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Abstract

Traditional model training for sentence gener-
ation employs cross-entropy loss as the loss
function. While cross-entropy loss has con-
venient properties for supervised learning, it
is unable to evaluate sentences as a whole,
and lacks flexibility. We present the approach
of training the generation model using the es-
timated semantic similarity between the out-
put and reference sentences to alleviate the
problems faced by the training with cross-
entropy loss. We use the BERT-based scorer
fine-tuned to the Semantic Textual Similarity
(STS) task for semantic similarity estimation,
and train the model with the estimated scores
through reinforcement learning (RL). Our ex-
periments show that reinforcement learning
with semantic similarity reward improves the
BLEU scores from the baseline LSTM NMT
model.

1 Introduction

Sentence generation using neural networks has
become a vital part of various natural lan-
guage processing tasks including machine transla-
tion (Sutskever et al., 2014) and abstractive sum-
marization (Rush et al., 2015). Most previ-
ous work on sentence generation employ cross-
entropy loss between the model outputs and the
ground-truth sentence to guide the maximum-
likelihood training on the token-level. Differentia-
bility of cross-entropy loss is useful for computing
gradients in supervised learning; however, it lacks
flexibility and may penalize the generation model
for a slight shift or change in token sequence even
if the sequence retains the meaning.

For instance, consider the sentence pair, “I
watched a movie last night.” and “I saw a film last

night.”. As the simple cross-entropy loss lacks the
ability to properly assess semantically similar to-
kens, these sentences are penalized for having two
token mismatches. As another example, the sen-
tence pair “He often walked to school.” and “He
walked to school often.” would be severely pun-
ished by the token misalignment, despite having
identical meanings.

To tackle the inflexible nature of model eval-
uation during training, we propose an approach
of using semantic similarity between the output
sequence and the ground-truth sequence to train
the generation model. In the proposed framework,
semantic similarity of sentence pairs is estimated
by a BERT-based (Devlin et al., 2018) regression
model fine-tuned against Semantic Textual Simi-
larity (Agirre et al., 2012) dataset, and the result-
ing score is passed back to the model using rein-
forcement learning strategies.

Our experiment on translation datasets suggests
that the proposed method is better at improving
the BLEU score than the traditional cross-entropy
learning. However, since the model outputs had
limited paraphrastic variations, the results are also
inconclusive in supporting the effectiveness of ap-
plying the proposed method to sentence genera-
tion.

2 Related Work

2.1 Sentence Generation

Recurrent neural networks have become pop-
ular models of choice for sentence genera-
tion (Sutskever et al., 2014). These sentence gen-
eration models are generally implemented as an
architecture known as an Encoder-Decoder model.

The decoder model, the portion of Encoder-
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Decoder responsible for generating tokens, is usu-
ally an RNN. For an intermediate representation
X , output token distribution at time t ŷt for the
RNN decoder πθ can be written as

st+1 = Φθ (ŷt, st, X) (1)

ŷt+1 ∼ πθ (yt | ŷt, st, X) (2)

where st is the hidden state of the decoder at time
t, Φθ is the state update function, and θ is the
model parameter. Since a simple RNN is known
to lack the ability to handle long-term dependen-
cies, recurrent models with more sophisticated up-
date mechanisms such as Long Short-term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
and Gate Recurrent Unit (GRU) (Cho et al., 2014)
are used in more recent works.

Sentence generation models are typically
trained using cross-entropy loss as follows:

LCE = −
T∑
t=1

log πθ (yt | yt−1, st, X) , (3)

where Y = {y1, y2, ..., yT } is the ground-truth se-
quence.

While cross-entropy loss is an effective loss
function for multi-class classification problems
such as sentence generation, there are a few draw-
backs. Cross-entropy loss is computed by compar-
ing the output distribution and the target distribu-
tion on every timestep, and this token-wise nature
is intolerant of slight shift or reordering in output
tokens. As the ground-truth distributions Y are
usually one-hot distributions cross-entropy loss is
also intolerant to distribution mismatch even when
the two distributions represent similar but different
tokens.

