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Abstract

Existing research for visual captioning usu-
ally employs a CNN-RNN architecture that
combines a CNN for image encoding with a
RNN for caption generation, where the vo-
cabulary is constructed from the entire train-
ing dataset as the decoding space. Such ap-
proaches typically suffer from the problem of
generating N-grams which occur frequently
in the training set but are irrelevant to the
given image. To tackle this problem, we pro-
pose to construct an image-grounded vocabu-
lary that leverages image semantics for more
effective caption generation. More concretely,
a two-step approach is proposed to construct
the vocabulary by incorporating both visual
information and relationships among words.
Two strategies are then explored to utilize the
constructed vocabulary for caption generation.
One constrains the generator to select words
from the image-grounded vocabulary only and
the other integrates the vocabulary informa-
tion into the RNN cell during the caption gen-
eration process. Experimental results on two
public datasets show the effectiveness of our
framework compared to state-of-the-art mod-
els. Our code is available on Github1.

1 Introduction

Recent years have witnessed growing popular-
ity of research in multimodal learning across vi-
sion and language. Image captioning (Xu et al.,
2015), one of the most widely studied multimodal
tasks, aims at constructing a short text descrip-
tion given an image. Existing research on im-
age captioning usually employs a CNN-RNN ar-
chitecture with a Convolutional Neural Network
(CNN) used for image feature extraction and a Re-

∗*Corresponding author
1https://github.com/LibertFan/

ImageCaption

Figure 1: Two images from MS-COCO (Lin et al.,
2014) with captions generated by NIC (Vinyals et al.,
2015) and the corresponding ground truth (GT) cap-
tions.

Figure 2: Distribution of images in terms of the num-
ber of distinct words used for their descriptions. X-
axis: the number of distinct words in all correspond-
ing ground truth captions v.s. Y-axis: the number of
instances in MS-COCO.

current Neural Network (RNN) for caption gener-
ation (Vinyals et al., 2015). Although impressive
results have been achieved, existing models suf-
fer from the problem of generating N-grams which
occurred frequently in the training set but are ir-
relevant to the particular given image (Anderson
et al., 2016; Dai et al., 2017).

Examples of caption generation are shown in
Figure 1. Two images are presented with model-
generated captions (Vinyals et al., 2015) and their

https://github.com/LibertFan/ImageCaption
https://github.com/LibertFan/ImageCaption
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Figure 3: Overall framework of our proposed model.

corresponding human-constructed ones. As we
can see, the N-gram “a woman sitting at a ta-
ble” is generated mistakenly for both images. This
is because when generating a text sequence, the
RNN-based generator tends to ignore the semantic
meaning encoded in the given image and instead
generate the text sequences that occurred most of-
ten in the training set. Although different image
grounding strategies have been proposed to ad-
dress this problem, they usually consider visual
information as external features for caption gener-
ation via various attention mechanisms (Xu et al.,
2015; You et al., 2016; Lu et al., 2017). We argue
that visual information should be embedded into
the generation process in a more principled way.

In the CNN-RNN architecture, the RNN-based
generator constructs image captions word by
word. In each step, a word is selected from the
vocabulary built on the entire training set. Gen-
erally, the size of the full vocabulary is on the or-
der of 104. When describing a particular image,
the possible words to be used should be drawn
from a much smaller word set. As an illustration,
we show in Figure 2 the statistics of the number
of distinct words in human-generated captions for
images from MS-COCO (Lin et al., 2014). We
can see that the average size of the pool of words
used for the description of a particular image is
around 30. Based on this observation, we specu-
late that if we can efficiently constrain the word
selection space during the image caption genera-
tion process, we should be able to address the ir-
relevant N-gram problem.

In this paper, we propose to construct an image-
grounded vocabulary as a way to leverage the im-

age semantics for image captioning. For vocabu-
lary construction, we propose a two-step approach
which incorporates both visual semantics and the
relations among words. For text generation, we
explore two strategies to utilize the constructed vo-
cabulary. One uses the vocabulary as a hard con-
straint and the other encodes the weight of each
word obtained from the image-grounded vocabu-
lary into the RNN cell as a soft constraint. Ex-
perimental results on two public datasets show the
effectiveness of using image-grounded vocabulary
for visual captioning compared to several state-
of-the-art approaches in terms of automatic eval-
uation metrics. Further analysis reveals that our
model has the advantage of generating more novel
captions compared to existing approaches.

