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Abstract
While paragraph embedding models are re-
markably effective for downstream classifica-
tion tasks, what they learn and encode into a
single vector remains opaque. In this paper, we
investigate a state-of-the-art paragraph embed-
ding method proposed by Zhang et al. (2017)
and discover that it cannot reliably tell whether
a given sentence occurs in the input paragraph
or not. We formulate a sentence content task
to probe for this basic linguistic property and
find that even a much simpler bag-of-words
method has no trouble solving it. This re-
sult motivates us to replace the reconstruction-
based objective of Zhang et al. (2017) with
our sentence content probe objective in a semi-
supervised setting. Despite its simplicity, our
objective improves over paragraph reconstruc-
tion in terms of (1) downstream classification
accuracies on benchmark datasets, (2) faster
training, and (3) better generalization ability.1

1 Introduction

Methods that embed a paragraph into a sin-
gle vector have been successfully integrated into
many NLP applications, including text classifica-
tion (Zhang et al., 2017), document retrieval (Le
and Mikolov, 2014), and semantic similarity and
relatedness (Dai et al., 2015; Chen, 2017). How-
ever, downstream performance provides little in-
sight into the kinds of linguistic properties that are
encoded by these embeddings. Inspired by the
growing body of work on sentence-level linguis-
tic probe tasks (Adi et al., 2017; Conneau et al.,
2018), we set out to evaluate a state-of-the-art
paragraph embedding method using a probe task
to measure how well it encodes the identity of the
sentences within a paragraph. We discover that
the method falls short of capturing this basic prop-
erty, and that implementing a simple objective to

1Source code and data are available at https://github.com/
tuvuumass/SCoPE.

fix this issue improves classification performance,
training speed, and generalization ability.

We specifically investigate the paragraph em-
bedding method of Zhang et al. (2017),
which consists of a CNN-based encoder-decoder
model (Sutskever et al., 2014) paired with a re-
construction objective to learn powerful paragraph
embeddings that are capable of accurately recon-
structing long paragraphs. This model signifi-
cantly improves downstream classification accura-
cies, outperforming LSTM-based alternatives (Li
et al., 2015).

How well do these embeddings encode whether
or not a given sentence appears in the para-
graph? Conneau et al. (2018) show that such iden-
tity information is correlated with performance on
downstream sentence-level tasks. We thus design
a probe task to measure the extent to which this
sentence content property is captured in a para-
graph embedding. Surprisingly, our experiments
(Section 2) reveal that despite its impressive down-
stream performance, the model of Zhang et al.
(2017) substantially underperforms a simple bag-
of-words model on our sentence content probe.

Given this result, it is natural to wonder whether
the sentence content property is actually useful for
downstream classification. To explore this ques-
tion, we move to a semi-supervised setting by
pre-training the paragraph encoder in Zhang et
al.’s model (2017) on either our sentence content
objective or its original reconstruction objective,
and then optionally fine-tuning it on supervised
classification tasks (Section 3). Sentence con-
tent significantly improves over reconstruction on
standard benchmark datasets both with and with-
out fine-tuning; additionally, this objective is four
times faster to train than the reconstruction-based
variant. Furthermore, pre-training with sentence
content substantially boosts generalization ability:
fine-tuning a pre-trained model on just 500 labeled

https://github.com/tuvuumass/SCoPE
https://github.com/tuvuumass/SCoPE
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reviews from the Yelp sentiment dataset surpasses
the accuracy of a purely supervised model trained
on 100,000 labeled reviews.

Our results indicate that incorporating probe ob-
jectives into downstream models might help im-
prove both accuracy and efficiency, which we hope
will spur more linguistically-informed research
into paragraph embedding methods.

2 Probing paragraph embeddings for
sentence content

In this section, we first fully specify our probe task
before comparing the model of Zhang et al. (2017)
to a simple bag-of-words model. Somewhat sur-
prisingly, the latter substantially outperforms the
former despite its relative simplicity.

2.1 Probe task design
Our proposed sentence content task is a
paragraph-level analogue to the word content
task of Adi et al. (2017): given embeddings2

p, s of a paragraph p and a candidate sentence
s, respectively, we train a classifier to predict
whether or not s occurs in p. Specifically, we
construct a binary classification task in which
the input is [p; s], the concatenation of p and s.
This task is balanced: for each paragraph p in
our corpus, we create one positive instance by
sampling a sentence s+ from p and one negative
instance by randomly sampling a sentence s−

from another paragraph p′. As we do not perform
any fine-tuning of the base embedding model, our
methodology is agnostic to the choice of model.

2.2 Paragraph embedding models
Armed with our probe task, we investigate the fol-
lowing embedding methods.3

Zhang et al. (2017) (CNN-R): This model uses
a multi-layer convolutional encoder to compute a
single vector embedding p of an input paragraph
p and a multi-layer deconvolutional decoder that
mirrors the convolutional steps in the encoding
stage to reconstruct the tokens of p from p. We
refer readers to Zhang et al. (2017) for a detailed
description of the model architecture. For a more
intuitive comparison in our experiments, we de-
note this model further as CNN-R instead of CNN-

2computed using the same embedding method
3We experiment with several other models in Ap-

pendix A.1, including an LSTM-based encoder-decoder
model, a variant of Paragraph Vector (Le and Mikolov, 2014),
and BOW models using pre-trained word representations.
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Figure 1: Probe task accuracies across representation
dimensions. BoW surprisingly outperforms the more
complex model CNN-R.

