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Abstract

Alzheimer’s disease (AD) is an irreversible
brain disease that can dramatically reduce
quality of life, most commonly manifesting
in older adults and eventually leading to the
need for full-time care. Early detection is fun-
damental to slowing its progression; however,
diagnosis can be expensive, time-consuming,
and invasive. In this work we develop a neu-
ral model based on a CNN-LSTM architecture
that learns to detect AD and related dementias
using targeted and implicitly-learned features
from conversational transcripts. Our approach
establishes the new state of the art on the De-
mentiaBank dataset, achieving an F1 score of
0.929 when classifying participants into AD
and control groups.

1 Introduction

Older adults constitute a growing subset of the
population. In the United States, adults over
age 65 are expected to comprise one-fifth of
the population by 2030, and a larger proportion
of the population than those under 18 by 2035
(United States Census Bureau, 2018). In Japan—
perhaps the most extreme example of shifting age
demographics—42.4% of the population is ex-
pected to be aged 60 or over by 2050 (United Na-
tions, 2017). This will necessitate that age-related
physical and cognitive health issues become a
foremost concern not only because they will im-
pact such a large population, but because there will
be a proportionally smaller number of human care-
givers available to diagnose, monitor, and remedi-
ate those conditions. Artificial intelligence offers
the potential to fill many of these deficits, and al-
ready, elder-focused research is underway to test
intelligent systems that monitor and assist with ac-
tivities of daily living (Lotfi et al., 2012), support
mental health (Wada et al., 2004), promote physi-
cal well-being (Sarma et al., 2014), and encourage

cognitive exercise (Parde and Nielsen, 2019).
Perhaps some of the most pressing issues belea-

guering an aging population are Alzheimer’s dis-
ease (AD) and other age-related dementias. Our
interest lies in fostering early diagnosis of these
conditions. Although there are currently no cures,
with early diagnosis the symptoms can be man-
aged and their impact on quality of life may be
minimal. However, there can be many barriers to
early diagnosis, including cost, location, mobility,
and time.

Here, we present preliminary work towards au-
tomatically detecting whether individuals suffer
from AD using only conversational transcripts.
This solution addresses the above barriers by pro-
viding a diagnosis technique that could eventually
be employed free of cost and in the comfort of
one’s home, at whatever time works best. Our con-
tributions are as follows:

1. We introduce a hybrid Convolutional Neural
Network (CNN) and Long Short Term Mem-
ory Network (LSTM) approach to dementia
detection that takes advantage of both tar-
geted and implicitly learned features to per-
form classification.

2. We explore the effects of a bi-directional
LSTM and attention mechanism on both our
model and the current state-of-the-art for de-
mentia detection.

3. We empirically demonstrate that our tech-
nique outperforms the current state of the art,
and suggest directions for future work that we
expect to further improve performance.

2 Related Work

The task of automatically detecting dementia in
conversational transcripts is not new. In Fraser
et al. (2016), the authors tackled the task using
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features associated with many linguistic phenom-
ena, including part of speech tags, syntactic com-
plexity, psycholinguistic characteristics, vocabu-
lary richness, and many others. They trained a
logistic regression model to distinguish between
dementia-affected and healthy patients, achieving
an accuracy of 81%. In our work here we consider
some of the features found to be informative in this
work; in particular, psycholinguistic features.

Habash et al. (2012) studied Alzheimer’s-
related dementia (AD) specifically. The authors
selected 14 linguistic features to perform syntac-
tic, semantic, and disfluency modeling. In doing
so, they checked for the presence of filler words,
repetitions, and incomplete words, and addition-
ally incorporated counts indicating the number of
syllables used per minute. Using this feature set,
the authors trained a decision tree classifier to
make predictions for 80 conversational samples
from 31 AD and 57 non-AD patients. Their model
achieved an accuracy of 79.5%.

Orimaye et al. (2014) considered syntactic fea-
tures, computed from syntactic tree structures, and
various lexical features to evaluate four machine
learning algorithms for dementia detection. The
algorithms considered included a decision tree,
naı̈ve Bayes, SVM with a radial basis kernel, and
a neural network. On a dataset containing 242 AD
and 242 healthy individuals, they found that com-
pared to other algorithms, SVM exhibited the best
performance with an accuracy score of 74%, a re-
call of 73%, and a precision of 75%.

