call Logical Forms
(LFs). A variety of logical forms have been
proposed in the literature, such as lambda.DCS
and the lambda calculus (Zettlemoyer and Collins,
2005). Intent plus slots representations are stan-
dard in many dialog systems, but they cannot ex-
press complicated scenarios involving condition-
als, nested structures, multi-intents and quantifier
scope.

Our LFs are JSON objects2 that we call Topic-
Action Attribute-Value Logical Forms (TAVLFs).
These are attribute-value structures (Johnson,
1988) whose organisation is inspired motivated by
CUED standard dialog acts (Young, 2007).

At the top level, TAVLFs have a bipartite struc-
ture consisting of topic and action attributes. The
topic identifies the primary entities under discus-
sion, while the action specifies what the user re-
quests the system to do with these entities. For
example, the request Move my work out alarm to-
morrow 1 hour earlier is translated to TAVLF:

1 {"topic": { "name": "work out"},
2 "action": { "edit": ‘
3 {"offset_direction": "

earlier",
4 "offset_time": "1 hour"}}}

Here the topic attribute selects calendar entries
that satisfy ”name”:”workout”. The action attribute
specifies what the system should do to the Topic
entities; in this case apply the edit action with ar-
guments offset time and offset direction.

2www.json.org

TAVLFs can express complicated use cases
such as multi-intent requests, nested finds, condi-
tional requests, as well as quantifiers and superla-
tives. The bipartite separation into Topic and Ac-
tion makes it easier to handle follow-up requests,
since it is likely that the next utterance will involve
the previous topic. We explain how we handle
follow-up utterances in more detail in Section 5.
Thus we demonstrate that embedded systems, de-
spite limitations in both memory and computa-
tional power, can handle complicated utterances.

3 Wake Word Detection and Automatic
Speech Recognition

We use similar technology for both Wake Word
detection and ASR. After a wake word is de-
tected, the ASR is activated to convert the follow-
ing speech into text. The user needs to wake the
system for each utterance, except for cases where
the system requests a response from user; e.g., no
wake work is required when system asks for ad-
ditional information. Porting an ASR system to a
small embedded device is challenging. After eval-
uating a variety of approaches we decided to use
a DNN-based acoustic model together with a fast
HMM-based language model decoder. This per-
mits us to easily customise the ASR vocabulary for
a new domain. We developed a customised ver-
sion of Kaldi (Povey et al., 2011) which achieves
real time factor of 0.23 even on a small embedded
device. The ASR also provides a confidence score
based on the HMM posterior probability, which
the Dialog Manager uses to detect likely cases of
ASR failure.

4 Natural Language Understanding

The Natural Language Understanding (NLU)
component translates each utterance into its corre-
sponding logical form (LF1). There are two steps
to this process: Named Entity Recognition (NER)
and seq2seq based Semantic Parsing. First, the
user utterance is NER-tagged and delexicalised
(i.e., named entities are replaced with their named
entity types). The delexicalized utterance forms
the input to the seq2seq semantic parser, which
produces delexicalized logical form. This logical
form is relexicalized (i.e., the named entity types
are replaced with the original named entities) to
produce the output logical form (LF1). Figure 2
shows the NLU pipeline. We use a CRF tagger
based on CRFSuite (Okazaki, 2007) for NER, and

51

ASR NER Semantic
Parser

Dialog
State
Tracker

LF1
prev. dialog state(s) and
prev. dialog act (s)

new dialog state (LF2) Dialog
Policy Execution

LF2

Context
Stack

result(s)

UI Generator

dialog act (LF3)

 Update with LF3

Entity
ResolutionTTS

NLU

NLG

Wake
word

Figure 1: End-to-end embedded dialogue system architecture.

User make my work out alarm 1 hour earlier
NER make my <NAME>work out</NAME>alarm <TIME SPAN>1 hour</TIME SPAN>earlier
Delex make my <NAME>#0 alarm <TIME SPAN>#0 earlier

Seq2seq {”action”:{”edit”:{”offset direction”:”earlier”,”offset time”:”<TIME SPAN>#0”}},
”topic”:{”name”:”<NAME>#0”}}

Relex (LF1) {”action”:{”edit”:{”offset direction”:”earlier”,”offset time”:”1hour”}},
”topic”:{”name”:”work out”}}

Figure 2: The NLU pipeline that maps utterances to Logical Forms (LF1).

employ a deep learning seq2seq model for Seman-
tic Parsing.

