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Abstract
Codification of free-text clinical narratives
have long been recognised to be beneficial
for secondary uses such as funding, insurance
claim processing and research. In recent years,
many researchers have studied the use of Nat-
ural Language Processing (NLP), related Ma-
chine Learning (ML) methods and techniques
to resolve the problem of manual coding of
clinical narratives. Most of the studies are fo-
cused on classification systems relevant to the
U.S and there is a scarcity of studies relevant to
Australian classification systems such as ICD-
10-AM and ACHI. Therefore, we aim to de-
velop a knowledge-based clinical auto-coding
system, that utilise appropriate NLP and ML
techniques to assign ICD-10-AM and ACHI
codes to clinical records, while adhering to
both local coding standards (Australian Cod-
ing Standard) and international guidelines that
get updated and validated continuously.

1 Introduction

Documentation related to an episode of care of
a patient, commonly referred to as a medical
record, contains clinical findings, diagnoses, inter-
ventions, and medication details which are invalu-
able information for clinical decisions making.
To carry out meaningful statistical analysis, these
medical records are converted into a special set of
codes which are called Clinical codes as per the
clinical coding standards set by the World Health
Organisation (WHO). The International Classifi-
cation of Diseases (ICD) codes are a special set
of alphanumeric codes, assigned to an episode of
care of a patient, based on which reimbursement is
done in some countries (Kaur and Ginige, 2018).
Clinical codes are assigned by trained profession-
als, known as clinical coders, who have a sound
knowledge of medical terminologies, clinical clas-
sification systems, and coding rules and guide-
lines. The current scenario of assigning clinical

codes is a manual process which is very expensive,
time-consuming, and error-prone (Xie and Xing,
2018). The wrong assignment of codes leads to
issues such as reviewing of whole process, finan-
cial losses, increased labour costs as well as delays
in reimbursement process. The coded data is not
only used by insurance companies for reimburse-
ment purposes, but also by government agencies
and policy makers to analyse healthcare systems,
justify investments done in the healthcare industry
and plan future investments based on these statis-
tics (Kaur and Ginige, 2018).

With the transition from ICD-9 to ICD-10 in
1992, the number of codes increased from 3,882
codes to approximately 70,000, which further
makes manual coding a non-trivial task (Subotin
and Davis, 2014). On an average, a clinical coder
codes 3 to 4 clinical records per hour, resulting
in 15-42 records per day depending on the expe-
rience and efficiency of the human coder (Santos
et al., 2008; Kaur and Ginige, 2018). The cost
incurred in assigning clinical codes and their fol-
low up corrections are estimated to be 25 billion
dollars per year in the United States (Farkas and
Szarvas, 2008; Xie and Xing, 2018). There are
several reasons behind the wrong assignment of
codes. First, assignment of ICD codes to patient’s
records is highly erroneous due to subjective na-
ture of human perception (Arifoğlu et al., 2014).
Second, manual process of assigning codes is a te-
dious task which leads to inability to locate crit-
ical and subtle findings due to fatigue. Third, in
many cases, physicians or doctors often use ab-
breviations or synonyms, which causes ambiguity
(Xie and Xing, 2018).

A study by (McKenzie and Walker, 2003), de-
scribes changes that have occurred in the coder
workforce over the last eight years in terms of em-
ployment conditions, duties, resources, and access
to and need for continuous education. Similarly,
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Figure 1: A distributed knowledge-based clinical auto-coding system

another study (Butler-Henderson, 2017), high-
lights major future challenges that health informa-
tion management practitioners and academics will
face with an ageing workforce, where more than
50% of the workforce is aged 45 years or older.

To reduce coding errors and cost, research is be-
ing conducted to develop methods for automated
coding. Most of the research in auto-coding is fo-
cused on ICD-9-CM (Clinical Modification), ICD-
10-CM, ICD-10-PCS (Procedure Coding System)
which are US modifications. Very limited studies
are focused on ICD-10-AM (Australian Modifica-
tion) and Australian Classification of Health Inter-
vention (ACHI).Hence, our research aims to de-
velop a distributed knowledge-based clinical auto-
coding system that would leverage on NLP and
ML techniques, where a human coders will give
their queries to the coding system and in revert the
system will suggest a set of clinical codes. Fig-
ure 1 shows a possible scenario, how a distributed
knowledge-based coding system will be used in
practice.