2 Our Approach

The overall architecture of our model is shown
in Figure 3, which consists of two main stages,
image-grounded vocabulary construction and text
generation with vocabulary constraints. The
image-grounded vocabulary constructor builds a
vocabulary related to a given image by consider-
ing the visual information encoded and the rela-
tionships among words. The text generator with
vocabulary constraints generates captions using
the constructed vocabulary in two different ways.
First, words generated are strictly limited to those
in the image-grounded vocabulary. Second, words
in the image-grounded vocabulary are re-weighted
within the RNN cell such that they are more
likely to be generated. We also study the use of
the image-grounded vocabulary under the frame-
work of reinforcement learning treating the image-
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grounded vocabulary as the action space for cap-
tion generation.

2.1 Image-Grounded Vocabulary
Construction

The image-grounded vocabulary constructor
aims to identify words required for the description
of a given image Ii. Intuitively, words used to de-
scribe an image can be divided into two groups.
One group of words are directly related to the im-
age (e.g., entities or objects depicted in the image)
and the other group of words are function words or
words that do not correspond directly to elements
of the image. We assume that the directly-related
words can be determined based on the visual in-
formation, while the identification of words in the
second group requires the consideration of their
relationship with those in the first group. There-
fore, we propose a two-step strategy to construct
the image-grounded vocabulary.

In the first step, we identify words that are di-
rectly related to a given image. Taking each word
as a label, the construction of the image-grounded
vocabulary can be treated as a multi-label classi-
fication problem. We take the visual features of
the image as input and obtain a probability dis-
tribution Si for words, indicating the relevance of
words for image Ii. Following Fang et al. (2015),
we only consider a list of words with high fre-
quency in the dataset as seeds, denoted as H . The
relevance distribution of words in H for an image
Ii is computed as follows:

S
(H)
i = σ

(
M1(vi)

)
(1)

where vi is the visual features of image Ii and Mk

is a multi-layer perceptron (MLP) with k layers
(one layer in this case), σ(·) denotes a sigmoid
function, S(H)

i stands for the relevance of words
in H for image Ii and S(H)

i is in the same size as
H .

In the second step, we compute the relevance
scores of words in the full vocabulary V given the
image Ii and the probabilities of directly-related
words S(H)

i . Specifically, a 2-layer MLP with sig-
moid function is employed. The probability distri-
bution of words in V considering both visual in-
formation and relations among words is computed
in Equation 2:

S
(V )
i = σ

(
M2

(
[S

(H)
i , vi]

))
(2)

where [·, ·] is the concatenation operation. Dur-
ing inference, we pick the top k words in terms of
their relevance scores to form the image-grounded
vocabulary for image Ii, denoted as Wi. Note that
S
(V )
i stands for the relevance score of words in V

for image Ii and S(V )
i is in the same size as V .

2.2 Text Generation with Vocabulary
Constraints

In order to utilize the image-grounded vocab-
ulary Wi and word relevance distribution S

(V )
i

for caption generation, we explore two different
strategies. One uses Wi as a hard constraint and
the other integrates the relevance of each word into
the RNN cell for caption generation. In what fol-
lows, we first introduce the basic RNN-based text
generator, and then describe each of the two strate-
gies in turn.

2.2.1 RNN-based Generator
RNN-based generator takes the visual features

as input, and generates an image caption word by
word. In each step, an RNN cell takes the hidden
state ht−1 and the output word at−1 from the pre-
vious step as input and computes the hidden state
ht for the current step. Based on ht, a softmax
layer is used to compute the probability distribu-
tion of words in the vocabulary and the top one is
selected as the output. The computation process is
described in Equation 3:

P (wj |Ii, a1, · · · , at−1) = softmax
(
M1(ht)

)
j

at = argmax
wj

P (wj |Ii, a1, · · · , at−1), wj ∈ V (3)

