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Abstract

Using pre-trained word embeddings in con-
junction with Deep Learning models has be-
come the de facto approach in Natural Lan-
guage Processing (NLP). While this usually
yields satisfactory results, off-the-shelf word
embeddings tend to perform poorly on texts
from specialized domains such as clinical re-
ports. Moreover, training specialized word
representations from scratch is often either im-
possible or ineffective due to the lack of large
enough in-domain data. In this work, we focus
on the clinical domain for which we study em-
bedding strategies that rely on general-domain
resources only. We show that by combining
off-the-shelf contextual embeddings (ELMo)
with static word2vec embeddings trained on
a small in-domain corpus built from the task
data, we manage to reach and sometimes out-
perform representations learned from a large
corpus in the medical domain.1

1 Introduction

Today, the NLP community can enjoy an ever-
growing list of embedding techniques that include
factorization methods (e.g. GloVe (Pennington
et al., 2014)), neural methods (e.g. word2vec
(Mikolov et al., 2013), fastText (Bojanowski et al.,
2017)) and more recently dynamic methods that
take into account the context (e.g. ELMo (Peters
et al., 2018), BERT (Devlin et al., 2018)).

The success of these methods can be arguably
attributed to the availability of large general-
domain corpora like Wikipedia, Gigaword (Graff
et al., 2003) or the BooksCorpus (Zhu et al., 2015).
Unfortunately, similar corpora are often unavail-
able for specialized domains, leaving the NLP
practitioner with only two choices: either using

1Python code for reproducing our experiments is
available at: https://github.com/helboukkouri/
acl_srw_2019

general-domain word embeddings that are prob-
ably not fit for the task at hand or training new
embeddings on the available in-domain corpus,
which may probably be too small and result in
poor performance.

In this paper, we focus on the clinical domain
and explore several ways to improve pre-trained
embeddings built from a small corpus in this do-
main by using different kinds of general-domain
embeddings. More specifically, we make the fol-
lowing contributions:

• we show that word embeddings trained on
a small in-domain corpus can be improved
using off-the-shelf contextual embeddings
(ELMo) from the general domain. We also
show that this combination performs better
than the contextual embeddings alone and
improves upon static embeddings trained on
a large in-domain corpus;

• we define two ways of combining contextual
and static embeddings and conclude that the
naive concatenation of vectors is consistently
outperformed by the addition of the static
representation directly into the internal linear
combination of ELMo;

• finally, we show that ELMo models can be
successfully fine-tuned on a small in-domain
corpus, bringing significant improvements to
strategies involving contextual embeddings.

2 Related Work

Former work by Roberts (2016) analyzed the
trade-off between corpus size and similarity when
training word embeddings for a clinical entity
recognition task. The author’s conclusion was that
while embeddings trained with word2vec on in-
domain texts performed generally better, a combi-
nation of both in-domain and general domain em-

https://github.com/helboukkouri/acl_srw_2019
https://github.com/helboukkouri/acl_srw_2019
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3. Echocardiogram on **DATE[Nov 6 2007] , showed ejection fraction of 55% , mild mitral
insufficiency , and 1+ tricuspid insufficiency with mild pulmonary hypertension .

DERMOPLAST TOPICAL TP Q12H PRN Pain DOCUSATE SODIUM 100 MG PO BID PRN
Constipation IBUPROFEN 400-600 MG PO Q6H PRN Pain

The patient had headache that was relieved only with oxycodone . A CT scan of the head showed
microvascular ischemic changes . A followup MRI which also showed similar changes . This was
most likely due to her multiple myeloma with hyperviscosity .

Table 1: Examples of entity mentions (Problem, Treatment, and Test) from the i2b2 2010 dataset*.
* This table is reproduced from (Roberts, 2016).

beddings worked the best. Subsequent work by
Zhu et al. (2018) obtained state-of-the-art results
on the same task using contextual embeddings
(ELMo) that were pre-trained on a large in-domain
corpus made of medical articles from Wikipedia
and clinical notes from MIMIC-III (Johnson et al.,
2016). More recently, these embeddings were out-
performed by BERT representations pre-trained
on MIMIC-III, proving once more the value of
large in-domain corpora (Si et al., 2019).2

While interesting for the clinical domain, these
strategies may not always be applicable to other
specialized fields since large in-domain corpora
like MIMIC-III will rarely be available. To
deal with this issue, we explore embedding com-
binations3. In this respect, we consider both
static forms of combination explored in (Yin and
Schütze, 2016; Muromägi et al., 2017; Bollegala
et al., 2018) and more dynamic modes of combi-
nation that can be found in (Peters et al., 2018) and
(Kiela et al., 2018). In this work, we show in par-
ticular how a combination of general-domain con-
textual embeddings, fine-tuning, and in-domain
static embeddings trained on a small corpus can
be employed to reach a similar performance using
resources that are available for any domain.