2 Related Work

In early 19th century, a French statistician Jacques
Bertillon, developed a classification system to
record causes of death. Later in 1948, the WHO
started maintaining the Bertillon classification and
named it as International Statistical Classification
of Disease, Injuries and Causes of Death (Cumer-
lato et al., 2010). Since then, roughly every ten
years, this classification had been revised and in
1992, ICD-10 was approved. Twenty-six (26)

years after the introduction of ICD-10, the next
generation of classification ICD-11 is released in
May 2019 but not yet implemented (Kaur and
Ginige, 2018). ICD-11 increases the complexity
by introducing a new code structure, a new chap-
ter on X-Extension Codes, dimensions of exter-
nal causes (histopathology, consciousness, tem-
porality, and etiology), and a new chapters on
sleep-awake disorder, conditions related to sexual
health, and traditional medicine conditions (Or-
ganisation, 2016; Hargreaves and Njeru, 2014;
Reed et al., 2016).

In previous research related to clinical narra-
tive analysis, different methods and techniques
ranging from pattern matching to deep learn-
ing approaches are applied to categorise clini-
cal narratives into different categories (Mujtaba
et al., 2019). Several researchers across the
globe have employed text classification to cate-
gorise clinical narratives into various categories
using machine learning approaches including su-
pervised (Hastie et al., 2009), unsupervised (Ko
and Seo, 2000), semi-supervised (Zhu and Gold-
berg, 2009), ontology-based (Hotho et al., 2002),
rule-based (Deng et al., 2015), transfer (Pan and
Yang, 2010), and multi-view learning (Amini
et al., 2009).

(Cai et al., 2016) reviewed the fundamentals
of NLP and describe various techniques such as
pattern matching, linguistic approach, statistical
and machine learning approaches that constitute
NLP in radiology, along with some key applica-
tions. (Larkey and Croft, 1995) studied three dif-
ferent classifiers namely: k-nearest neighbor, rel-
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evance feedback and Bayesian independence clas-
sifiers for assigning ICD-9 codes to dictated in-
patient discharge summaries. The study found
that a combination of different classifiers produced
better results than any single type of classifier.
(Farkas and Szarvas, 2008) proposed a rule-based
ICD-9-CM coding system for radiology reports
and achieved good classification performances on
a limited number of ICD-9-CM codes (45 in total).
Similarly, (Goldstein et al., 2007; Pestian et al.,
2007b; Crammer et al., 2007) also proposed au-
tomated system for assigning ICD-9-CM codes to
free text radiology reports.

(Koopman et al., 2015) proposed a system for
automatic ICD-10 classification of cancer from
free-text death certificates. The classifiers were
deployed in a two-level cascaded architecture,
where the first level identifies the presence of can-
cer (i.e., binary form cancer/no cancer), and the
second level identifies the type of cancer. How-
ever, all ICD-10 codes were truncated into three
character level.

All the above mentioned research studies are
based on some type of deep learning, machine
learning or statistical approach, where the infor-
mation contained in the training data is distillate
into mathematical models, which can be success-
fully employed for assigning ICD codes (Chiar-
avalloti et al., 2014). One of the main flaws in
these approaches is that training data is annotated
by human coders. Thus, there is a possibility of in-
accurate ICD codes. Therefore, if clinical records
labelled with incorrect ICD codes are given as an
input to an algorithm, it is likely that the model
will also provide incorrect predictions.

2.1 Standard Pipeline for Clinical Text
Classification

Various research studies have used different meth-
ods and techniques to handle and process clinical
text, but the standard pipeline is utilised in some
shape or form. This section details the steps in the
standard pipeline in machine learning, as it is re-
quired for the auto-coding.

2.1.1 Types of clinical record
Clinical text classification techniques have been
employed on different types of clinical records
such as surgical reports (Stocker et al., 2014; Raja
et al., 2012), radiology reports (Mendona et al.,
2005), autopsy reports (Mujtaba et al., 2018),
death certificates (Koopman et al., 2015), clini-

cal narratives (Meystre and Haug, 2006; Friedlin
and McDonald, 2008), progress notes (Frost et al.,
2005), laboratory reports (Friedlin and McDonald,
2008; Liu et al., 2012), admission notes and pa-
tient summaries (Jensen et al., 2012), pathology
reports (Imler et al., 2013), and unstructured elec-
tronic text (Portet et al., 2009). In this research, we
aim to primarily use clinical discharge summaries
as the input text data.