In our case, we use an LSTM (Gers et al., 1999)
as the RNN cell. Suppose the hidden state, the cell
state and the output in the (t−1)th step are denoted
as ht−1, ct−1 and at−1, respectively, the states and
output at the tth step can be computed as:

it = σ
(
Wiaat−1 + Uihht−1

)
ft = σ

(
Wfaat−1 + Ufhht−1

)
ot = σ

(
Woaat−1 + Uohht−1

)
c̃t = tanh

(
Wcaat−1 + Uchht−1

)
ct = it � c̃t + ft � ct−1

ht = ot � tanh(ct) (4)

where � denotes the element-wise multiplication,
and W∗a, U∗a, ∗ ∈ {i, f, o, c} are the parameters
of the LSTM cell.
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2.2.2 Generator with Hard Constraint
A straightforward way of utilizing the image-

grounded vocabulary for text generation is to limit
the decoding space to Wi (refer to word con-
straint in Figure 3). The word selection in each
step within the RNN cell can thus be modified as
follows:

at = argmax
wj

P (wj |Ii, a1, · · · , at−1), wj ∈Wi (5)

In practice, a mask operation mi is introduced
to replace the jth value in the vector with −∞ if
wj is not found in Wi as shown in Equation 6.

mi(·)j = −∞, ∀wj /∈Wi (6)

2.2.3 Generator with Soft Constraint
Instead of using the image-grounded vocabu-

lary as the hard constraint, we further explore
to integrate the probability distribution S

(V )
i of

words in vocabulary V for the given image Ii into
the decoding RNN cell (refer to word-aware in
Figure 3). In the tth step, we simply combine at,
ht and S(V )

i with the element-wise multiplication.
The computation steps in the cell are shown be-
low:

it = σ
(
WisS

(V )
i �Wiaat−1 + UisS

(V )
i � Uihht−1

)
ft = σ

(
WfsS

(V )
i �Wfaat−1 + UfsS

(V )
i � Ufhht−1

)
ot = σ

(
WosS

(V )
i �Woaat−1 + UosS

(V )
i � Uohht−1

)
c̃t = σ

(
WcsS

(V )
i �Wcaat−1 + UcsS

(V )
i � Uchht−1

)
ct = it � c̃t + ft � ct−1

ht = ot � tanh(ct) (7)

where W∗s,W∗a, U∗s, U∗a, ∗ ∈ {i, f, o, c} are the
parameters of the cell.

The new RNN cell integrates information about
the image-grounded vocabulary so that words in
that vocabulary are more likely to be generated.

2.3 Reinforcement Learning for Text
Generation

Although it is straightforward to impose the
hard vocabulary constraint during inference, it is
not easy to train the text generator with the hard
constraint since words in the ground-truth caption
may not appear in the image-grounded vocabu-
lary Wi constructed for image Ii. We denote such
words as:

at ∈ W̃i \Wi (8)

where W̃i is the ground-truth vocabulary for image
Ii. In order to tackle this problem, we employ re-
inforcement learning to train the generator under
the vocabulary constraint so that it is less likely
to select words not in Wi. This strategy not only
aligns the behavior of word selection during train-
ing and testing, but also makes the generator better
accustomed to the distribution of Wi through the
feedback reward.

Recall the goal of reinforcement learning is to
maximize the expected reward of the generator
with parameter θ:

Lθ = E(a1,··· ,aT )∼pθ
[
r(a1, · · · , aT )

]
(9)

The policy gradient of Equation 9 with a base-
line is shown in Equation 10.

5θLθ ≈
(
r(a1, · · · , aT )− b

)
5θ log pθ(a1, · · · , aT )

(10)

Following Rennie et al. (2017), we utilize
CIDEr-D (Vedantam et al., 2015) as the reward
of the generated sentence (a1, · · · , aT ) and set
b = r(â1, · · · , âT ) which is the reward obtained
by the current model with greedy decoding.

