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Abstract

Current state-of-the-art speech-based user in-
terfaces use data intense methodologies to rec-
ognize free-form speech commands. However,
this is not viable for low-resource languages,
which lack speech data. This restricts the us-
ability of such interfaces to a limited num-
ber of languages. In this paper, we propose
a methodology to develop a robust domain-
specific speech command classification system
for low-resource languages using speech data
of a high-resource language. In this transfer
learning-based approach, we used a Convolu-
tion Neural Network (CNN) to identify a fixed
set of intents using an ASR-based character
probability map. We were able to achieve sig-
nificant results for Sinhala and Tamil datasets
using an English based ASR, which attests the
robustness of the proposed approach.

.

1 Introduction

Speech command recognizable user interfaces are
becoming popular since they are more natural
for end-users to interact with. Google Assis-
tant1, and Amazon Alexa2 can be highlighted as
few such commercial services, which are rang-
ing from smartphones to home automation. These
are capable of identifying the intent of free-form
speech commands given by the user. To enable
this kind of service, Automatic Speech Recogni-
tion (ASR) systems and Natural Language Under-
standing (NLU) systems work together with a very
high level of accuracy (Ram et al., 2018).

If ASR or NLU components have suboptimal
results, it directly affects the final output (Yaman
et al., 2008; Rao et al., 2018). Hence, to get
good results in ASR systems, it is common to use

1https://assistant.google.com
2https://developer.amazon.com/alexa

very large speech corpora (Hannun et al., 2014;
Amodei et al., 2016; Chiu et al., 2018). How-
ever, low-resource languages (LRL) do not have
this luxury. Here, languages that have a lim-
ited presence on the Internet and those that lack
electronic resources for speech and/or language
processing are referred to as low-resource lan-
guages (LRLs) (Besacier et al., 2014). Because of
this reason despite the applicability, speech-based
user interfaces are limited to common languages.
For LRLs researchers have focused on narrower
scopes such as recognition of digits or keywords
(Manamperi et al., 2018; Chen et al., 2015). How-
ever, free-form commands are difficult to manage
in this way since there can be overlappings be-
tween commands.

Buddhika et al. (2018); Chen et al. (2018) show
some direct speech classification approaches to its
intents. In particular, Buddhika et al. (2018) have
given some attention for the low resource setting.
Additionally, Transfer learning is used to exploit
the issue of limited data in some of the ASR based
research (Huang et al., 2013; Kunze et al., 2017).

In this paper, we present an improved and effec-
tive methodology to classify domain-specific free-
form speech commands while utilizing this direct
classification and transfer learning approaches.
Here, we use a character probability map from an
ASR model trained on English to identify intents.
Performance of this methodology is evaluated us-
ing Sinhala (Buddhika et al., 2018) and newly col-
lected Tamil datasets. The proposed approach can
reach to a reasonable accuracy using limited train-
ing data.

Rest of the paper is organized as follows. Sec-
tion 2 presents related work, section 3 describes
methodology used. Section 4 and 5 provides de-
tails of the datasets and experiments. Section 6
presents a detailed analysis of the obtained results.
Finally Section 7 concludes the paper.

https://assistant.google.com
https://developer.amazon.com/alexa


289

2 Related Work

Most of the previous research has used separate
ASR and NLU components to classify speech in-
tents. In this approach, transcripts generated from
the ASR module are fed as input for a separate text
classifier (Yaman et al., 2008; Rao et al., 2018).
Here, an erroneous transcript from the ASR mod-
ule can affect the final results of this cascaded sys-
tem (Yaman et al., 2008; Rao et al., 2018). In this
approach, two separately trained subsystems are
connected to work jointly. As a solution for these
issues, Yaman et al. (2008) proposed a joint opti-
mization technique and use of the n-best list of the
ASR output. Later He and Deng (2013) extended
this work by developing a generalized framework.
However, these systems require a large amount of
speech data, corresponding transcript, and their
class labels. Further, the ASR component used
in these systems requires language models and
phoneme dictionaries to function, which are dif-
ficult to find for low-resource languages.

This cascading approach is effective when there
is a highly accurate ASR in the target language.
Rao et al. (2018) present such a system to navigate
in an entertainment platform for English. Here,
they have used a separate ASR system to convert
speech into text. More importantly, they highlight
that a lower performance of ASR affects the entire
system.