2.1.2 Datasets available

The data sources used in various research stud-
ies can be categorised into two types: homoge-
neous sources and heterogeneous sources, which
can further be divided into three subtypes: binary
class, multi-class single labeled, multi-class multi-
labeled datasets (Mujtaba et al., 2019). There are
few datasets that are publicly available such as
PhysioNet1, i2b2 NLP dataset2, and OHSUMED3.
In this research, we aim to use both publicly avail-
able and data acquired from hospitals.

2.1.3 Preprocessing

Preprocessing is done to remove meaningless in-
formation from the dataset as the clinical narra-
tives may contain high level of noise, sparsity,
mispelled words, grammatical errors (Nguyen and
Patrick, 2016; Mujtaba et al., 2019). Different pre-
processing techniques are applied in research stud-
ies including sentence splitting, tokenisation, spell
error detection and correction, stemming and lem-
matisation, normalisation (Manning et al., 2008),
removal of stop words, removal of punctuation or
special symbols, abbreviation expansion, chunk-
ing, named entity recognition (Bird et al., 2009),
negation detection (Chapman et al., 2001).

2.1.4 Feature Engineering

Feature engineering is the combination of feature
extraction, feature representation, and feature se-
lection (Mujtaba et al., 2019). Feature extraction is
the process of extracting useful features which in-
cludes Bag of Words (BoW), n-gram, Word2Vec,
and GloVe. Once features are extracted, next step
is to represent in numeric form to feature vectors
using either binary representation, term frequency
(tf), term frequency with inverse document fre-
quency (tf-idf), or normalised tf-idf.

1https://physionet.org/mimic2/
2https://www.i2b2.org/NLP/DataSets/
3http://davis.wpi.edu/xmdv/datasets/ohsumed.html
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2.1.5 Classification
For classification, various research studies have
used classifiers such as Support Vector Machine
(SVM) (Cortes and Vapnik, 1995), k-Nearest
Neighbor (kNN) (Altman, 1992), Convolutional
Neural Network (CNN) (Karimi et al., 2017), Re-
current Neural Network (RNN), Long short-term
memory (LSTM)(Luo, 2017), and Gated Recur-
rent Unit (GRU) (Jagannatha and Yu, 2016).

2.1.6 Evaluation Metrics
The performance of clinical text classification
models can be measured using standard evalua-
tion metrics which include precision, recall, F-
measure (or F-score), accuracy, precision (mi-
cro and macro-average), recall (micro and macro-
average), F-measure (micro and macro-average),
and area under the curve (AUC). These metrics
can be computed by using values of true positive
(TP), false positive (FP), true negative (TN), and
false negative (FN) in the standard confusion ma-
trix (Mujtaba et al., 2019).

3 Experimental Framework

3.1 Data collection and ethics approval

This research has ethics approval from Western
Sydney University Human Research Ethics Com-
mittee (HREC) under reference No: H12628 to
use 1,200 clinical records. The ethics approval
is valid for the next four years until 11th April,
2023. In addition, we also have access to publicly
available dataset such as MIMIC-III and Compu-
tational Medicine Center (CMC) (Pestian et al.,
2007a). Apart from this, more clinical records
from acute or sub-acute hospitals will also be col-
lected.

3.2 Proposed Research

Within the broader scope of this proposal, the
work will be focused on the research questions
given below:

How to optimise the use of computerised algo-
rithms to assign ICD-10-AM and ACHI codes
to clinical records, while adhering to local cod-
ing standard (for example, Australian Coding
Standard (ACS)) and international guidelines,
leveraging on a distributed knowledge-base?