Yancheva and Rudzicz (2016) used
automatically-generated topic models to ex-
tract a small number of semantic features (12),
which they then used to train a random forest
classifier. Their approach achieved an F1 Score
of 0.74 in binary classification of control patients
versus dementia-affected patients. This is com-
parable to results (F1 Score=0.72) obtained with
a much larger set of lexicosyntactic and acoustic
features. Ultimately, Yancheva and Rudzicz
found that combining these varied feature types
improved their F1 Score to 0.80.

Finally, Karlekar et al. (2018) proposed a CNN-
LSTM neural language model and explored the
effectiveness of part-of-speech (POS) tagging the
conversational transcript to improve classification
accuracy for AD patients. They divided patient
interviews into single utterances, and rather than
classifying at the patient level, they made their

predictions at the utterance level. Their model
achieved an accuracy of 91%. Unfortunately, the
dataset on which their classifier was trained is im-
balanced, and no other performance metrics were
reported. This makes it difficult to fully under-
stand the capabilities of their model. Here, in ad-
dition to our other contributions, we extend their
work by considering a full-interview classification
scenario and providing more detailed classifica-
tion metrics to assess the classifier’s quality.

3 Data

We use a subset of DementiaBank (Becker et al.,
1994) for our work here. DementiaBank is a
dataset gathered as part of a protocol administered
by the Alzheimer and Related Dementias Study at
the University of Pittsburgh School of Medicine.
It contains spontaneous speech from individuals
who do (AD group) and do not (control group)
present different kinds of dementia. Participants
in the dataset performed several different tasks:

• Fluency: Participants were asked to name
words belonging to a given category or that
start with a given letter.

• Recall: Participants were asked to recall a
story from their past experience.

• Sentence: Participants were asked to con-
struct a simple sentence with a given word, or
were asked if a given sentence made sense.

• Cookie Theft: Participants were asked
to verbally describe an eventful image illus-
trating, among other elements, a child at-
tempting to steal a cookie. For this task,
the participant’s and interviewer’s speech ut-
terances were recorded and manually tran-
scribed according to the TalkBank CHAT
protocol (MacWhinney, 1992).

Of these tasks, Cookie Theft provides the
largest source of unstructured text. Thus, it is the
data subset that we use for our work here. In total,
the Cookie Theft sub-corpus consists of 1049 tran-
scripts from 208 patients suffering from dementia
(AD group) and 243 transcripts from 104 healthy
elderly patients (control, or CT, group), for a total
of 1229 transcripts. Dataset statistics are provided
in Table 1. For each participant, DementiaBank
also provides demographic information including
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Total AD CT
Number of Participants 312 208 104
Number of Transcripts 1229 1049 243
Median Interview Length 73 65 97

Table 1: Dataset statistics including the number of par-
ticipants, the number of transcripts, and the median in-
terview length. Interview length is computed as the
number of words spoken by the patient during the in-
terview.

age, gender, education, and race. We use all avail-
able transcripts, and randomly separate them into
81% training, 9% validation, and 10% testing.

4 Methods

We propose a neural network architecture de-
signed to classify patients into the two groups
mentioned previously: those suffering from de-
mentia, and those who are not. The architecture
takes as input transcriptions of the patients’ spo-
ken conversations. The transcripts are of moder-
ate length (the average participant spoke 73 words
across 16.8 utterances). We consider all partici-
pant speech in a single block rather than splitting
the interview into separate utterances, allowing the
model to consider the entire interview context in a
manner similar to a real diagnosis scenario.

4.1 Model Architecture

The model architecture proposed is a CNN-LSTM
(Zhou et al., 2015) with several modifications:

• We introduced a dense neural network at the
end of the LSTM layer to also take into con-
sideration linguistic features that have been
considered significant by previous research
(Karlekar et al., 2018; Salsbury et al., 2011).

• Rather than a classic unidirectional LSTM,
we used a bi-directional LSTM and inserted
an attention mechanism on the hidden states
of the LSTM. In this way we expect our
model to identify specific linguistic patterns
related to dementia detection. In addition,
the attention mechanism has proven to lead
to performance improvements when long se-
quences are considered (Yang et al., 2016).

• We added class weights to the loss func-
tion during training to take into account the
dataset imbalance.

Figure 1: Model architecture.