3 Evaluation Task: i2b2/VA 2010
Clinical Concept Detection

We evaluate our embedding strategies on the Clin-
ical Concept Detection task of the 2010 i2b2/VA
challenge (Uzuner et al., 2011).

2In this work, we will be focusing on contextualized em-
beddings from ELMo.

3This is more generally related to the notion of “meta-
embeddings” and ensemble of embeddings as highlighted by
Yin and Schütze (2016).

3.1 Data
The data consists of discharge summaries and
progress reports from three different institutions:
Partners Healthcare, Beth Israel Deaconess Medi-
cal Center, and the University of Pittsburgh Medi-
cal Center. These documents are labeled and split
into 394 training files and 477 test files for a total
of 30,946 + 45,404 ⇡ 76,000 sequences 4.

3.2 Task and Model
The goal of the Clinical Concept Detection task is
to extract three types of medical entities: problems
(e.g. the name of a disease), treatments (e.g. the
name of a drug) and tests (e.g. the name of a di-
agnostic procedure). Table 1 shows examples of
entity mentions and Table 2 shows the distribution
of each entity type in the training and test sets.

Entity type Train set Test set

Problem 11,967 18,550
Treatment 8,497 13,560
Test 7,365 12,899

Total 27,829 45,009

Table 2: Distribution of medical entity types.

To solve this task, we choose a bi-LSTM-CRF
as is usual in entity recognition tasks (Lample
et al., 2016; Chalapathy et al., 2016; Habibi et al.,
2017). Our particular architecture uses 3 bi-LSTM
layers with 256 units, a dropout rate of 0.5 and
is implemented using the AllenNLP framework
(Gardner et al., 2018). During training, the ex-
act span F1 score is monitored on 5,000 randomly
sampled sequences for early-stopping.

4Due to limitations introduced by the Institutional Review
Board (IRB), only part of the original 2010 data can now
be obtained for research at https://www.i2b2.org/
NLP/DataSets/. Our work uses the full original dataset.

https://www.i2b2.org/NLP/DataSets/
https://www.i2b2.org/NLP/DataSets/
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4 Embedding Strategies

We focus on two kinds of embedding algorithms:
static embeddings (word2vec) and contextualized
embeddings (ELMo). The first kind assigns to
each token a fixed representation (hence the name
“static”), is relatively fast to train but does not
manage out-of-vocabulary words and polysemy.
The second kind, on the other hand, produces a
contextualized representation. As a result, the
word embedding is adapted dynamically to the
context and polysemy is managed. Moreover, in
the particular case of ELMo, word embeddings
are character-level, which implies that the model
is able to produce vectors whether or not the word
is part of the training vocabulary.

Despite contextualized embeddings usually per-
forming better than static embeddings, they still
require large amounts of data to be trained suc-
cessfully. Since this data is often unavailable in
specialized domains, we explore strategies that
combine off-the-shelf contextualized embeddings
with static embeddings trained on a small in-
domain corpus.

4.1 Static Embeddings
First, we use word2vec5 to train embeddings on a
small corpus built from the task data:

i2b2 (2010) 394 documents from the training set
to which we added 826 more files from a set
of unlabeled documents. This is a small (1
million tokens) in-domain corpus. Similar
corpora will often be available in other spe-
cialized domains as it is always possible to
build a corpus from the training documents.

Then, we also train embeddings on each of two
general-domain corpora:

Wikipedia (2017) encyclopedia articles from the
01/10/2017 data dump6. This is a large (2 bil-
lion tokens) corpus from the general domain
that has limited coverage of the medical field.

Gigaword (2003) newswire text data from many
sources including the New York Times. This
is a large (2 billion tokens) corpus from the
general domain with almost no coverage of
the medical field.

5We used the following parameters: cbow=1,
size=256, window=5, min-count=5, iter=10.