To address main research question, the follow-
ing sub-research questions will be investigated:

Why do certain algorithms perform differently
with similar dataset?
The No free lunch theorem (Wolpert, 1996) states
that there is no such algorithm that is universally
best for every problem. If one algorithm does re-
ally good for a given dataset, it may not do really
well for other dataset. For example, one cannot
say that SVM always does better prediction than
Naı̈ve Bayes or Decision Tree all the times. The
intention of ML or statistical learning research is
not to find the universally best algorithm, but the
reason is that most of the algorithms work on the
sample data and then make predictions or infer-
ence out of that. We cannot make proper truthful
prediction just by working on a sample data. In
fact, the results are all probabilistic in nature, not
100% true or certain. The study (Kaur and Ginige,
2018), performed comparative analysis on differ-
ent approaches such as pattern matching, rule-
based, ML, and hybrid. Each of the above men-
tioned methods and techniques performed differ-
ently in every case, but there was no explanations
given behind the performance of each algorithm.
Moreover, this study did not used ACS rules while
assigning ICD-10-AM and ACHI codes.

There are few reasons that may have effected
the algorithms performance used for codification
of ICD-10-AM and ACHI codes in the previ-
ous study (Kaur and Ginige, 2018). Firstly, do-
main knowledge is very essential before assigning
codes. In Australia, coding standards are used for
clinical coding purpose to provide consistency of
data collection, and support secondary classifica-
tions based on ICD such as the Australian Refined
Diagnosis Related Groups (AR-DRGs). There-
fore, during ICD-10-AM and ACHI code assign-
ment, ACS rules are considered. If these ACS
rules are not considered, then there is a possibil-
ity of wrong assignment of codes. Secondly, the
study (Kaur and Ginige, 2018) had very limited
number of medical records due to which the al-
gorithms were unable to learn and predict correct
codes properly. A similar study (Kaur and Ginige,
2019) done by the same set of authors using the
same dataset describes that the dataset contains
420 unique labels, out of which 221 labels ap-
peared only once in the whole dataset, 77 labels
appeared twice, and only 24 labels appeared more
than 15 times. Therefore, it lowers the learning
rate of the algorithms.

To overcome the above stated problems, we
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will make use of ACS in conjunction in ICD-10-
AM and ACHI codes, and use large-scale data
so that the algorithms can learn properly and
make correct predictions. In order to process
raw data, feature engineering will be carried out
to transform the raw data into feature vectors.
Moreover, in NLP, word embeddings has the abil-
ity to capture high-level semantic and syntactic
properties of text. A study by (Henriksson et al.,
2015) leverages word embeddings to identify
adverse drug events from clinical notes and
shows that using word embeddings can improve
the predictive performance of machine learning
methods. Therefore, in our research, we will
explore semantic and syntactic properties of text
to improve the performance of algorithms which
give different performance on the same dataset.

How to assign ICD codes before referring to lo-
cal and international standards and guidelines?
In the U.S, the Centers for Medicare and Med-
icaid Services (CMS) and the National Center
for Health Statistics (NCHS), provide the guide-
lines for coding and reporting using the ICD-10-
CM. These guidelines are a set of rules that have
been approved by the four organisations: Amer-
ican Hospital Association (AHA), the American
Health Information Association (AHIMA), CMS,
and NCHS (for Health Statistics). Similarly, in
Australia, the clinical coding standards i.e., ACS
rules are designed to be used in conjunction with
ICD-10-AM and ACHI and are applicable to all
public and private hospitals in Australia (for Clas-
sification Development, 2017). The clinical codes
are not only assigned based on the information
provided on the front sheet or the discharge sum-
mary but a complete analysis is performed by fol-
lowing the guidelines given in the ACS.

Since the introduction of ICD-10 in 1992, many
countries have modified the WHO’s ICD-10 clas-
sification system into their country specific report-
ing purpose. For example, ICD-10-CA (Canadian
Modification) and ICD-10-GM (German Modi-
fication). There are few major difference be-
tween the US and Australian classification sys-
tems. Firstly, there are few additional ICD-10-
AM codes that are more specific (approximately
4, 915 codes) that are coded only in Australia and
15 other countries including Ireland, and Saudi
Arabia that use Australian classification system
as their national classification system. For exam-

Figure 2: Difference between ICD-10 and ICD-10-AM
codes.

ple, in the U.S, contact with venomous spiders is
coded as X21, whereas in Australia, it is more
specific by adding fourth character level as shown
in Figure 2. There are 12% ICD-10-AM specific
codes that do not exist in ICD-10-CM, ICD-9-
CM or any other classification system. Secondly,
countries that have developed their own national
classification system use different coding prac-
tices. For example, in the U.S, Pulmonary oedema
is coded as J81, whereas in Australia, to assign
code for Pulmonary oedema, there is ACS rule
0920 which says,“When acute pulmonary oedema
is documented without further qualification about
the underlying cause, assign I50.1 Left ventricular
failure”. Therefore, in our research, we will find
methods and techniques to represent the coding
standards and guidelines in a computerised format
before assigning ICD codes. In addition, we will
also explore mechanisms to manage the evolving
nature of coding standards.