More recently, researchers have presented some
approaches that aim to go beyond cascading ASR
components. In this way, they have tried to elim-
inate the use of intermediate text representations
and have used automatically generated acoustic
level features for classification. Liu et al. (2017)
proposed topic identification in speech without
the need for manual transcriptions and phoneme
dictionaries. Here, the input features are bottle-
neck features extracted from a conventional ASR
system trained with transcribed multilingual data.
Then these features are classified through CNN
and SVM classifiers. Additionally Lee et al.
(2015) have highlighted that effectiveness of this
kind of bottleneck features of speech when com-
paring different speech queries.

Chen et al. (2018); Buddhika et al. (2018)
present two different direct classification ap-
proaches to determine the intent of a given spo-
ken utterance. Chen et al. (2018) have used a
neural network based acoustic model and a CNN
based classifier. However, this requires transcripts

of the speech data to train the acoustic model,
thus accuracy depends on the availability of a
large amount of speech data. One advantage of
this approach is that we can optimize the final
model once we combined the two models. Bud-
dhika et al. (2018) classified speech directly us-
ing MFCC (Mel-frequency Cepstral Coefficients)
of the speech signals as features. In this approach,
they have used only 10 hours of speech data to
achieve reasonable accuracy.

3 Methodology

In section 2, we showed that research work of Liu
et al. (2017); Chen et al. (2018); Buddhika et al.
(2018) has benefited from direct speech classifica-
tion approach. Additionally, as shown in the work
of Lee et al. (2015); Liu et al. (2017), it is bene-
ficial to use automatically discovered acoustic re-
lated features. Therefore our key idea is reusing
a well trained ASR neural network on high re-
source language as a feature transformation mod-
ule. This is known as transfer learning (Pan and
Yang, 2010). Here, we try to reuse the knowl-
edge learned from one task to another associated
task. Current well trained neural network based
end-to-end ASR models are capable of convert-
ing given spoken utterance into the corresponding
character sequence. Therefore these ASR models
can convert speech into some character represen-
tation. Our approach is to reuse this ability in low-
resource speech classification.

We used DeepSpeech (DS) (Hannun et al.,
2014) model as the ASR model. DS model con-
sists of 5 hidden layers including a bidirectional
recurrent layer. Input for the model is a time-
series of audio features for every timeslice. MFCC
coefficients are used as features. Model converts
this input sequence x(i) into a sequence of char-
acter probabilities y(i), with ŷt = P(ct|x), where
ct =∈ {a, b, c, .., z, space, apostrophe, blank} in
English model. These probability values are cal-
culated by a softmax layer. Finally, the corre-
sponding transcript is generated using the proba-
bilities via beam search decoding with or without
combining a language model.

Here, we selected intermediate probability val-
ues as the transfer learning features from the
model. Any feature generated after this layer is
ineffective since it is affected by the beam search
and it only outputs the best possible character se-
quence. Before the final softmax layer, there is a
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bi-directional recurrent layer, which is very critical
for detecting sequence features in speech. With-
out this layer, the model is useless (Hannun et al.,
2014; Amodei et al., 2016). Hence, the only pos-
sible way to extract features is after the softmax
layer. Additionally, this layer provides normal-
ized probability values for each time step. Figure
1 shows a visualization of this intermediate char-
acter probability map for a Sinhala speech query
containing ‘ ෙ�ෂය �යද - śēs.aya kı̄yada’.
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Figure 1: Visualization of probability output for Sin-
hala utterance

In this considering scenario, we need to identify
a fixed set of intents related to a specific domain.
Instead of converting these probability values into
a text representation, we classify these obtained
features directly in to intents as in (Liu et al.,
2017; Chen et al., 2018). We experimented with
different classifier models such as Support Vector
Machines (SVM), Feed Forward Networks (FFN),
which used in previous works. Further, in the work
of Liu et al. (2017); Chen et al. (2018), they have
shown the effectiveness of Convolutional Neural
Networks - CNN to classify intermediate features
of the speech. Because of this, we evaluated
the performance of CNN. Additionally, We exam-
ined the effectiveness of 1-dimensional(1D) and 2-
dimensional(2D) convolution for feature classifi-
cation. Figure 2 shows the architecture of the final
CNN based model. Please refer to ‘Supplementary
Material’ for the detail of model parameters.

4 Datasets

We used two different free-form speech command
datasets to measure the accuracy of the proposed
methodology. The first one is a Sinhala dataset and
contains audio clips in the banking domain (Bud-
dhika et al., 2018). Since it was difficult to find
such other datasets for low-resource languages,
we created another dataset in the Tamil language,
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Figure 2: Architecture of the final model

which contains the same intentions as Sinhala
dataset. Both Sinhala and Tamil are morpholog-
ically different languages. Table 1 summarizes the
details.