4.1 Semantic Parser

Our Semantic Parser is based on the dual-RNN
sequence-to-sequence architecture with attention
originally proposed for neural machine transla-
tion (Bahdanau et al., 2014). We use it to gener-
ate Logical Forms as in Dong and Lapata (2016).
The seq2seq model also generates a log loss con-
fidence score, which the Dialog Policy Manager
uses to detect likely Semantic Parser errors (see
section 5).

It is challenging to fit a seq2seq model into
a small embedded device. We solve this prob-
lem by extensive hyper-parameter tuning using
the successive halving process proposed in Hyper-
band (Li et al., 2016). This approach enables us to
explore a large number of hyper-parameter config-
urations quickly. We randomly generate around a
thousand different configurations, which vary the
source and target cell architectures (e.g. LSTM,
GRU), number of layers, learning rates, drop out
rate and mini batch size. We measure memory us-
age and latency as well as accuracy on the devel-
opment set. We select the hyper-parameter con-

figuration with the highest dev set accuracy that
satisfies our memory constraints and has the ac-
ceptable latency (usually 100 ms/utterance). Mod-
els are trained using Tensorflow on a GPU cluster.
Trained models are quantized and exported to our
C++ runtime.

One of the challenges in building a semantic
parser is obtaining suitable training data. We adapt
and extend the crowd-based “overnight” approach
of Wang et al. (2015) by adding an additional val-
idation task, where other crowd workers validate
the paraphrases from the paraphrase task. We run
the validation task in real-time so we can provide
on-line bonuses or penalties, which dramatically
reduces spam and improves paraphrasing quality.

5 Dialogue Management

Dialogue management is central to any task-
oriented dialog system. It is responsible for Di-
alogue State Tracking, executing the task (Exe-
cution), and determining how to interact with the
user (Dialogue Policy).

5.1 Dialogue State Tracking

The Dialogue State Tracking (DST) component
combines LF1 with information from the dialogue

52

is_follow_up

LF1 (semantic representation by NLU)

- Reset dialogue states
- set LF2 = LF1

No

is_request_entity
- Lookup attributes
- Resolve any ambiguity
- Update the attribute’s values

Yes

is_self_correction Yes

is_update_attribute - Update the attribute’s values
Yes

is_confirmation - Add the confirmation signalsYes

Unknown intent
(for fallback policy)

Yes

No

No

No

No

LF2

LF2

LF2

LF2

LF2

- Look up attributes if missing
- Resolve any ambiguity
- Update the attribute’s values
- Add correction signals

LF2

Figure 3: Logics for rule-based DST.

context (previous dialogue states and acts) to com-
pute a Logical Form representation LF2 of the en-
tire dialogue so far. We adopted a rule-based ap-
proach for the DST component because it: a) is
easy to implement, b) requires no data, c) is ex-
tremely fast at run time, and d) provides an easy
way to incorporate domain-specific information.

The high-level organisation of our rule-based
DST is shown in Figure 3 (Appendix A.1). First,
the DST distinguishes between follow-up and root
(or non-follow-up) utterances by inspecting the
Semantic Parser output LF1. If the utterance is
a root utterance, the DST sets LF2 to be LF1
and resets the current dialogue state context to
start a new conversation. The DST distinguishes
four different kinds of follow-up utterances by in-
specting LF1: is request entity, is self correction,
is update attributes, and is confirmation. Sec-
tion A.1 presents an example of how the DST
functions in alarm clock domain.

5.2 Execution and Dialogue Policy

In our system, execution and dialogue policy work
closely together. The Dialogue Policy component
takes LF2 as input and passes it to the Execution
component. The Execution component is respon-
sible for actually executing user requests; in our
system it translates them into SQL queries and ex-
ecutes against a database, producing a set of ex-
ecution results. The Execution component inter-

acts with Named Entity Resolution if any named
entity string in LF2 is not exactly matched in the
database for retrieval. For example, the named
entity ”7 pm” must match the time 19:00 in the
database.

