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Abstract

We propose a method to control the level of
a sentence in a text simplification task. Text
simplification is a monolingual translation task
translating a complex sentence into a sim-
pler and easier to understand the alternative.
In this study, we use the grade level of the
US education system as the level of the sen-
tence. Our text simplification method suc-
ceeds in translating an input into a specific
grade level by considering levels of both sen-
tences and words. Sentence level is consid-
ered by adding the target grade level as in-
put. By contrast, the word level is consid-
ered by adding weights to the training loss
based on words that frequently appear in sen-
tences of the desired grade level. Although
existing models that consider only the sen-
tence level may control the syntactic complex-
ity, they tend to generate words beyond the tar-
get level. Our approach can control both the
lexical and syntactic complexity and achieve
an aggressive rewriting. Experiment results in-
dicate that the proposed method improves the
metrics of both BLEU and SARI.

1 Introduction

Text simplification (Shardlow, 2014) is the task
of rewriting a complex text into a simpler form
while preserving its meaning. Its applications in-
clude reading comprehension assistance and lan-
guage education support. Because each target user
has different reading abilities and/or knowledge,
we need a text simplification system that translates
an input sentence into a sentence of an appropriate
difficulty level for each user. According to the in-
put hypothesis (Krashen, 1985), educational mate-
rials slightly beyond the learner’s level effectively
improve their reading abilities. On the contrary,
materials that are too difficult for learners dete-
riorate their learning motivation. In the context
of language education, teachers manually simplify

Grade Examples

12 According to the Pentagon , 152 fe-
male troops have been killed while
serving in Iraq and Afghanistan .

7 The Pentagon says 152 female troops
have been killed while serving in Iraq
and Afghanistan .

5 The military says 152 female have
died .

Table 1: Example sentences with different grade lev-
els. To control the sentence level, syntactic (underline)
and/or lexical (bold) paraphrasing is performed.

sentences for each learner. To reduce the burden
on teachers, automatic text simplification systems
are desired (Petersen and Ostendorf, 2007).

As mentioned, text simplification translates
a complex sentence into a simpler alternative.
The transformation allows entailment and omis-
sion/replacement of phrases and words. Table 1
shows sentences in different grade levels. Sen-
tence level depends on both the syntactic and lex-
ical complexities. When simplifying a sentence
of grade level 12 into grade level 71, paraphrasing
“According to ∼ ,” to “∼ says” reduces the syntac-
tic complexity. In addition, when simplifying the
sentence from the grade levels 12 to 5, paraphras-
ing “Pentagon” to “military” reduces the lexical
complexity. Assuming an application to language
education, we aim at automatically rewriting the
input sentence to accommodate the level of diffi-
culty appropriate for each grade level, as shown in
Table 1.

Many previous studies (Specia, 2010;
Wubben et al., 2012; Xu et al., 2016; Nisioi et al.,
2017; Zhang and Lapata, 2017; Vu et al., 2018;

1In this study, we use grades K-12.
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Guo et al., 2018; Zhao et al., 2018) in text sim-
plification have trained machine translators on
a monolingual parallel corpus consisting of
complex-simple sentence pairs without consider-
ing the level of each sentence. Therefore, these
text simplification models are ignorant regarding
the sentence level. Scarton and Specia (2018)
developed a pioneering text simplification model
that can control the sentence level. They trained a
text simplification model on a parallel corpus by
attaching tags specifying 11 grade levels to each
sentence (Xu et al., 2015). The trained model
allows the generation of a sentence of a desired
level specified by a tag attached to the input.
This model may control the syntactic complexity
such as the sentence length; however, it often
outputs overly difficult words beyond the target
grade level. To control the lexical complexity in
text simplification, we propose a method for add
weights to a training loss according to levels of
words on top of (Scarton and Specia, 2018), and
thus output only words under the desired level.

Experiment results indicate that the proposed
method improves the BLEU and SARI scores by
1.04 and 0.15 compared to Scarton and Specia
(2018). Moreover, our detailed analysis indicates
that our method controls both the lexical and syn-
tactic complexities and promotes an aggressive
rewriting.

2 Related Work

2.1 Text Simplification

Text simplification can be regarded as a mono-
lingual machine translation problem. Previ-
ous studies have trained a model to trans-
late complex sentences into simpler sentences
on parallel corpora between Wikipedia and
Simple Wikipedia (W-SW) (Zhu et al., 2010;
Coster and Kauchak, 2011). As in the field
of machine translation, early studies (Specia,
2010; Wubben et al., 2012; Xu et al., 2016) were
mainly based on a statistical machine trans-
lation (Koehn et al., 2007; Post et al., 2013).
Inspired by the success of neural machine
translation (Bahdanau et al., 2015), recent stud-
ies (Nisioi et al., 2017; Zhang and Lapata, 2017;
Vu et al., 2018; Guo et al., 2018; Zhao et al.,
2018) use the encoder-decoder model with the at-
tention mechanism. These studies do not consider
the level of each sentence.