2.2 Reinforcement Learning for Sentence
Generation

One way to avoid the problems of cross-entropy
loss is to use a different criterion during the model
training. Reinforcement learning, a framework in
which the agent must choose a series of discrete
actions to maximize the reward returned from
its surrounding environment, is one of such ap-
proaches. The advantages of using RL are that the
reward for an action does not have to be returned
spontaneously and that the reward function does
not have to be differentiable by the parameter of
the agent model.

Because of these advantages, RL has of-
ten been used as a means to train sentence

generation model against sentence-level met-
rics (Pasunuru and Bansal, 2018; Ranzato et al.,
2015). Sentence-level metrics commonly used in
RL settings, such as BLEU, ROUGE and ME-
TEOR, are typically not differentiable, and thus
are not usable under the regular supervised train-
ing.

One of the common RL algorithms used in
sentence generation is REINFORCE (Williams,
1992). REINFORCE is a relatively simple pol-
icy gradient algorithm. In the context of sentence
generation, the goal of the agent is to maximize the
expectation of the reward provided as the function
r as in the following:

MaximizeEŷ1,...,ŷT∼πθ(ŷ1,...,ŷT ) [r (ŷ1, ..., ŷT )] ,
(4)

where Ŷ = {ŷ1, ŷ2, ..., ŷT } is a series of decoder
output tokens.

The loss function is the negative of the reward
expectation, but the expectation is typically ap-
proximated by a single sample sequence as fol-
lows:

LRL =
∑
t

log πθ (yt | ŷt−1, st) (r (ŷ1,...,T )− rb) ,

(5)
where rb is the baseline reward which counters the
large variance of reward caused by sampling. rb
can be any function that does not contain the pa-
rameter of the sentence generation model, but usu-
ally is kept to a simple model or function to not
hinder the training.

2.3 Semantic Textual Similarity
Semantic Textual Similarity (STS) (Agirre et al.,
2012; Cer et al., 2017) is an NLP task of evalu-
ating the degree of similarity between two given
texts. Similarity scores must be given as continu-
ous real values from 0 (completely dissimilar) and
5 (completely equivalent), and the model perfor-
mance is measured by computing the Pearson cor-
relation between the machine score and the human
score. As STS scores are assigned as similarity
scores between whole sentences and not tokens,
slight token differences can lower the STS score
drastically. For example, the first sentence pair
shown in Table 1, “A man is playing a guitar.” and
“A girl is playing a guitar.”, only has a single token
mismatch, “man” and “girl”. However, the score
given to the pair is 2.8, because that single mis-
match causes clear contrasts in meanings between
the sentences.
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Table 1: Examples of STS similarity scores in STS-B
dataset.

Score Sentence Pair

2.8
A man is playing a guitar.
A girl is playing a guitar.

4.2
A panda bear is eating some bamboo.
A panda is eating bamboo.

On the other hand, STS scores are tolerant of
modifications that do not change the meaning of
sentence. This leniency is illustrated by the sec-
ond sentence pair in Table 1, “A panda bear is
eating some bamboo.” and “A panda is eating
bamboo.”. Such a sentence pair would receive an
unfavourable score in similarity evaluation using
token-wise comparison, because every word after
“panda” would be considered as a mismatched to-
ken. In contrast, the STS score given to the pair
is 4.2. Omission of words “bear” and “some” in
the latter sentence does not alter the meaning from
the first sentence, and thus the pair is considered
semantically similar.

STS is similar to other semantic comparison
tasks such as textual entailment (Dagan et al.,
2010) and paraphrase identification (Dolan et al.,
2004). One key distinction that STS has from
these two tasks is that STS expects the model
to output continuous scores with interpretable in-
termediate values rather than discrete binary val-
ues describing whether or not given sentence pairs
have certain semantic relationships.