6Similar dumps can be downloaded at https://
dumps.wikimedia.org/enwiki/.

4.2 Contextualized Embeddings
We use two off-the-shelf ELMo models7:

ELMo small a general-domain model trained
on the 1 Billion Word Benchmark corpus
(Chelba et al., 2013). This is the small ver-
sion of ELMo that produces 256-dimensional
embeddings.

ELMo original the original ELMo model. This
is a general-domain model trained on a mix
of Wikipedia and newswire data. It produces
1024-dimensional embeddings.

Additionally, we also build embeddings by fine-
tuning each model on the i2b2 corpus. The fine-
tuning is achieved by resuming the training of the
ELMo language model on the new data (i2b2). At
each epoch, the validation perplexity is monitored
and ultimately the best model is chosen:

ELMo smallfinetuned the result of fine-tuning
ELMo small for 10 epochs.

ELMo originalfinetuned the result of fine-tuning
ELMo original for 5 epochs.

4.3 Embedding Combinations
There are many possible ways to combine embed-
dings. In this work, we explore two methods:

Concatenation a simple concatenation of vectors
coming from two different embeddings. This
is denoted X�Y (e.g. i2b2�Wikipedia).

Mixture in the particular case where ELMo em-
beddings were combined with word2vec vec-
tors, we can directly add the word2vec em-
bedding in the linear combination of ELMo.
We denote this combination strategy X++Y
(e.g. ELMo small++i2b2).

The mixture method generalizes the way ELMo
representations are combined. Given a word w, if
we denote the three internal representations pro-
duced by ELMo (i.e. the CharCNN, 1st bi-LSTM
and 2nd bi-LSTM representations) by h1, h2, h3,
we recall that the model computes the word’s em-
bedding as:

ELMo(w) = �(↵1h1 + ↵2h2 + ↵3h3)

7All the models with their descriptions are available at
https://allennlp.org/elmo.

https://dumps.wikimedia.org/enwiki/
https://dumps.wikimedia.org/enwiki/
https://allennlp.org/elmo
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Embedding Strategy X i2b2 � X i2b2 ++ X

i2b2 82.06 ± 0.32 - -
Wikipedia 83.30 ± 0.25 83.35 ± 0.62 -
Gigaword 82.54 ± 0.41 83.10 ± 0.37 -

ELMo small 80.79 ± 0.95 84.18 ± 0.26 84.94 ± 0.94
ELMo original 84.28 ± 0.66 85.25 ± 0.21 85.64 ± 0.33

ELMo smallfinetuned 83.86 ± 0.87 84.81 ± 0.40 85.93 ± 1.01
ELMo originalfinetuned 85.90 ± 0.50 86.18 ± 0.48 86.23 ± 0.58

Table 3: Performance of various strategies involving a general-domain resource and a small in-domain corpus
(i2b2). The values are Exact Span F1 scores given as Mean ± Std (bold: best result for each kind of combination).

where � and {↵i, i = 1, 2, 3} are tunable task-
specific coefficients8. Given hw2v, the word2vec
representation of the word w, we compute a “mix-
ture” representation as:

ELMomix(w) = �(↵1h1+↵2h2+↵3h3+�hw2v)

where � is a new tunable coefficient9.

5 Results and Discussion
We run each experiment with 10 different random
seeds and report performance in mean and stan-
dard deviation (std). Values are expressed in terms
of strict F1 measure that we compute using the of-
ficial script from the i2b2/VA 2010 challenge.

5.1 Using General-domain Resources
Table 3 shows the results we obtain using general-
domain resources only. The top part of the table
shows the performance of word2vec embeddings
trained on i2b2 as well as two general-domain cor-
pora: Wikipedia and Gigaword. We see that i2b2
performs the worst despite being trained on in-
domain data. This explicitly showcases the chal-
lenge faced by specialized domains and confirms
that training embeddings on small in-domain cor-
pora tends to perform poorly. As for the gen-
eral domain embeddings, we can observe that
Wikipedia is slightly better than Gigaword. This
can be explained by the fact that the former has
some medical-related articles which implies a bet-
ter coverage of the clinical vocabulary compared
to the newswire corpus Gigaword10. We can also

8In practice, the coefficients go through a softmax before
being used in the linear combination.

9In particular cases where the ELMo model pro-
duces 1024-dimensional embeddings, we duplicate the 256-
dimensional word2vec embeddings so that the dimensions
match before mixing.