We illustrate the architecture in Figure 1. We
preprocess each full interview transcript from De-
mentiaBank by removing interviewer utterances
and truncating the length of the remaining text
to 73 words. This is done so that (a) each in-
stance is of a uniform text size, and (b) the in-
stances are of relatively substantial length, thereby
providing adequate material with which to assess
the health of the patient. Seventy-three words
represents the median (participant-only) interview
length; thus, 50% of instances include the full in-
terview (padded as needed), and 50% of instances
are truncated to their first 73 words. The inter-
views are tokenized into single word tokens, and
POS tags1 are computed for each token.

The model takes two inputs: the tokenized in-
terview, and the corresponding POS tag list. Word
embeddings for the interview text tokens are com-
puted using pre-trained 300 dimensional GloVe
embeddings trained on the Wikipedia 2014 and
Gigaword 5 dataset (Pennington et al., 2014). The
POS tag for each word is represented as a one-hot-
encoded vector. The word embeddings and POS
vectors are input to two different CNNs utilizing
the same architecture, and the output of the two
CNNs is then flattened and given as input to a bi-
directional LSTM with an attention mechanism.

The output of the bi-directional LSTM is then
given as input to a dense neural network which
also takes into consideration linguistic features
that have proven to be effective in previous liter-
ature, as well as some demographic features (see
further discussion in Section 4.2). The final out-
come of the model is obtained with a single neu-
ron at the end of the dense layer having a sigmoid

1We compute POS tags using NLTK (https://www.
nltk.org/).

https://www.nltk.org/
https://www.nltk.org/
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activation function. We implement the model us-
ing Keras.2 The advantage of our hybrid archi-
tecture that considers both implicitly-learned and
engineered features is that it can jointly incorpo-
rate information that may be useful but latent to
the human observer and information that directly
encodes findings from clinical and psycholinguis-
tic literature.

4.2 Targeted Features

Previous research has shown the effectiveness
of neural models trained on conversational tran-
scripts at identifying useful features for demen-
tia classification (Lyu, 2018; Karlekar et al., 2018;
Olubolu Orimaye et al., 2018). Nevertheless, other
information that has proven to be crucial to the
task cannot be derived from interview transcripts
themselves. Inspired by Karlekar et al.’s (2018)
finding that adding POS tags as features improved
the performance of their neural model, we sought
to enrich our model with other engineered features
that have proven effective in prior dementia detec-
tion work. We describe those features Table 2.

Each of the token-level (psycholinguistic or
sentiment) features was averaged across all to-
kens in the instance, allowing us to obtain a
participant-level feature vector to be coupled with
the participant-level demographic features. These
features were then concatenated with the output of
our model’s attention layer and the resulting vector
was given as input to a dense portion of the neu-
ral network that performed the final classification.
Sentiment scores were obtained using NLTK’s
sentiment library and psycholinguistic scores were
obtained from an open source repository3 based
on the work of Fraser et al. (2016). As noted ear-
lier, demographic information was included with
the DementiaBank dataset.

4.3 Class Weight Correction

Since the DementiaBank dataset is unbalanced
(more participants suffer from dementia than not),
we noticed that even when high accuracy was
achieved by previously proposed models, they re-
sulted in poor precision scores. This was because
those classifiers were prone to producing false
positive outcomes. To combat this issue, we tuned
the loss function of our model such that it more

2https://keras.io/
3https://github.com/vmasrani/dementia_

classifier

Feature Description

Psych.

Age of
Acquisition

The age at which a particu-
lar word is usually learned.

Concreteness A measure of a word’s tan-
gibility.

Familiarity
A measure of how often one
might expect to encounter a
word.

Imageability A measure of how easily a
word can be visualized.

Sent. Sentiment A measure of a word’s sen-
timent polarity.

Demo. Age The participant’s age at the
time of the visit.

Gender The participant’s gender.

Table 2: Targeted psycholinguistic, sentiment, and de-
mographic features considered by the model.

severely penalized misclassifying the less frequent
class.

5 Evaluation

5.1 Baseline Approach

We selected the C-LSTM model developed by
Karlekar et al. (2018) as our baseline approach.
This model represents the current state of the
art for dementia detection on the DementiaBank
dataset (Lyu, 2018).