2.4 BERT

Bidirectional Encoder Representations from
Transformer (BERT) (Devlin et al., 2018) is a
pre-training model based on the transformer
model (Vaswani et al., 2017). Previous pre-
training models such as ELMo (Peters et al.,
2017) and OpenAI-GPT (Radford et al., 2018)
used unidirectional language models to learn
general language representations and this limited
their ability to capture token relationships in both
directions. Instead, BERT employs a bidirectional
self-attention architecture to capture the language
representations more thoroughly.

Upon its release, BERT broke numerous
state-of-the-art records such as those on a general
language understanding task GLUE (Wang et al.,
2018), question answering task SQuAD
v1.1 (Rajpurkar et al., 2016), and grounded com-

monsense inference task SWAG (Zellers et al.,
2018). STS is one of the tasks included in GLUE.

3 Models

3.1 Sentence Generation Model

The sentence generation model πθ used for this
research is a neural machine translation (NMT)
model consisting of a single-layer LSTM encoder-
decoder model with attention mechanism and the
softmax output layer. The model also incor-
porates input feeding to make itself aware of
the alignment decision in the previous decoding
step (Luong et al., 2015). The encoder LSTM is
bidirectional while the decoder LSTM is unidirec-
tional.

3.2 STS Estimator

The STS estimator model rψ consists of two mod-
ules. As described in Eq. (6), one is the BERT en-
coder with pooling layer B and the other is a linear
output layer (with weight vector Wψ and bias bψ)
with ReLU activation rψ.

B (Y1, Y2) = Pool (BERT (Y1, Y2)) , (6)

rψ (Y1, Y2) = ReLU (Wψ ·B (Y1, Y2) + bψ) .
(7)

The BERT encoder reads tokenized sentence pairs
(Y1, Y2) joined by a separation (SEP) token and
outputs intermediate representations that are then
fed into the linear layer through a pooling layer.
The output layer projects the input into scalar val-
ues representing the estimated STS scores for in-
put sentence pairs.

The model rψ is trained using the mean squared
error (MSE) to fit the corresponding real-valued
label v as written in Eq. (8).

LBERT = |rψ (Y1, Y2)− v|2. (8)

While the use of the BERT-based STS estima-
tor as an evaluation mechanism allows the sen-
tence generation model to train its outputs against
sentence-wise evaluation criteria, there is a down-
side to this framework.

The BERT encoder expects the input sentences
to be sequences of tokens. As with most sentence
generation models, the outputs of the encoder-
decoder model described in the previous subsec-
tion are sequences of output probability distribu-
tions of tokens.
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Obtaining a single token from a probabil-
ity distribution equates to performing indiffer-
entiable operations like argmax and sampling.
Consequently, the regular backpropagation algo-
rithm cannot be applied the training of generation
model. Furthermore, the scores provided by the
STS estimator rψ are sentence-wise while the se-
quence generation is done token by token. There
is no direct way to evaluate the effect of a single
instance of token generation on a sentence-wise
outcome in the setting of supervised learning. As
mentioned in Section 2.2, RL is an approach that
can provide solutions to these problems.

3.3 Baseline Estimator
Following the previous work (Ranzato et al.,
2015), the baseline estimator Ωω is defined as fol-
lows:

Ωω (st) = σ (Wω · st + bω) , (9)

where Wr is a weight vector, bω is a bias, and σ is
the logistic sigmoid function.

3.4 Model Training
Overall, the model training is separated into three
stages.

The first stage is the training of BERT-based
STS estimator rψ. The model rψ, with its pre-
trained BERT encoder, is fine-tuned using a STS
dataset with the loss function described in Eq. (8).
The parameter of the STS estimator is frozen from
this point onward.

The second stage is the training of the NMT
model using the cross-entropy loss shown in
Eq. (3). This stage is necessary to allow the model
training to converge. The action space in sen-
tence generation is extremely large and applying
RL from scratch would lead to slow and unstable
training.