10We count 14.42% out-of-vocabulary tokens in Gigaword
against 5.82% for Wikipedia.

see that combining general-domain word2vec em-
beddings with i2b2 results in weak improvements
that are slightly higher for Gigaword probably for
the same reason.

The middle part of the table shows the results
we obtain using off-the-shelf contextualized rep-
resentations. Looking at the embeddings alone,
we see that ELMo small performs worse than i2b2
while ELMo original is better than all word2vec
embeddings. Again, the reason for the small
model’s performance might be related to the dif-
ferent training corpora. In fact, ELMo original,
aside from being a larger model, was trained on
Wikipedia articles which may include some med-
ical articles. Another interesting point is that
both the mean and variance of the performance
when using off-the-shelf ELMo models improve
notably when combined with word2vec embed-
dings trained on i2b2. This improvement is even
greater for the small model, probably because it
has less coverage of the medical domain. Further-
more, we see that the performance improves again,
although to a lesser extent when the word2vec em-
bedding is mixed with ELMo instead of combined
through concatenation.

The bottom part of the table shows the results
obtained after fine-tuning both ELMo models. We
see that fine-tuning improves all the results (but to
varying extents), with the best performance being
achieved using combinations—either concatena-
tion or mixture—of i2b2’s word2vec and the larger
fine-tuned ELMo.

Two points are worth being noted. First, it
is interesting to see that we achieve good re-
sults with a model that only uses an off-the-shelf
model and a small in-domain corpus built from
the task data. This is a valuable insight since the
same strategy could be applied for any specialized
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domain. Second, we see that the smaller 256-
dimensional ELMo model, which initially per-
formed very poorly (⇡ 80 F1), improved dras-
tically (⇡ +6 F1) using our best strategy and
does not lag very far behind the original 1024-
dimensional model. This is also valuable since
many practitioners do not have the computational
resources that are required for using the larger ver-
sions of recent models like ELMo or BERT.

5.2 Using In-domain Resources
It is natural to wonder how our results fare against
models trained on large in-domain corpora. For-
tunately, there are two such corpora in the clinical
domain:

MIMIC III (2016) a collection of medical notes
from a large database of Intensive Care Unit
encounters at a large hospital (Johnson et al.,
2016)11. This is a large (1 billion tokens) in-
domain corpus.

PubMed (2018) a collection of scientific article
abstracts in the biomedical domain12. This is
a large (4 billion tokens) corpus from a close
but somewhat different domain.

Both Zhu et al. (2018) and Si et al. (2019)
trained the ELMo (original) on MIMIC, with the
former resorting to only a part of MIMIC mixed
with some curated Wikipedia articles. Table 4 re-
ports their results, to which we add the perfor-
mance of strategies using word2vec embeddings
trained on MIMIC and PubMed, and an open-
source ELMo model trained on PubMed13.

We can see yet again that word2vec embed-
dings perform less well than ELMo models trained
on the same corpora. We also see that combin-
ing the two kinds of embeddings still brings some
improvement (see ELMo (PubMed) ++ MIMIC).
And more importantly, we observe that by using
only general-domain resources, we perform very
close to the ELMo models trained on a large in-
domain corpus (MIMIC) with a maximum differ-
ence in F1 measure of ⇡ 1.5 points.

11The MIMIC-III corpus can be downloaded at https:
//mimic.physionet.org/gettingstarted/
access/.

12 The PubMed-MEDLINE corpus can be down-
loaded at https://www.nlm.nih.gov/databases/
download/pubmed_medline.html.

13Since we did not train this model ourselves, we are not
sure whether the training corpus is equivalent to the PubMed
corpus we use for training word2vec embeddings.

Embedding Strategy F1

MIMIC 84.29 ± 0.30
PubMed 84.06 ± 0.14
ELMo (PubMed) 86.29 ± 0.61
ELMo (PubMed) ++ MIMIC 87.17 ± 0.54

ELMo originalfinetuned ++ i2b2 86.23 ± 0.58

ELMo (Clinical) (Zhu et al., 2018) 86.84 ± 0.16
ELMo (MIMIC) (Si et al., 2019) 87.80

Table 4: Comparison of strategies using large in-
domain corpora with the best strategy using a small
in-domain corpus and general-domain resources. The
values are Exact Span F1 scores.