Intent Sinhala Tamil
I S I S

1. Request Acc. balance 8 1712 7 101
2. Money deposit 7 1306 7 75
3. Money withdraw 8 1548 5 62
4. Bill payments 5 1004 4 46
5. Money transfer 7 1271 4 49
6. Credit card payments 4 795 4 67
Total 39 7624 31 400
Unique words 32 46

Table 1: Details of the data sets (I-Inflections, S-
Number of samples)

Original Sinhala dataset contained 10 hours of
speech data from 152 males and 63 females stu-
dents in the age between 20 to 25 years. We had
to revalidate the dataset since it included some
miss-classified, too lengthy and erroneous speech
queries. The final data set contained 7624 sam-
ples totaling 7.5 hours. Tamil dataset contains 0.5
hours of speech data from 40 males and females
students in the same age group. There were 400
samples in the Tamil dataset. The length of each
audio clip is less than 7 seconds.

5 Experiments

For the transfer learning task, we considered the
DeepSpeech (DS) model 1 (Hannun et al., 2014).
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Benchmark Current
Approach SVM 6L FFN TL + SVM TL + FFN TL + 1D CNN TL + 2D CNN
Features MFCC DS Intermediate
Accuracy Sinhala 48.79% 63.23% 70.04% 74.67% 93.16% 92.09%
Accuracy Tamil 29.25% 26.98% 23.77% 35.50% 37.57% 76.30%

Table 2: Summary of results with different approaches and overall accuracy values

This model and some other neural network based
ASR modes provide a probability map for each
character in each time step. Due to high compu-
tational demand for training, we adopted an al-
ready available pre-trained DS model by Mozilla3.
This model uses the first 26 MFCC features as
input. Model is trained on American English
and achieves an 11% word error rate on the Lib-
riSpeech clean test corpus.

Given the DS English model, we extract the in-
termediate probability features for a given speech
sample and then fed them into the classifier. Fur-
ther, we employed a Bayesian optimization based
algorithm for hyperparameter tuining (Bergstra
et al., 2013). Since datasets are small we used 5
fold cross-validation to evaluate the accuracy.

We selected method presented in (Buddhika
et al., 2018) as our benchmark. In their work,
they have used the first 13 MFCC features as in-
put for the SVM, FFN classifiers. Since we had
to validate the Sinhala dataset, we reevaluate the
accuracy values on the validated dataset using 5-
fold cross-validation. Additionally, we performed
the same experiments on newly collected Tamil
dataset to examine the language independence of
the proposing method. Table 2 summarizes the
outcomes of these different approaches. In all ex-
periments, class distribution among all data splits
was nearly equal.

In this work, we are concerned about the
amount of available data. Hence, we evaluated
the accuracy change of the best performing ap-
proaches with the size of training samples. We
perform this on the Sinhala dataset since it has
more than 4000 data samples. We drew multi-
ple random samples with a particular size and per-
formed 5-fold cross-validation. Here, the number
of random samples is 20. Table 3 summarizes the
experiment results.

In another experiment, we examined the end-
to-end text output of the DS English model for a
given Sinhala speech query. Table 4 presents some
of these outputs.

3https://github.com/mozilla/DeepSpeech

6 Result and Discussion

We were able to achieve 93.16% and 76.30%
overall accuracy for Sinhala and Tamil datasets
respectively using 5-fold cross-validation. Ta-
ble 2 provides a comparison of previous and our
approaches. It shows clearly that the proposed
method is more viable than the previous direct
speech feature classification approach. One possi-
ble reason can be the reduction of noise in speech
signals. In this situation, the DS model is capable
of removing these noises since it is already trained
on noisy data. Another reason is that reduction of
the feature space. Additionally, in this way, we can
have more accurate results using small dataset.

Intent Sinhala Tamil
F1 P R F1 P R

1 0.96 0.94 0.99 0.87 0.89 0.87
2 0.93 0.97 0.89 0.80 0.78 0.84
3 0.91 0.87 0.95 0.75 0.89 0.66
4 0.89 0.93 0.87 0.64 0.75 0.63
5 0.96 0.97 0.95 0.60 0.76 0.51
6 0.92 0.95 0.89 0.79 0.74 0.89
Average 0.93 0.93 0.93 0.76 0.81 0.76

Table 3: Classification results of best performing mod-
els (F1- F1-Score, P- Precision, R- Recall)

Table 3 shows the averaged precision, recall
and F1-score values for each intent class and two
datasets. In the Sinhala dataset, all classes achieve
more than 0.9 F1-score, except for type 4 intent.
Type 1 intent shows the highest F1-score among
all and, this must be because of the higher number
of data samples available for this class. Despite
that, type 6 intent also reports 0.93 f1-score even
with a lower number of data samples. Tamil data
shows a slightly different result. Intent types 4,5
report the lowest score in the Tamil dataset and
the number of speech queries from these classes
are comparatively low in the dataset. Further, we
can observe that the Tamil classifier is incapable
of accurately identifying positive intent classes 4
and 5 (since lower recall value).