The final stage is the RL stage where we apply
REINFORCE to NMT model. The loss function
for REINFORCE is rewritten from Eq. (5) as fol-
lows:

LRL =
∑
t

Rt log πθ (yt | ŷt−1, st), (10)

Rt =

(
1

5
rψ

(
Ŷ,Y

)
− Ωω (st)

)
, (11)

where Rt is the difference between the reward rψ
and the expected reward Ωω. rψ is multiplied by
1
5 as Ωω is bounded in [0, 1]. Because using only

LRL in the RL stage reportedly leads to unstable
training (Wu et al., 2016) the loss used in this step
is a linear combination of LCE and LRL as fol-
lows:

L = λLCE + (1− λ)LRL, (12)

where λ ∈ [0, 1] is a hyperparameter. The value of
λ typically is a small non-zero value.

During the RL stage, the reward prediction
model Ωω is trained using the MSE loss as fol-
lows:

LBSE =

∣∣∣∣15rψ (Ŷ , Y
)
− Ωω (st)

∣∣∣∣2 . (13)

The reward predictor does not share its parameter
with the NMT model.

4 Experiment

4.1 Dataset

The dataset used for fine-tuning the STS estimator
is STS-B (Cer et al., 2017). The tokenizer used is
a wordpiece tokenizer for BERT.

For machine translation, we used De-En par-
allel corpora from multi30k-dataset (Elliott et al.,
2016) and WIT3 (Cettolo et al., 2012). The
multi30k-dataset is comprised of textual descrip-
tions of images while the WIT3 consists of tran-
scribed TED talks. Each corpus provides a single
validation set and multiple test sets. We chose the
best models based on their scores for the validation
sets and used the two newest test sets from each
corpus for testing. Both corpora are tokenized us-
ing the sentencepiece BPE tokenizer with a vo-
cabulary size of 8,000 for each language. All let-
ters are turned to lowercase and any consecutive
spaces are turned into a single space before tok-
enization. The source and target vocabularies are
kept separate.

4.2 Training Settings

The BERT model used for the experiment is
BERT-base-uncased, and is trained with a max-
imum sequence length of 128, batch size of 32,
learning rate of 2× 10−5 up to 6 epochs.

For the supervised (cross-entropy) training of
the NMT model, we set size of hidden states for
all LSTM to 256 for each direction, and use SGD
with an initial learning rate of 1.0, momentum
of 0.75, the learning rate decay of 0.5, and the
dropout rate of 0.2. With the batch size of 128
and the maximum sequence length of 100, the
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NMT model typically reached the highest esti-
mated STS score on the validation set after less
than 10 epochs.

In the RL stage, initial learning rates are set to
0.01 and 1.0 × 10−3 for the NMT model and the
baseline estimator model respectively. λ is set to
0.005. The batch size is reduced to 100 but other
hyperparameters are kept the same as in the super-
vised stage.

For a comparison, we also train a separate trans-
lation model with RL using GLEU (Wu et al.,
2016). GLEU score is calculated by taking the
minimum of n-gram recall and n-gram precision
between output tokens and target tokens. While
the GLEU score is known to correlate well with
the BLEU score on the corpus-level, it also avoids
some of the undesirable characteristics that the
BLEU score has on the sentence-level. During the
RL stage for the GLEU model, the reward measure
1
5rψ

(
Ŷ , Y

)
in Eq. (11) and Eq. (13) is replaced

by GLEU
(
Ŷ , Y

)
. Other training procedures and

hyperparameters are kept the same as those of the
model trained using STS.

5 Results and Discussion

The BLEU scores of Cross-entropy, RL-GLEU
and RL-STS models are shown in Table 2 and the
sample outputs of the models during the training
are displayed in Table 3.

As shown in Table 2 applying the RL step with
STS improved BLEU scores for all test sets, even
though the model was not directly optimized to
increase the BLEU score. It can be inferred that
estimated semantic similarity scores have positive
correlation with the BLEU score.