Source

Reference

Target

Loss

sequence-to-
sequence 
modelTarget grade 

level

Figure 1: Our method adds a weight to the training loss
based on levels of words w and target level l..

2.2 Controllable Text Simplification
In addition to W-SW, Newsela (Xu et al., 2015)
is a famous dataset available for text simplifica-
tion. Newsela is a parallel corpus with 11 grade
levels. Scarton and Specia (2018) trained a level-
controllable text simplification model on Newsela.
Although their model is a standard attentional
encoder-decoder model similar to (Nisioi et al.,
2017), a special token <grade> indicating the
grade level of the target sentence is attached to
the beginning of the input sentence. This is
a promising approach that has been successful
in similar tasks (Johnson et al., 2017; Niu et al.,
2018). As expected regarding the task of text
simplification, this approach has improved both
BLEU (Papineni et al., 2002) and SARI (Xu et al.,
2016) compared to a baseline model (Nisioi et al.,
2017) that does not consider the target level at all.
This model allows the syntactic complexity to be
controlled; however, it tends to output overly dif-
ficult words beyond the target grade level.

3 Loss Function with Word Level

To control the lexical complexity, our model
weighs a training loss of a text simplification
model considering words that frequently appear in
the sentences of a specific grade level, as shown in
Figure 1. Here, the weight f(w, l) corresponds to
the relevance of the word w at grade level l.

A sequence-to-sequence model commonly uses
the cross-entropy loss. When a model outputs
o = [o1, · · · , oN ] (where N is the size of the vo-
cabulary) at a certain time step, the cross-entropy
loss is as follows:

L(o, y) = −y log o⊤ = − log oc (1)

where y = [y1, · · · , yN ] is a one-hot vector in
which only the c-th element of a correct word is
1 and others are all 0. Our model adds weights to
the loss function (Equation 1) based on the level of
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words such that the model learns to output words
of the desired level:

L′(o, y, w, l) = −f(w, l) · log oc. (2)

As f(·, ·), we use TFIDF or PPMI assuming that
words frequently appear in sentences of level l also
have the same level l.

TFIDF We compute the TFIDF regarding sen-
tences of the same level as a document:

TFIDF(w, l) = P (w | l) · log D

DF(w)
(3)

where P (w | l) is a probability that word w
appears in a set of sentences of grade level l,
D is the number of grade levels2, and DF(w)
is the number of grade levels in which w ap-
pears. By so doing, TFIDF provides more
weights to words that uniquely appear in the
sentences of a specific level.

PPMI Pointwise mutual information (PMI) al-
lows estimating the strength of a co-
occurrence between w and l:

PMI(w, l) = log
P (w | l)
P (w)

. (4)

where P (w) is a probability of word w be-
ing within the entire training corpus, whereas
P (w | l) is the same as Equation 3. Words
with negative PMI scores have a negative cor-
relation against l that means w tends to ap-
pear across different sentence levels. Hence,
we ignore w with a negative PMI using a
positive-PMI (PPMI) function:

PPMI(w, l) = max(PMI(w, l), 0). (5)

Both TFIDF and PPMI have a range of [0, ∞),
and thus we apply the Laplace smoothing:

f(w, l) = Func(w, l) + 1 (6)

Func ∈ {PPMI, TFIDF} (7)

4 Experiment

4.1 Dataset
We evaluated whether our method can control
the grade levels in a text simplification using the
Newsela corpus. The Newsela corpus provides

2Here, D = 11 because we use grade levels 2 to 12.

Grade #Sentences #Words S-length

2 953 9, 882 10.37
3 3, 865 47, 211 12.22
4 43, 971 618, 184 14.06
5 31, 918 526, 769 16.50
6 19, 535 367, 319 18.80
7 17, 322 356, 307 20.57
8 15, 446 376, 678 24.39
9 7, 897 200, 242 25.36
10 1, 018 30, 693 30.15
11 104 2, 844 27.35
12 50, 799 1, 484, 625 29.23

All 192, 828 4, 020, 754 20.85

Table 2: Statistics for the Newsela corpus, where S-
length shows the average number of words in a sen-
tence.

news articles of different levels, which have been
manually rewritten by human experts. It conforms
to the grade levels in the US education system,
where the levels range from 2 to 12.