Our system consists of a largely application-
independent Dialogue Policy component and an
application-specific Execution component. Exe-
cution is typically domain specific because it re-
quires specific knowledge about the application.
The Dialogue Policy component uses the execu-
tion results to generate the system response, which
is encoded as a LF3. The Dialogue Policy com-
ponent is associated with a set of types that en-
code the different kinds of information that the
Execution component can return. For instance,
if the execution is successful, the Dialog Policy
needs to inform the user of the Execution results.
But if there are execution errors (e.g., because the
request is lacking essential information) the Di-
alogue Policy component may request additional
information or clarification. Our Dialog Policy
component uses 8 domain-independent execution
return types (see our table 1 in Appendix A for
more detail). For each type, the dialogue act (LF3)
is constructed accordingly. By separating the Dia-
logue Policy and Execution components we make
it easier to port our system to new applications.

We use the NLU and ASR confidence scores to
trigger fall-back dialog policies that vary based on
the kind of error we believe has occurred. For ex-
ample, the system might ask user to speak more
clearly if ASR confidence score is low, or to ex-
press the request differently if NLU score is low.
We set the thresholds for each component using
development data. The Dialog Policy component
is also update the Context Stack, which stores all
the information from LF2, the execution results,
and the dialog act for current dialog turn.

6 Other components

6.1 UI Generator

Our modular design includes a User Interface (UI)
component, which is responsible for the user in-
terface. The UI depends on the device hardware,
e.g., touch screen, buttons etc. Because our cur-
rent system uses speech input and output, the UI
component directly passes the dialog act (LF3) to
the NLG component.

53

Dialog Act Template 1 Template 2 ...

{inform:{count:0,when date:X}} There aren’t any alarm for {X} no alarm for X
{inform:{count:C,when date:X}} There are {C} alarms for {X} ...
{request:{confirm:{}}} Are you sure? Can you confirm?

Figure 4: Example NLG templates for alarm clock domain. Our templates are delexicalized; C, X, Y are variables
which will be replaced with real values. Multiple variants are provided for each schematic LF to increase the
diversity of the generated output.

6.2 Natural Language Generator
We use a template-based NLG, which translates
dialog acts (LF3) produced by the Dialog Policy
component into text that the TTS system can pro-
nounce. Figure 4 shows some example templates.
We use a hash function for efficient template re-
trieval. If multiple templates are found, we prefer
the best match. For example, the dialog act in-
form:{count:0,when date:tomorrow} matches the
first two templates in Figure 4, so the first one
is selected because the value of count attribute
matches exactly.

6.3 Text to Speech
We need a TTS engine that is lightweight and fast
enough to run on embedded devices. Open source
TTS systems based on deep learning technology,
such as Tacotron2 (Shen et al., 2017) and Deep-
Voice3 (Ping et al., 2017), produce high quality
output but very slow on embedded devices. Other
open source TTS that use HMM-based synthetic
voices, such as MaryTTS (Charfuelan and Steiner,
2013) or Mimic 3, are fast but either of low quality
or are difficult to port to embedded devices. We
decided to use a commercial embedded TTS solu-
tion targeted at embedded devices.

7 Case Study: Alarm Clock Showcase

We built an alarm clock application to showcase
our system. The application supports features such
as create, delete, cancel, edit and snooze alarm,
with attributes such as date, time, day and name.
It also provides more advanced features such as
conditionals, negation and multi-intent requests.
It handles a variety of dialog use cases, such as
request for confirmation, request for additional in-
formation, provide suggestions and inform about
invalid values.

The alarm bot is deployed on a Raspberry Pi
3+ with Cortex-A53 CPU at 1.4GHz clock rate

3https://mimic.mycroft.ai/

and 1GB Ram, which currently costs $35 not in-
cluding microphone and speaker. The NER and
Semantic Parser is trained on ≈11k paraphrases
of more than 1k Logical Forms, which we col-
lected using our extension of the “overnight” pro-
cess. The exact match accuracy on development
set which is randomly sampled from training set is
85%. Hyper-parameter tuning using HyperBand
searched 400 configurations to find the highest ac-
curacy model with a maximum latency of 100ms
on the target device. The Semantic Parser model
size is 2.5 MB, while the NER model size is 0.4
MB; these consume 15.6 MB and 0.4 MB RAM
at run time respectively. The ASR acoustic model
size is 7.9 MB and SLM takes 47MB on disk. End
to end examples with intermediate results can be
found in Appendix A.3

8 Conclusion and Future Work

We presented a full end-to-end task-oriented dia-
log system that can be deployed on a cheap em-
bedded device. The proposed framework is suf-
ficiently general for rapid adaptation to new do-
mains and languages. We demonstrate the capabil-
ities of our system with an alarm clock application
that can understand complicated user requests and
handle complex dialog use cases. In future work
we plan to improve the robustness of the whole
pipeline by using pretrained embeddings for se-
mantic parser, and investigate combining the NER,
Semantic Parser and DST into a single deep learn-
ing model.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. CoRR.