In summary, the training strategy with rein-
forcement learning under the vocabulary con-
straint can be described as follows:
Algorithm 1 Caption generation with
reinforcement learning

1: for t = 1 : T do

2: pt(wj) = softmax
(
mi

(
M1(ht)

))
j

3: ât = argmaxwj pt(wj), at ∼ pt(wj)
4: b = r(â1, · · · , âT )
5: L =

(
r(a1, · · · , aT )− b

)
log p(a1, · · · , aT )

2.4 Training
The overall training procedure of our proposed

framework can be described by the following four
steps:
Algorithm 2 Training procedure

1: Train the vocabulary constructor to build the
image-grounded vocabulary Wi.

2: Train the generatorGθ with cross-entropy loss
under the soft constraints.

3: Train the generator Gθ with reinforcement
learning according to Equation 3.

4: Train the generator Gθ with reinforcement
learning under the vocabulary constraints ac-
cording to Algorithm 1.
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MS COCO Flickr30k
Model B-4 R M C B-4 R M C

ATT (You et al., 2016) 30.4 - 24.3 - 23.0 - 18.9 -
AdapAtt (Lu et al., 2017) 31.2 53.0 25.0 97.0 23.3 45.5 19.3 48.2

TopDown (Anderson et al., 2018) 32.4 53.8 25.7 101.1 23.7 45.6 19.7 49.8
NIC (Vinyals et al., 2015) 28.6 55.7 25.0 89.2 20.3 48.3 19.1 42.0

NIC+RL (Rennie et al., 2017) 31.5 57.6 25.6 101.4 21.4 49.2 19.6 48.2
NIC+WC 29.3 56.3 25.4 93.1 20.4 48.6 19.8 46.2

NIC+WC+WA 31.5 57.6 26.0 97.6 22.2 50.3 20.4 51.5
NIC+WC+RL 32.2 58.1 26.0 103.7 22.3 50.3 20.4 52.1

NIC+WC+WA+RL 33.0 58.6 26.4 106.6 24.5 51.6 21.5 58.4
NIC+WC(GT) 50.7 67.6 32.7 142.8 37.9 60.2 26.2 86.3

Table 1: Overall performance of different models for image captioning, where B-4, R, M and C are short for
BLEU-4, ROUGE, METEOR and CIDEr-D scores, respectively. Numbers in bold denote the best performance in
each column.

3 Experiment

3.1 Dataset

We evaluate our proposed framework on MS-
COCO (Lin et al., 2014) and Flickr30k (Plummer
et al., 2015). In MS-COCO, there are 113,287 im-
ages in the training set and 5,000 images in both of
the validation and test sets. In Flickr30k, the num-
ber of images for the training, validation and test
sets is 29,000, 1,000 and 1,000, respectively. Each
image contains 5 human annotated captions. We
split the dataset following the process described
in (Karpathy and Fei-Fei, 2015).

3.2 Implementation Details

For image representation, we rescale the image
to 224×224 and use ResNet-152 (He et al., 2016)
pre-trained on ImageNet (Russakovsky et al.,
2015) to extract features of dimension 2,048. The
mini-batch size is 64. The dimensions of LSTM
hidden unit and the word embedding are 512 and
300, respectively, and the word embedding is ini-
tialized with GloVe (Pennington et al., 2014)2

which is pretrained on Wikipedia 2014 and Gi-
gaword 5. We prune the vocabulary by dropping
words appear less than five times. For the gen-
erator, We train the model with cross-entropy us-
ing Adam (Kingma and Ba, 2014) with an initial
learning rate 1×10−3 which decreases by a factor
of 0.8 every 2 × 104 iterations. Then we train the
generator with reinforcement learning but without

2http://nlp.stanford.edu/data/glove.
6B.zip

hard constraints using Adam with an initial learn-
ing rate 5 × 10−5 which decreases by a factor of
0.8 every 3 × 104 iterations. Finally, we train the
generator with reinforcement learning under the
hard constraints using Adam with an initial learn-
ing rate 5×10−5 which decay at a rate of 0.8 every
2 × 104 iterations. For each model, we evaluate
on the validation set to select the best parameters
with grid search. We set the size of Wi to 64 for
all models with hard constraints.

3.3 Models for Comparison

We compare our model with the state-of-the-art
approaches listed below. In addition, we also per-
formed ablation studies of our proposed model.
We denote the hard word constraint mechanism,
soft word-aware mechanism and reinforcement
learning as WC, WA and RL, respectively.