5.2 Experimental Setup

We split the dataset into 81% training, 9% vali-
dation, and 10% testing. Each data sample repre-
sents a patient interview and its associated demo-
graphic characteristics. In order to have a more ro-
bust evaluation, we split the dataset multiple times.
Thus, each model has been trained, validated, and
tested using three different random shufflings of
the data with different random seeds. The results
presented are the average of the results that each
model achieved over the three test sets.

To measure performance we consider Accuracy,
Precision, Recall, F1 Score, Area Under the Curve
(AUC), and the number of True Negative (TN),
False Positive (FP), False Negative (FN), and True
Positive (TP) classifications achieved by each ap-
proach on the test set. All metrics except AUC
used a classification threshold of 0.5.

We compared six different models on the de-
scribed task: two main architectures (ours and the
state of the art approach developed by Karlekar
et al. (2018)), each with several variations. The
baseline version of Karlekar et al.’s (2018) model

https://keras.io/
https://github.com/vmasrani/dementia_classifier
https://github.com/vmasrani/dementia_classifier
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Approach Accuracy Precision Recall F1 AUC TN FP FN TP
C-LSTM 0.8384 0.8683 0.9497 0.9058 0.9057 6.3 15.6 5.3 102.6
C-LSTM-ATT 0.8333 0.8446 0.9778 0.9061 0.9126 2.6 19.3 2.3 105.6
C-LSTM-ATT-W 0.8512 0.9232 0.8949 0.9084 0.9139 14.0 8.0 11.3 96.6
OURS 0.8495 0.8508 0.9965 0.9178 0.9207 1.0 16.6 0.3 95.0
OURS-ATT 0.8466 0.8525 0.9895 0.9158 0.9503 1.3 16.3 1.0 94.3
OURS-ATT-W 0.8820 0.9312 0.9298 0.9305 0.9498 11.0 6.6 6.6 88.6

Table 3: Performance of evaluated models.

(C-LSTM) is used directly, without any modifi-
cation. Our architecture is OURS. For both archi-
tectures we then consider the effects of switching
to a bidirectional LSTM and adding an attention
mechanism (-ATT) and the effects of class weight
correction inside the loss function (-W).

5.3 Results
We report performance metrics for each model
in Table 3. As is demonstrated, our proposed
model achieves the highest performance in Accu-
racy, Precision, Recall, F1, and AUC. It outper-
forms the state of the art (C-LSTM) by 5.2%,
7.1%, 4.9%, 2.6%, and 3.7%, respectively.

5.4 Additional Findings
In addition to presenting the results above, we con-
ducted further quantitative and qualitative analy-
ses regarding the targeted features to uncover ad-
ditional insights and identify key areas for follow-
up work. We describe these analyses in the sub-
sections below.

5.4.1 Quantitative Analysis
To further assess the individual contributions of
the targeted features, we performed a follow-up
ablation study using our best-performing model.
We systematically retrained the model after re-
moving one type (psycholinguistic, sentiment, or
demographic) of targeted feature at a time, and re-
port our findings in Table 4.

Removing sentiment features left the model
mostly unchanged in terms of AUC. However, it
produced slightly fewer true negatives and slightly
more false positives. Reducing false positives is
important, particularly in light of the class im-
balance; thus, the sentiment features give rise
to a small but meaningful contribution to the
model’s overall performance. Interestingly, it ap-
pears that the demographic and psycholinguistic
features inform the model in similar and perhaps
interchangeable ways: removing one group but
retaining the other yields similar performance to

that of a model utilizing both. Future experiments
can tease apart the contributions of individual psy-
cholinguistic characteristics at a finer level. Ex-
tending the psycholinguistic resources employed
by our model such that they exhibit greater cover-
age may also result in increased performance from
those features specifically.

5.4.2 Qualitative Analysis
In Table 5 we present two samples misclassi-
fied by our model (one false positive, and one
false negative). We make note of a key dis-
tinction between the two: surprisingly, the false
positive includes many interjections indicative of
“stalling” behaviors, whereas the false negative is
quite clear. Neither of these is representative of
other (correctly predicted) samples in their respec-
tive classes; rather, participants with dementia of-
ten exhibit more stalling or pausing behaviors, ob-
servable in text as an overuse of words such as
“uh,” “um,” or “oh.” We speculate that our model
was fooled into misclassifying these samples as a
result of this style reversal. Follow-up work in-
corporating stylistic features (e.g., syntactic vari-
ation or sentence structure patterns) may reduce
errors of this nature. Finally, we note that many
prosodic distinctions between the two classes that
pass through text mostly unnoticed may be more
effectively encoded using audio features. We plan
to experiment with these as well as features from
other modalities in the future, in hopes of further
improving performance.