Compared to Sinhala data with a sample size
of 500, Tamil dataset reports high overall accu-
racy with 400 samples. Tamil dataset contains

https://github.com/mozilla/DeepSpeech
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codemixed speech quires since it is more natu-
ral when in speaking. These words are in En-
glish. Additionally, the feature generator model
(DS model) is also trained in English data. This
can result in more overall accuracy in Tamil data
set. Additionally, type 6 intent commands contain
English words in both datasets and this can result
for higher precision value.

Further, sentences with more overlapping words
with other sentences (different intent type) and
with limited length tend to misclassify more.
Hence classes, type 3,4 in Sinhala, type 2,4 in
Tamil dataset show lower accuracy.

1000 2000 3000 4000 5000
Number of Data Samples

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy 1D CNN

2D CNN

Figure 3: CNN classifier accuracy variance with the
number of samples (Sinhala dataset)

Figure 3 summarize the overall accuracy change
of best performing classifiers with samples size.
As it shows having 1000 samples is enough to
achieve nearly 80% overall accuracy. After that,
it reaches saturation. Furthermore, it reports 77%
overall accuracy for Tamil dataset with 320 train-
ing samples. This highlights the effectiveness of
the proposed transfer learning approach in limited
data situations.

Additionally, Figure 3 shows the most effective
CNN model type with the number of available data
samples to classify sequential feature maps. As it
shows, it is useful to use 2D CNN based classifiers
when there is a very limited amount of data. How-
ever, when there are relatively more data (More
than 4000 samples in Sinhala dataset) 1D CNN
based classifiers gives higher results. We can see
this effect on Tamil dataset also. As table 2 shows
1D CNN model accuracy is low compared to 2D
CNN model with 400 data samples.

Further, we examined the speech decoding ca-
pability of the English model. See Table 4. Here
‘Utterance’ is the pronounced Sinhal sentence,
‘Eng. Transcript’ is the ideal English transcript.
‘DS output’ lists the generated transcripts from the

Utterance ෙ�ෂය �යද ඉ��ය �යද

Eng. Transcript ’sheshaya keeyada’ ’ithiriya keeyada’

DS Output
’she s reci ete’ ’it cillety edet’

’sheis heki edit’ ’it tia gaviade’
’sheis ae an’ ’it lid en’

Table 4: DS transcript for some Sinhala utterances

full model. In these generated outputs, the first few
characters are decoded correctly. But, in the latter
part, this decoding is compromised by the possible
character sequences of the English language since
it is trained in English. From this, we can infer that
this character probability map is closer to text rep-
resentation than the MFCC features. Hence, this
can improve the classification accuracy.

7 Conclusion

In this study, we proposed a method to identify the
intent of free-form commands in a low-resource
language. We used an ASR model trained on the
English language to classify the Sinhala and Tamil
low-resource datasets. The proposed method out-
performs previous work and, even with a limited
number of samples, it can reach to a reasonable
accuracy.

CNN base classifiers perform well in the clas-
sification of character probability maps generated
by ASRs. Further, 1D CNN models work better
with a higher number of samples, while 2D CNN
models work better with a small amount of data. In
the future, we plan to extend this study by incor-
porating more data from different languages and
domains.
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A Supplemental Material

Table 5 present hyperparameters for low-
resourced models described in the section 3
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Sinhala Models Tamil Models
Layer 1D CNN 2D CNN 1D CNN 2D CNN

1. Conv Filters 38
Kernel Size 19

Filters 16
Kernel Size 1x8

Filters 39
Kernel Size 18

Filters 14
Kernel Size 5x1

2. Max Pooling Size 18
Stride 7

Size 6x1
Stride 5x5

Size 25
Stride 5

Size 13x1
Stride 5x1

3. Conv Filters 28
Kernel Size 22

Filters 17
Kernel Size 20x8

Filters 26
Kernel Size 19

Filters 13
Kernel Size 11x20

4. Max Pooling Size 22
Stride 10

Size 19x2
Stride 16x8

Size 20
Stride 5

Size 17x1
Stride 2x7

5. Dense Units 131 Units 118 Units 84 Units 127
6. Softmax 6 6 6 6

Table 5: Hyperparameters for CNN classifier models