- NIC (Vinyals et al., 2015) is the baseline CNN-
RNN model trained with cross-entropy loss.
NIC+RL is trained with reinforcement learning.

- ATT (You et al., 2016) detects a list of visual
concepts from a given image, which is used to
guide the caption generation process through an
attention mechanism.

- AdapAtt (Lu et al., 2017) utilizes the context in-
formation of RNN cells in the decoder to better
predict non-visual words.

- TopDown (Anderson et al., 2018) employs the
visual attention mechanism with the two-layer
LSTM.

http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
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- NIC+WC uses the hard word constraints (WC).
NIC+WC+RL is trained with reinforcement
learning using the image-grounded vocabulary
as the action space.

- NIC+WC+WA employs the soft word-aware
(WA) mechanism on top of NIC+WC.
NIC+WC+WA+RL is trained with rein-
forcement learning using the image-grounded
vocabulary as the action space.

- NIC+WC(GT) utilizes the ground-truth vocabu-
lary W̃i as the word constraints instead of Wi.
This is an oracle.

3.4 Overall Performance

We report scores of several widely used met-
rics for image captioning evaluation, including
BLEU (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), ROUGE (Lin and Hovy,
2003) and CIDEr-D (Vedantam et al., 2015). The
overall performance is shown in Table 1. Several
findings stand out:

- Both NIC+WC and NIC+WC+RL perform bet-
ter than their counter-part models NIC and
NIC+RL across all metrics. This shows the ef-
fectiveness of using the word constraint mech-
anism for reducing irrelevant words for a given
image.

- Both NIC+WC+WA and NIC+WC+WA+RL
outperform NIC+WC and NIC+WC+RL respec-
tively. This shows that the word-aware mecha-
nism effectively guides the generator to better
capturing the semantics of a given image.

- Compared to NIC+WC and NIC+WC+WA, both
NIC+WC+RL and NIC+WA+WC+RL achieve
better performance. This demonstrates that
training the generator under the word constraints
with reinforcement learning encourages the gen-
erator to adhere to the constraints set by the
image-grounded vocabulary.

- Our proposed model NIC+WA+WC+RL outper-
forms all the baselines and its variants. How-
ever we notice that there is still a large gap be-
tween our proposed model and the oracle model
NIC+WC (GT). This shows that there is still po-
tential to improve the process for the construc-
tion of the image-grounded vocabulary.

We conducted statistical significance tests (Stu-
dents paired t-test) to verify that the differ-
ences seen among the different approaches were

Figure 4: Performance of different models on MS-
COCO in terms of CIDEr-D with various sizes of Wi.
X-axis: size of Wi, Y-axis: score of CIDEr-D (left),
precision and recall of Wi compared to W̃i. The dotted
lines are the CIDEr-D scores for models with Wi = V .

statistically significant. Results showed that
NIC+WA+WC+RL outperformed NIC+RL sig-
nificantly across all the metrics (p < 0.01). Sim-
ilarly for NIC+WA+WC and NIC (p < 0.01).
This confirms the effectiveness of using image-
grounded vocabulary to improve visual caption-
ing.

3.5 Further Analysis

Further analysis was conducted to evaluate the
sensitivity of our model with respect to parameter
and component setting and present case studies to
illustrate the merits of our model in comparison to
baseline models.

Influence of the size of Wi We explore the in-
fluence of the size of the image-grounded vocabu-
lary on the performance of the generator. We test
three models, namely, NIC+WC, NIC+WC+RL
and NIC+WC+WA+RL using various sizes of Wi,
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and report the CIDEr-D scores. In addition, we
also report the recall and precision of Wi com-
pared to the ground truth W̃i. The results are
shown in Figure 4. Note that models without word
constraints can be interpreted as taking |V | as Wi.

We observe a similar trend of CIDEr-D for all
the three models. It gradually goes up with the in-
creasing size ofWi, reaches the peak at 48, 48 and
64, respectively, and then gradually drops with the
further increase of the size of Wi. It is worth not-
ing that the peak numbers are quite close to the
average number of words (i.e., around 30) in W̃i

shown in Figure 2. The performance of the gen-
erator is poor when the size of Wi is too small
because the possible word choices are too lim-
ited. As the size of Wi gets larger, more irrelevant
words are included, which introduces noise to the
generator and thus performance drops.