As BLEU is scored using matching n-grams be-
tween the candidate and ground-truth sentences, it
can be considered a better indicator of semantic
similarity between sentences than cross-entropy
loss. One interesting observation made during
the training was that after entering the RL stage,
the cross-entropy loss against the training data in-
creased yet the BLEU scores improved. This sug-
gests that RL using STS reward is a better train-
ing strategy for improving the semantic accuracy
of output tokens than the plain cross-entropy loss
training.

Table 2 also shows that RL-GLEU has better
BLEU scores than RL-STS. This is inevitable con-
sidering that STS, unlike GLEU and BLEU, is not

based on n-gram matching and may permit output
tokens not present in a target sequence as long as
the output sequence stays semantically similar to
the target sequence. Such property can lead to n-
gram mismatches and lower BLEU scores. It is
important to note that the leniency of STS evalua-
tion does not severely affect BLEU scores.

In fact, training with RL using STS did alter
outputs of the model in ways that suggest the le-
niency of STS as a training objective. For instance,
sentences shown in Table 3 demonstrate the cases
where the RL swapped a few tokens or added an
extra token to the output sentences without dras-
tically changing the meaning of the original sen-
tence.

Nevertheless, this kind of alterations were not
abundant perhaps because of the fact that the
model is never encouraged to output paraphras-
tic sentences during the supervised learning phase.
The degree of effectiveness of our approach would
be more apparent in the setting where the model
outputs are more diverse, such as paraphrasing.

Another interesting characteristic of the outputs
of RL-STS is that they sometimes did not properly
terminate. This occurred even in cases where the
cross-entropy model was able to form a complete
sentence. One possible cause of this problem is
the way the output sequence is tokenized before
it is fed to the BERT-based estimator. Because an
end-of-sentence (EOS) token is not one of the spe-
cial tokens used in pretraining of BERT, any EOS
token was stripped before inserting a SEP token.
Consequently, the RL-STS model was not able to
receive proper feedback for producing the EOS to-
ken. This can perhaps be avoided by introducing
an additional loss term in Eq. (10) to penalize se-
quences that are not terminated.

6 Conclusion

In this paper, we focused on the disadvantages of
using cross-entropy loss for sentence generation,
namely its inability to handle similar tokens and
its intolerance towards token reordering. To solve
these problems, we proposed an approach of us-
ing the BERT-based semantic similarity estima-
tor trained using STS dataset to evaluate the de-
gree of meaning overlap between output sentences
and ground-truth sentences. As the estimated STS
scores are indifferentiable, we also incorporated
REINFORCE into the training to backpropagate
the gradient using RL strategies. The proposed
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Table 2: BLEU and estimated STS scores for test sets in multi30k-dataset and WIT3. mscoco2017 and flickr2017
are test sets for multi30k-dataset, while TED2014 and TED2015 are test sets for WIT3. RL-GLEU and RL-STS
denote models trained with REINFORCE using GLEU reward and STS reward respectively.

mscoco2017 flickr2017 TED2014 TED2015
Model BLEU STS BLEU STS BLEU STS BLEU STS
Cross-entropy 16.44 2.76 22.22 3.03 12.54 2.63 13.43 2.80
RL-GLEU 20.13 2.93 25.83 3.15 13.97 2.71 14.59 2.89
RL-STS 18.31 2.96 24.70 3.21 13.58 2.87 14.56 2.99

Table 3: Sample outputs of the models for the training set

Model Output Sentences
Ground-truth I’ll show you what I mean. So how do we solve?
Cross-entropy I’ll show you what I mean. So how do we solve?
RL-GLEU I’ll show you what I mean. So how do we solve?
RL-STS I’m going to show you what I mean. So how do we solve problems?

method proved successful in improving the BLEU
score over the baseline model trained using only
the cross-entropy loss. The findings from the com-
parison of model outputs suggest that the STS al-
lows lenient evaluation without severely degrad-
ing BLEU scores. However, the extent of effec-
tiveness of the proposed method is yet to be deter-
mined. Further analysis of the method using dif-
ferent datasets such as those for abstractive sum-
marization and paraphrasing, as well as human
evaluation are necessary to reach a proper conclu-
sion.
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