Marcela Charfuelan and Ingmar Steiner. 2013. Expres-
sive speech synthesis in MARY TTS using audio-
book data and EmotionML. In Interspeech, pages
1564–1568, Lyon, France.

http://www.isca-speech.org/archive/interspeech_2013/i13_1564.html
http://www.isca-speech.org/archive/interspeech_2013/i13_1564.html
http://www.isca-speech.org/archive/interspeech_2013/i13_1564.html

54

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. In ACL, pages 33–43.

Mark Johnson. 1988. Attribute Value Logic and The
Theory of Grammar. Number 16 in CSLI Lecture
Notes Series. Chicago University Press, Chicago.

Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin
Rostamizadeh, and Ameet Talwalkar. 2016. Ef-
ficient hyperparameter optimization and infinitely
many armed bandits. CoRR.

Naoaki Okazaki. 2007. Crfsuite: a fast implementation
of conditional random fields (crfs).

Wei Ping, Kainan Peng, Andrew Gibiansky, et al. 2017.
Deep voice 3: 2000-speaker neural text-to-speech.
CoRR.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, et al.
2011. The kaldi speech recognition toolkit. In IEEE
2011 Workshop on Automatic Speech Recognition
and Understanding.

Jonathan Shen, Ruoming Pang, Ron J. Weiss, et al.
2017. Natural TTS synthesis by conditioning
wavenet on mel spectrogram predictions. CoRR,
abs/1712.05884.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In ACL, pages
1332–1342, Beijing, China.

S. Young. 2007. Cued standard dialogue acts. Techni-
cal report, Cambridge University Engineering Dept.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial
grammars. In Proceedings of the Twenty-First Con-
ference on Uncertainty in Artificial Intelligence,
pages 658–666.

http://www.chokkan.org/software/crfsuite/
http://www.chokkan.org/software/crfsuite/
http://arxiv.org/abs/1712.05884
http://arxiv.org/abs/1712.05884

55

A Appendices

A.1 Dialog state tracking examples
After recognizing an utterance as a follow-up, we
further classify the utterance into the following
categories:

Request Entity is for utterances which provide
a value, but do not specify the attribute or slot the
provided value fills. The dialog state tracker de-
cides which attribute the value belong to based on
an ontology learned from semantic parser training
data. For example.
1. User: Wake me up tomorrow
2. System: what time?
3. User: 8 am

This utterance is classified as request entity be-
cause it does not specify which attribute or slot
the entity “8 am” fills. The corresponding logical
form (LF1) for that utterance is:

1 {"action":{"follow_up":{"entity":
"8 am"}}}

Self Correction is for utterances where the user
corrects values they have previously supplied. For
example:
1. User: Wake me up tomorrow at 8 am.
2. System: Done, you alarm at 8am tomorrow

has been set.
3. User: Sorry make it 9 am please

The last utterance will be recognised as a self
correction by the Semantic Parser. We execute this
by rolling back the database execution, modifying
the required value (i.e. from 8 am to 9 am) and
executing the new logical form LF2. The corre-
sponding logical form (LF1) is:

1 {"action":{"follow_up":{"entity":
"9 am","self_correction":true}
}}

And LF2 is:

1 {"action":{"create":{"when_day":"
tomorrow","when_time":"9 am","
self_correction":"true"}}}

Update Attribute is for utterances where the se-
mantic parser can identify which attribute the user
is referring to. For example,
1. User: create an alarm for tomorrow at 10 am.
2. System: Done, your alarm has been created.

3. User: call that alarm “meeting with Julie”.
The semantic parser can extract the attribute

(i.e. name in this example) and associated value
(i.e. meeting with Julie) from the last utterance.
Updating an attribute is a standard operation in
dialog state tracking. The corresponding logical
form (LF1) is:

1 {"action":{"follow_up":{"
attribute":{"name":"meeting
with Julie"}}}}

Confirmation is for utterances that semantic
parser recognizes as a confirmation. The last ut-
terance in the following dialog is an example of a
confirmation:
1. User: Delete my alarm for tomorrow morning
2. System: You have 2 alarms for tomorrow, do

you want to delete those?
3. User: Yes, do it.