5.3 Using GloVe and fastText
In order to make sure that the observed phenomena
are not the result of using the word2vec method
in particular, we reproduce the same experiments
using GloVe and fastText14. The corresponding
results are reported in Table 5 and Table 6.

We can see that GloVe and fastText are always
outperformed by word2vec when trained on a sin-
gle corpus only. This is not true anymore when
combining these embeddings with representations
from ELMo. In fact, in this case, the results are
mostly comparable to the performance obtained
when using word2vec, with a slight improvement
when using fastText. This small improvement may
be explained by the fact that the fastText method
is able to manage Out-Of-Vocabulary tokens while
GloVe and word2vec are not.

More importantly, these additional experiments
validate the initial results obtained with word2vec:
static embeddings pre-trained on a small in-
domain corpus (i2b2) can be combined with
general domain contextual embeddings (ELMo),
through either one of the proposed methods, to
reach a performance that is comparable to the
state-of-the-art15.

5.4 Limitations
We can list the following limitations for this work:

• we tested only one specialized domain on one
task using one NER architecture. Although

14We used the following parameters: (GloVe) size=256,
window=15, min-count=5, iter=10; (fastText)
skipgram, size=256, window=5, min-count=5,
neg=5, loss=ns, minn=3, maxn=6, iter=10.

15Our single best model gets a F1 score of 87.10.

https://mimic.physionet.org/gettingstarted/access/
https://mimic.physionet.org/gettingstarted/access/
https://mimic.physionet.org/gettingstarted/access/
https://www.nlm.nih.gov/databases/download/pubmed_medline.html
https://www.nlm.nih.gov/databases/download/pubmed_medline.html
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Embedding Strategy X i2b2 � X i2b2 ++ X

i2b2 80.21 ± 0.37 - -
Wikipedia 81.82 ± 0.52 81.29 ± 0.42 -
Gigaword 81.38 ± 0.33 81.47 ± 0.18 -

ELMo small 80.79 ± 0.95 83.04 ± 1.03 84.30 ± 0.72
ELMo original 84.28 ± 0.66 85.00 ± 0.32 85.12 ± 0.26

ELMo smallfinetuned 83.86 ± 0.87 84.42 ± 0.75 85.19 ± 0.75
ELMo originalfinetuned 85.90 ± 0.50 86.05 ± 0.16 86.46 ± 0.36

Table 5: Performance of the strategies from Table 3 using GloVe instead of word2vec (bold: GloVe > word2vec)

Embedding Strategy X i2b2 � X i2b2 ++ X

i2b2 81.98 ± 0.41 - -
Wikipedia 82.32 ± 0.37 81.84 ± 1.48 -
Gigaword 81.77 ± 0.36 82.40 ± 0.32 -

ELMo small 80.79 ± 0.95 84.44 ± 0.42 85.47 ± 0.61
ELMo original 84.28 ± 0.66 85.57 ± 0.46 85.77 ± 0.47

ELMo smallfinetuned 83.86 ± 0.87 85.18 ± 0.67 86.27 ± 0.35
ELMo originalfinetuned 85.90 ± 0.50 86.49 ± 0.28 86.82 ± 0.29

Table 6: Performance of the strategies from Table 3 using fastText instead of word2vec (bold: fastText > word2vec)

the results look promising, they should be
validated by a wider set of experiments;

• our best strategies use the task corpus (i2b2)
to adapt general off-the-shelf embeddings to
the target domain, then combine two differ-
ent types of embeddings as an ensemble to
boost performance. This may not work if the
task corpus is really small (we recall that our
corpus is ⇡ 1 million tokens).

6 Conclusion and Future Work

While embedding methods are improving on a
regular basis, specialized domains still lack large
enough corpora to train these embeddings success-
fully. We address this issue and propose embed-
ding strategies that only require general-domain
resources and a small in-domain corpus. In partic-
ular, we show that using a combination of general-
domain ELMo, fine-tuning and word2vec embed-
dings trained on a small in-domain corpus, we
achieve a performance that is not very far behind
that of models trained on large in-domain corpora.
Future work may investigate other contextualized
representations such as BERT, which has proven
to be superior to ELMo—at least on our task—in
the recent work by Si et al. (2019). Another inter-

esting research direction could be exploiting exter-
nal knowledge (e.g. ontologies) that may be easier
to find in specialized fields than large corpora.
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