We use the publicly available version of the
Newsela corpus3 that has been sentence-aligned
by Xu et al. (2015) and divided into 94k, 1k, and
1k sentences for the training, development, and
test, respectively, by Zhang and Lapata (2017).
As in previous studies, we regard each sen-
tence in an article as sharing the same level
as the entire article. Zhang and Lapata (2017)
first divided the set of articles and then ex-
tracted sentence pairs to avoid the same sen-
tences appearing in both the training and test
sets. Note that the Newsela corpus used in
(Scarton and Specia, 2018) is different from the
present corpus, and is preprocessed differently.
Due to these differences, the training, develop-
ment, and test sets used in (Scarton and Specia,
2018) are unreproducible. Therefore, we reimple-
mented (Scarton and Specia, 2018) and compared
it to our method using our public corpus.

Table 2 shows statistics for the Newsela cor-
pus, which clearly present the tendency that lower
grade sentences are significantly shorter than those
of higher grades. This indicates that aggressive
omission of phrases is required to simplify sen-
tences of grade 8 to 12 into those of grade 2 to 7.

3https://newsela.com/data/



263

BLEU ↑ SARI ↑ BLEUST ↓ MAELEN ↓ MPMI ↑

source 21.37 2.82 100.0 10.73 0.08
reference 100.0 70.13 18.30 0.00 0.23

s2s 20.43 28.21 37.60 4.38 0.12
s2s+grade 20.82 29.44 31.96 3.77 0.15
s2s+grade+TFIDF 21.00 29.58 31.56 3.75 0.15
s2s+grade+PPMI 21.86 29.59 31.38 3.69 0.19

Table 3: Results on the Newsela test set.

4.2 Methods for Comparison
During this experiment, the following four meth-
ods were compared.

1. s2s is a baseline, plain sequence-to-sequence
model based on the attention mechanism.

2. s2s+grade is our re-implementation of
Scarton and Specia (2018), which is a state-
of-the-art controllable text simplification.

3. s2s+grade+TFIDF is our model (Sec. 3) im-
plemented on s2s+grade, which adds TFIDF-
based word weighing to the loss function.
TFIDF scores were pre-computed using the
training data.

4. s2s+grade+PPMI is our other model (Sec. 3)
implemented on s2s+grade, which adds
PPMI-based word weighing in the loss func-
tion. PPMI scores were pre-computed using
the training data.

4.3 Implementation Details
In this study, we implemented our model using
Marian (Junczys-Dowmunt et al., 2018).4 Both
the encoder and decoder consist of 2 layers of Bi-
LSTM with the 1, 024-dimensions of hidden lay-
ers and 512-dimensions of the embedding layer
shared by the encoder and decoder including its
output layer. Word embedding was randomly ini-
tialized. A dropout rate of 0.2 was applied to the
hidden layer, and a dropout rate of 0.1 was applied
to the embedding layer. Adam was used as an op-
timizer. Training was stopped when the perplexity
measured on the development set stopped improv-
ing for 8 epochs.5 All scores reported in this ex-
periment are the averages of 3 trials with random
initialization.

4https://github.com/marian-nmt/marian/commit/02f4af4
548.7 epochs on average to train s2s+grade+PPMI.

4.4 Automatic Evaluation Metrics
Following previous studies on text simplifica-
tion, e.g., Scarton and Specia (2018), BLEU6

(Papineni et al., 2002) and SARI7 (Xu et al.,
2016) were used to evaluate the overall perfor-
mance.

In addition, we investigate the scores of
BLEUST, mean absolute error (MAE) of sentence
length (MAELEN), and mean PMI (MPMI) for a
detailed analysis. BLEUST computes a BLEU
score by taking the source and output sentences
as input, which allows evaluating the degree of
rewrites made by a model. The lower BLEUST
is, the more actively the model rewrites the source
sentence.

In addition, MAELEN approximately evaluates
the syntactic complexity of the output based on its
length:

MAELen =
1

N

∑
sR∈Reference
sT∈Target

|Len(sR)− Len(sT )| ,

(8)
where N is the number of sentences in the test set,
and Len(·) provides the number of words in a sen-
tence. The lower the MAELEN is, the more appro-
priate the length of the output.

MPMI evaluates to what extent the levels of the
output words match with the target level:

MPMI =
1

W

∑
s∈Target

∑
w∈s

PMI(w, ls), (9)

where W is the number of words appearing in the
output and ls is the grade level of sentence s. PMI
scores were pre-computed using the training data.
The higher the MPMI is, the more words of the
target level are generated by the model.

6We use the multi-bleu-detok.perl script from https://
github.com/moses-smt/mosesdecoder

7https://github.com/cocoxu/simplification
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Grade Examples

Source
12

In its original incarnation during the ‘ 60s , African-American ” freedom songs ” aimed
to motivate protesters to march into harm ’s way and , on a broader scale , spread news
of the struggle to a mainstream audience .

7

s2s+grade: In the 1960s , African-American ” freedom songs are aimed to motivate
protesters to march into harm ’s way .
s2s+grade+PPMI: In its original people in the 1960s , African-American ” freedom
songs are aimed to inspire protesters to march into harm ’s way .