How to pre-process heterogeneous dataset?
Collecting data in health-care domain is a chal-
lenge in itself. Though, there are few publicly
available repositories, there are certain issues to
be resolved before using these in our research. For
example, MIMIC dataset contains de-identified
health data based on ICD-9 codes and Current
Procedural Terminology (CPT) codes. As our
research is focused on assigning ICD-10-AM
and ACHI codes to clinical records, there is
a need of mapping between ICD-9 to ICD-10
and vice-versa and ICD-10-CM to ICD-10-AM.
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There are some existing look-up, translators, or
mapping tools, which will translate ICD-9 codes
into ICD-10 codes and vice versa (Butler, 2007).
Therefore, we will explore and use the existing
mapping tools to convert ICD-9 to ICD-10 codes,
ICD-10 to ICD-10-AM codes or another classifi-
cation system in order to train the model that is
not annotated using ICD-10-AM and ACHI codes.

What sort of a distributed knowledge-based
system would support the assigning clinical
codes?
The majority of studies have used ML, hybrid, and
deep learning approaches for clinical text classifi-
cation. There are two main challenges that one
has to face while doing research in health-care
domain. First, to train the model when data is
scarce. The ML based algorithms for classification
and automated ICD code assignment are charac-
terised by many limitations. For example, knowl-
edge acquisition bottleneck, in which ML algo-
rithms require a large number of annotated data
for constructing an accurate classification model.
Therefore, many believe that the quality of ML
based algorithms highly depended on data rather
than algorithms (Mujtaba et al., 2019). Even af-
ter a great efforts, researchers are able to col-
lect millions of data, there is still a possibility
that the occurrence of some diseases and inter-
ventions will not be enough to train the model
properly and give correct codes. However, when
data is insufficient, transfer learning or fine tun-
ing are other possible options to look into (Singh,
2018). Secondly, it is difficult and expensive to
assign ground truth codes (or label) to the clini-
cal records. Although, the above mentioned ap-
proaches are capable of providing good results, but
these approaches require annotated data in order to
train the model. The labelling process requires hu-
man expert to assign labels (or ICD codes) to each
clinical record. For example, the study (Kaur and
Ginige, 2018) contains 190 de-identified discharge
summaries belonging to diseases and interventions
of respiratory and digestive system. The discharge
summaries were in the hand written form, which
were later converted into digital form and assigned
ground truth codes with the help of a human ex-
pert. Thus, a considerable amount of effort was
exerted in preparing the training data.

Therefore, in our research we aim to develop a
distributed knowledge-base system where humans

(clinical coders) and machines can work together
to overcome the above mentioned challenges. If
machine is unable to predict the correct ICD code
for a given disease or intervention then humans
input will be considered. Moreover, the human
coder can also verify the codes assigned by ma-
chine.

3.3 Baseline Methods
There are three main approaches for automated
ICD codes assignment: (1) machine learning;
(2) hybrid (combining machine learning and rule-
base); and (3) deep learning. Deep learning mod-
els have demonstrated successful results in many
NLP tasks such as language translation (Zhang
and Zong, 2015), image captioning (LeCun et al.,
2015) and sentiment analysis (Socher et al., 2013).
We will work on different ML and deep learn-
ing models including LSTM, CNN-RNN, and
GRU. Pre-processing will be done using standard
pipeline and convert the assigned labels based
on Australian classification system using existing
mapping tools. Feature extraction will be done
using non-sequential and sequential features fol-
lowed by training and testing of the model using
baseline models and deep learning models.

4 Conclusion

In this research proposal, we aim to develop a
knowledge-based clinical auto-coding system that
uses computerised algorithms to assign ICD-10-
AM, ACHI, ICD-11, and ICHI codes to an episode
of care of a patient while adhering coding guide-
lines. Further, we will explore how ML models
can be trained with limited dataset, mapping be-
tween different classification systems, and avoid-
ing labelling efforts.
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