Figure 5: Mean CIDEr-D scores with standard deriva-
tion of |Wi| = 64 versus |Wi| = |V |, for
NIC+WC+WA+RL (3 seeds) on the validation set. X-
axis: the number of training iterations (2×104), Y-axis:
CIDEr-D scores.

Robustness of our model In Figure 5, we show
the mean and standard deviation of CIDEr-D
scores of NIC+WC+WA+RL with Wi = 64 and
Wi = |V | in three different runs for training
the generator with reinforcement learning under
word constraints. We can see that the model with
Wi = 64 consistently outperforms the one with
Wi = |V | across the training iterations.

Influence of vocabulary constructor We ana-
lyze the influence of the vocabulary constructor on
the performance of the generator. Instead of us-
ing the vocabulary constructor introduced in sec-
tion 2.1, we build another baseline model that
takes visual features as input and employs a sin-

Model R@64 P@64 B-4 C
NIC+WCb 69.6 32.7 29.0 92.4
NIC+WC 71.2 33.4 29.3 93.1

NIC+WCb+RL 69.6 32.7 31.7 102.3
NIC+WC+RL 71.2 33.4 32.2 103.7

Table 2: Performance of different models with various
vocabulary constructors on MS COCO. R, P, B-4 and
C are short for recall, precision, BLEU-4 and CIDEr-D
respectively.

Figure 6: X-axis: novel caption ratio on MS-COCO v.s.
Y-axis: different models. Novel captions are those gen-
erated during testing that do not appear in the training
set.

gle layer MLP with sigmoid for generating the vo-
cabulary. The variants of the models are named as
NIC+WCb and NIC+WCb+RL. Experimental re-
sults are shown in Table 2. We report precision
and recall of the generated vocabulary to evalu-
ate the constructor directly and report BLEU-4 and
CIDEr-D to see their influence on the generator.

It can be observed that our constructor is able to
build a better vocabulary compared to the baseline
constructor in terms of both precision and recall.
This indicates the effectiveness of our two-step
approach. Moreover, with our proposed vocabu-
lary constructor, both NIC+WC and NIC+WC+RL
outperform NIC+WCb and NIC+WCb+RL respec-
tively, achieving better BLEU-4 and CIDEr-D
scores in image captioning.

Effectiveness of generating novel captions
Novel caption generation is crucial for automatic
image captioning because retrieval-based mod-
els that simply retrieve existing captions from
the training set often produce less human results
though they can achieve high scores in terms of au-
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tomatic evaluation metrics (Devlin et al., 2015b).
The worst case of N-gram problem is that the
model directly generated the same frequent cap-
tions in the training set (Devlin et al., 2015a). Thus
the capability of generating novel captions for an
image that is not seen in the training set indicates
that the generator is able to understand a given im-
age better instead of simply generating frequent N-
grams found in the training set.

In this experiment, we consider captions gener-
ated by models that are not seen in the training set
as novel captions. We show the ratio of novel cap-
tions generated by different models in Figure 6.
Our proposed model outperforms NIC and other
two competitive baselines, TopDown and Adap-
Att, by a large margin. Moreover, NIC+WC is
also able to generate more novel captions com-
pared to NIC, indicating that the word constraint
mechanism helps reducing generic words.

Case Study We show example captions gener-
ated by our model in Figure 7. Results from
two models are presented, namely NIC+RL and
NIC+WA+WC+RL. In order to show how the
image-grounded vocabulary Wi regulate the gen-
eration process, we cross those words in the cap-
tion generated by NIC+RL but not included in
Wi. The crossed words are entity words such
as “grass” and “field” in the first image (up-left),
preposition “on” in the second one (up-right) and
entity word “bench” in the third one (bottom-left).
Examples also indicate the effectiveness of the
word-aware mechanism that guides the generator
to replace “standing” with “walking” in the first
image, “people” with “children” in the third one,
“standing” with “is flying over” in the last one
(bottom-right).