4

s2s+grade: In the 1960s , African-American ” freedom songs are aimed to motivate
protesters to march into harm ’s way .
s2s+grade+PPMI: African-American ” freedom songs are aimed to inspire protesters
to march into harm ’s way .

Table 4: Example of model outputs. Here, s2s+grade+PPMI successfully simplified some complex words (high-
lighted in bold) and deleted the underlined phrases.

5 Results and Analysis

5.1 Overall Results
Table 3 shows the experiment results. The first two
rows show the performances when the source sen-
tence itself or the reference sentence is regarded as
the model output, which sets the standard to inter-
pret the scores.

Our method outperforms the state-of-the-art
baseline in both the BLEU and SARI metrics. In
particular, s2s+grade+PPMI improved the BLEU
and SARI scores by 1.04 and 0.15 compared to
s2s+grade, respectively.

An evaluation in BLEUST shows that our pro-
posed models conduct an aggressive rewriting. In
addition, s2s+grade+PPMI, which has the highest
performance in both the BLEU and BLEUST met-
rics, conducts many appropriate rewrites that are
far from the source and close to the reference. The
s2s baseline, which does not consider the target
level, applies conservative rewriting, whereas the
proposed model, which considers it more properly
conducts more aggressive rewriting.

The evaluations of MAELEN and MPMI show
that s2s+grade+PPMI can best the control both
syntactic and lexical complexities. From these re-
sults, we confirmed the effectiveness of the text
simplification model that takes the word level into
account.

Table 4 shows examples of the model outputs.
Here, s2s+grade+PPMI paraphrases a complex
word “incarnation” into “people” for grade level
7. In addition, the complex word “motivate” is
simplified to “inspire” for grade level 4. Although

Grade
FKGL MPMI

prev. prop. diff. prev. prop.

<8> 4.92 5.33 +0.41 0.11 0.12
<7> 4.87 5.25 +0.38 0.10 0.12
<6> 4.47 4.56 +0.09 0.12 0.14
<5> 3.51 3.71 +0.20 0.13 0.15
<4> 2.68 2.69 +0.01 0.16 0.19
<3> 2.06 1.89 −0.17 0.18 0.23
<2> 1.81 1.44 −0.37 0.20 0.24

MAE 1.52 1.45 − − −

Table 5: FKGL and MPMI of s2s+grade (prev.) and
s2s+grade+PPMI (prop.) for each grade level. Models
suitable for the target level are highlighted in bold.

both models can remove unimportant phrases “and
, on ∼”, s2s+grade+PPMI successfully summa-
rized shorter sentences for grade level 4.

5.2 Analysis for Each Grade Level
To analyze the level control in detail, we simpli-
fied each source sentence in the test set to all sim-
pler grade levels8. This analysis does not allow an
evaluation based on references such as BLEU be-
cause references are only given for some levels for
each source sentence.

Table 5 shows FKGL (Kincaid et al., 1975) and
MPMI for each target grade level for s2s+grade
(prev.) and s2s+grade+PPMI (prop.). FKGL is

8We omitted grade levels <9>-<12> because the sen-
tences with these grade levels do not exist in the reference
sentences of the training set.
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an automatic evaluation metric that estimates the
textual readability. The FKGL scores correspond
to grade levels of K-12.

An analysis of the FKGL revealed that both
models were oversimplified. However, MAE with
the target grade level shows that the proposed
model is superior to the baseline model. Focus-
ing on the FKGL differences, the proposed model
generates simpler sentences for the simpler tar-
get grade levels than the baseline model, and vice
versa. These results show that incorporating word
levels into the model contributes to a level control
in text simplification.

In the evaluation of MPMI, the proposed
method consistently outperforms the state-of-the-
art baseline at all target levels. As expected, we
confirmed that the proposed method for weighting
the cross-entropy losses based on PPMI encour-
ages the use of words suitable for the target grade
level.

6 Conclusion

We proposed a text simplification method that
controls not only the sentence level but also
the word level. Our method controls the word
level by weighing words in the loss function,
which frequently appear in text of a specific
grade level. The evaluation results confirmed that
our method improved both the BLEU and SARI
scores, and achieved an aggressive rewriting com-
pared to Scarton and Specia (2018). A detailed
analysis indicated that our method achieved an ac-
curate control of the level in converting the sen-
tences into those of the target level.

In this study, we regard a document and
the sentences contained within it to have the
same grade level as in previous studies. In
practice, however, this assumption may not
hold. Although the readability and level in
the units of document (Kincaid et al., 1975)
and phrase (Pavlick and Callison-Burch, 2016;
Maddela and Xu, 2018) have been studied, there
have been no previous works focusing on the level
of the sentences. This direction is an area of our
future work.
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