6 Discussion

The introduction of sentiment-based, psycholin-
guistic, and demographic features improved the
performance of the model, demonstrating that
implicitly-learned features (although impressive)
still cannot encode conversational characteristics
of dementia to the extent that other, more targeted
features can. Likewise, in both C-LSTM and
our approach, the introduction of a bi-directional
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Approach Accuracy Precision Recall F1 AUC TN FP FN TP
OURS-ATT-W NO PSYCH. 0.8790 0.8870 0.9825 0.9319 0.9499 12.0 5.6 1.6 93.6
OURS-ATT-W NO SENT. 0.8970 0.9239 0.9615 0.9321 0.9501 7.6 10.0 3.6 91.6
OURS-ATT-W NO DEMO. 0.8908 0.9005 0.9789 0.9308 0.9473 10.33 7.33 2 93.3

Table 4: Ablation study performed using our best-performing model (OURS-ATT-W).

False Positive

Uh, oh I can oh you don’t want me to memorize it.
Oh okay, the the little girl is asking for the cookie from the boy who is about to fall on his head
And she is going I guess “shush” or give me one
The mother laughs we don’t think she might be on drugs because uh laughs
she is off someplace because the sink is running over
and uh it is summer outside because the window is open
and the grasses or the bushes look healthy. And uh that’s it.

False Negative

Oh, the water is running off the sink
Mother is calmly drying a dish
The uh stool is going to fall over and the little boy is on top of it getting in the cookie jar.
And the little girl is reaching for a cookie.
She has her hands to her her finger to her lip as if she is telling the boy not to tell.
The curtains seem to be waving a bit, the water is running. that’s it.

Table 5: Samples misclassified by our model. False Positives are control patients classified as AD patients, while
False Negatives are AD-patients classified as control patients.

LSTM with an attention mechanism led to perfor-
mance improvements on classifier AUC. This im-
provement suggests that these additions allowed
the model to better focus on specific patterns in-
dicative of participants suffering from dementia.

In contrast, the benefits of adding class weights
to the model’s loss function were less clear. We in-
troduced this correction as a mechanism to encour-
age our classifier to make fewer false positive pre-
dictions, and although this worked, the model also
became less capable of identifying true positives.
Given the nature of our classification problem, this
trade-off is rather undesirable, and additionally
this correction did not improve the general qual-
ity of the classifier—the AUC for both our model
and C-LSTM remained almost unchanged. How-
ever, regardless of the inclusion of class weights
for the loss function, our measures regarding the
AUC, Precision, Recall, F1 Score, and Accuracy
show that overall our model is able to outperform
the previous state of the art (C-LSTM) at predict-
ing whether or not participants are suffering from
dementia based on their conversational transcripts.

7 Conclusion

In this work we introduced a new approach to clas-
sify conversational transcripts as belonging to in-
dividuals with or without dementia. Our contribu-
tions were as follows:

1. We introduced a hybrid architecture that al-
lowed us to take advantage of both engi-
neered features and deep-learning techniques
on conversational transcripts.

2. We explored the effects of a bi-directional
LSTM and attention mechanism on both our
model and the current state of the art for de-
mentia detection.

3. We examined the effects of loss func-
tion modification to take into consideration
the class imbalance in the DementiaBank
dataset.

Importantly, the model that we present in this
work represents the new state of the art for AD de-
tection on the DementiaBank dataset. Our source
code is available publicly online.4 In the fu-
ture, we plan to explore additional psycholinguis-
tic, sentiment-based, and stylistic features for this
task, as well as to experiment with features from
other modalities. Finally, we plan to work towards
interpreting the neural features implicitly learned
by the model, in order to understand some of the
latent characteristics it captures in AD patients’
conversational transcripts.

4https://github.com/flaviodipalo/
AlzheimerDetection

https://github.com/flaviodipalo/AlzheimerDetection
https://github.com/flaviodipalo/AlzheimerDetection
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