4 Related Work

Research investigation the connection between
vision and language has attracted increasing atten-
tions in the past a few years. Popular tasks in-
clude image captioning, visual question answer-
ing (VQA), and visual question generation. In im-
age captioning, most of the proposed models (Xu
et al., 2015; You et al., 2016; Lu et al., 2017; An-
derson et al., 2018) employ CNN to extract visual
features and RNN to generate captions word by
word (2015). Visual question answering (Antol
et al., 2015; Goyal et al., 2017) aims to provide
an answer to a question related to a given image.
Existing architectures designed for VQA (Mali-

nowski et al., 2015) utilize an RNN to encode the
question, and a CNN to encode the image. Most
efforts are made to align the visual and text infor-
mation for generating the answer. Visual question
generation is a relatively new task that generates
natural questions about an image (Mostafazadeh
et al., 2016). Approaches have been explored
to generate diverse questions (Tang et al., 2017;
Zhang et al., 2017; Fan et al., 2018a) and ques-
tions with a specific property (Fan et al., 2018b).

Instead of using high-level visual features ex-
tracted from the image for text generation, some
researchers explore identifying fine-grained infor-
mation from the image, i.e. objects and attributes,
to guide the process of text generation. Tradition-
ally, template-based approaches are used to com-
pose the caption (Farhadi et al., 2010; Kulkarni
et al., 2013; Lin et al., 2015). After that, different
attention mechanisms are proposed to align visual
information and text for better generation (You
et al., 2016; Lu et al., 2017; Anderson et al., 2018).

For better aligning visual information and text,
some researchers explore identifying semantic
concepts related to the image. Jia et al. (2015)
employs retrieved sentences as additional seman-
tic information to assist generation. Others (Fang
et al., 2015; Wu et al., 2016; You et al., 2016; Gan
et al., 2017) utilize high-frequency words as se-
mantic concepts. Fang et al. (2015) develops fea-
tures based on detected concepts to re-rank the
generated captions. You et al. (2016) employs an
attention mechanism over concepts to enhance the
generator. Gan et al. (2017) applies weight tensors
in LSTM units to integrate the semantic concept
into the generator. Instead, in our proposed ap-
proach, image-grounded vocabulary is built at the
word level and imposed as constraints on caption
generation.

The work most relevant to ours is from Yao et al.
(2017) and Wu et al. (2018). Yao et al. (2017)
incorporates a copy mechanism to encourage the
generator to generate visually related words. Wu
et al. (2018) dynamically construct a vocabulary
with a lightweight network and then picks one
from this smaller vocabulary with a more complex
network to improve computational efficiency. Our
model is novel in three ways. First, we observe
that the large mismatch between the dataset vocab-
ulary and the vocabulary required for describing
an image is one of the main reasons for the gener-
ation of irrelevant N-grams. Second, we propose a
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Figure 7: Examples of generated captions and some corresponding words in image-grounded vocabulary. Words
that are crossed out are not in the image-grounded vocabulary.

novel two-step approach for image-grounded vo-
cabulary construction. Third, we explore two dif-
ferent strategies for caption generation using the
constructed vocabulary.

5 Conclusion and Future Work

In this paper, we have proposed a novel frame-
work which constructs an image-grounded vocab-
ulary to leverage the image semantics for image
captioning in order to tackle the problem of gen-
erating irrelevant N-grams. A novel two-step ap-
proach has been proposed to construct the vocabu-
lary considering both visual information and rela-
tions among words. Two strategies have then been
explored to utilize the constructed vocabulary via
hard constraints and soft constraints. Reinforce-
ment learning has been adopted for the training
of the generator to encourage it to only choose
words from the image-grounded vocabulary. Ex-
periments on two public datasets, namely, MS
COCO and Flickr30k, show that image-grounded
vocabulary is able to enhance the quality of im-
age captions compared to existing state-of-the-art
approaches. In future, we plan to study more ef-
fective ways to construct the image-grounded vo-
cabulary. Furthermore, it is also interesting to de-
sign a mutual reinforcement mechanisms between
the vocabulary constructor and the text generator

to improve both components simultaneously.
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