The corresponding logical form (LF1) is

1 {"action":{"follow_up":{"
confirmation":"yes"}}}

A.2 Execution return types
See table 1.

A.3 End-to-end examples

1 User: hey alarm clock, wake me up
tomorrow

2 LF1 = LF2 : {"action":{"create":
{"when_day":"tomorrow"}}}

3 Execution: {"execution_results":[
{"action":"create","error_code
":1,"error_attributes":["
when_time"],"results":[]}]}

4 LF3: {"policy":[{"request":{"
when_time":{}}}]}

5 NLG: When would you like it to
ring?

6 -------------------
7 User: 6 am please
8 LF1: {"action":{"follow_up":{"

entity":"6 am"}}}
9 LF2: {"action":{"create":{"

when_day":"tomorrow","
when_time":"6 am"}}}

10 Execution: {"execution_results":[
{"action":"create","error_code
":0,"error_attributes":[],"

56

Return Types Description

Execution success Execution finishes successfully.

Expect zero got more
Execution expects no entity but got more. For example, create
database entries that already exist.

Expect one got more
Execution expects exactly one entity but got more. For example,
edit alarm by name but there are two alarms having the same
name.

Expect at least one
got zero

The value is not found. For example, query alarms by name but
there aren’t any alarms matching that name

Invalid values The value is invalid. For example, create an alarm in the past.

Missing attributes
Missing attributes for execution. For example, create an alarm
without specifying time.

Yes/no confirmation
Execution pauses to wait for confirmation from user for critical
actions such as purchase, delete etc.

Execution fail
Execution fail for unknown reasons. This is useful for fallback
policy.

Table 1: Execution return types.

results":[{"id":"1","when_date
":"2019-04-11","when_time":"06
:00"}]}]}

11 LF3: {"policy":[{"inform":{"
action":"create","when_date":"
2019-04-11","when_time":"06:00
"}}]}

12 NLG: Your alarm will go off at 06
:00 tomorrow.

LF1 and LF2 in line 2 above are the same be-
cause this is the start of a dialog, so the DST just
passes through the LF1. The execution (line 3) re-
turns error code = 1 (missing attribute). The user
provides the missing information (line 7) and exe-
cution is successful (error code = 0 in line 10).

The following is a more complicated dialog
with negation and self correction.

1 User: hey alarm clock, could you
create alarms called feed the
dog for every weekdays except
Friday at 8 am

2 LF1 = LF2 : {"action":{"create":
{"interval":"1w","name":"feed
the dog","when_day":["weekdays
","˜friday"],"when_time":"8 am
"}}}

3 Execution: {"execution_results":[
{"action":"create","error_code
":0,"error_attributes":[],"
results":[{"id":"2","interval"

:"1w","name":"feed the dog","
when_day":"monday,tuesday,
wednesday,thursday","when_time
":"08:00"}]}]}

4 LF3: {"policy":[{"inform":{"
action":"create","interval":"1
w","name":"feed the dog","
when_day":"monday,tuesday,
wednesday,thursday","when_time
":"08:00"}}]}

5 NLG: Your weekly alarm called
feed the dog will ring every
monday, tuesday, wednesday and
thursday at 08:00.

6 -------------------
7 User: hey alarm clock, sorry i

meant 9 am
8 LF1: {"action":{"follow_up":{"

entity":"9 am","
self_correction":true}}}

9 LF2: {"action":{"create":{"
interval":"1w","name":"feed
the dog","when_day":["weekdays
","˜friday"],"when_time":"9 am
","self_correction":"true"}}}

10 Execution: {"execution_results":[
{"action":"edit","error_code":
0,"error_attributes":[],"
results":[{"id":"2","interval"
:"1w","name":"feed the dog","
when_day":"monday,tuesday,

57

wednesday,thursday","when_time
":"08:00","when_time_new":"09:
00"}]}]}

11 LF3: {"policy":[{"inform":{"
action":"edit","interval":"1w"
,"name":"feed the dog","
when_day":"monday,tuesday,
wednesday,thursday","when_time
":"08:00","when_time_new":"09:
00"}}]}

12 NLG: Your recurring monday,
tuesday,wednesday and thursday
alarm called feed the dog has
been moved from 08:00 to 09:0

0