DCNN as in the original paper. In all experiments,
we use their publicly available code.4

Bag-of-words (BoW): This model is simply an
average of the word vectors learned by a trained
CNN-R model. BoW models have been shown to
be surprisingly good at sentence-level probe tasks
(Adi et al., 2017; Conneau et al., 2018).

2.3 Probe experimental details
Paragraphs to train our classifiers are extracted
from the Hotel Reviews corpus (Li et al., 2015),
which has previously been used for evaluating the
quality of paragraph embeddings (Li et al., 2015;
Zhang et al., 2017). We only consider paragraphs
that have at least two sentences. Our dataset has
346,033 training paragraphs, 19,368 for valida-
tion, and 19,350 for testing. The average numbers
of sentences per paragraph, tokens per paragraph,
and tokens per sentence are 8.0, 123.9, and 15.6,
respectively. The vocabulary contains 25,000 to-
kens. To examine the effect of the embedding di-
mensionality d on the results, we trained models
with d ∈ {100, 300, 500, 700, 900}.

Each classifier is a feed-forward neural network
with a single 300-d ReLu layer. We use a mini-
batch size of 32, Adam optimizer (Kingma and Ba,
2015) with a learning rate of 2e-4, and a dropout
rate of 0.5 (Srivastava et al., 2014). We trained
classifiers for a maximum of 100 epochs with
early stopping based on validation performance.

2.4 BoW outperforms CNN-R on sentence
content

Our probe task results are displayed in Figure 1.
Interestingly, BoW performs significantly better

4https://github.com/dreasysnail/textCNN public

https://github.com/dreasysnail/textCNN_public
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Figure 2: A visualization of our semi-supervised approach. We first train the CNN encoder (shown as two copies
with shared parameters) on unlabeled data using our sentence content objective. The encoder is then used for
downstream classification tasks.

Setting CNN-R BoW

Without s+ excluded from p 61.2 82.3
With s+ excluded from p 57.5 61.7

Table 1: Probe task accuracies without and with s+ ex-
cluded from p, measured at d = 300. BoW’s accuracy
degrades quickly in the latter case, suggesting that it
relies much more on low-level matching.

than CNN-R, achieving an accuracy of 87.2%
at 900 dimensions, compared to only 66.4% for
CNN-R. We hypothesize that much of BoW’s suc-
cess is because it is easier for the model to perform
approximate string matches between the candidate
sentence and text segments within the paragraph
than it is for the highly non-linear representations
of CNN-R.

To investigate this further, we repeat the exper-
iment, but exclude the sentence s+ from the para-
graph p during both training and testing. As we
would expect (see Table 1), BoW’s performance
degrades significantly (20.6% absolute) with s+

excluded from p, whereas CNN-R experiences a
more modest drop (3.6%). While BoW still out-
performs CNN-R in this new setting, the dramatic
drop in accuracy suggests that it relies much more
heavily on low-level matching.

3 Sentence content improves paragraph
classification

Motivated by our probe results, we further inves-
tigate whether incorporating the sentence content
property into a paragraph encoder can help in-
crease downstream classification accuracies. We
propose a semi-supervised approach by pre-
training the encoder of CNN-R using our sentence
content objective, and optionally fine-tuning it on
different classification tasks. A visualization of

Dataset Type # classes # examples

Yelp Sentiment 2 560K
DBpedia Topic 14 560K
Yahoo Topic 10 1.4M

Table 2: Properties of the text classification datasets
used for our evaluations.

this procedure can be seen in Figure 2. We com-
pare our approach (henceforth CNN-SC) without
and with fine-tuning against CNN-R, which uses a
reconstruction-based objective.5 We report com-
parisons on three standard paragraph classifica-
tion datasets: Yelp Review Polarity (Yelp), DB-
Pedia, and Yahoo! Answers (Yahoo) (Zhang et al.,
2015), which are instances of common classifica-
tion tasks, including sentiment analysis and topic
classification. Table 2 shows the statistics for each
dataset. Paragraphs from each training set with-
out labels were used to generate training data for
unsupervised pre-training.

Sentence content significantly improves over
reconstruction on both in-domain and out-of-
domain data We first investigate how useful
each pre-training objective is for downstream clas-
sification without any fine-tuning by simply train-
ing a classifier on top of the frozen pre-trained
CNN encoder. We report the best downstream per-
formance for each model across different numbers
of pre-training epochs. The first row of Table 3
shows the downstream accuracy on Yelp when
the whole unlabeled data of the Yelp training set
is used for unsupervised pre-training. Strikingly,

5Here, we use unsupervised pre-training as it allows us
to isolate the effects of the unsupervised training objec-
tives. Zhang et al. (2017) implemented auxiliary unsuper-
vised training as an alternative form of semi-supervised learn-
ing. We tried both strategies and found that they performed
similarly.
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Figure 3: CNN-SC substantially improves generalization ability. Results of CNN-R are taken from Zhang et al.
(2017).

Pre-training CNN-R CNN-SC

On Yelp 67.4 90.0
On Wikipedia 61.4 65.7

Wall-clock speedup 1x 4x

Table 3: Yelp test accuracy (without fine-tuning).
CNN-SC significantly improves over CNN-R.

CNN-SC achieves an accuracy of 90.0%, outper-
forming CNN-R by a large margin. Addition-
ally, sentence content is four times as fast to train
as the computationally-expensive reconstruction
objective.6 Are representations obtained using
these objectives more useful when learned from
in-domain data? To examine the dataset effect, we
repeat our experiments using paragraph embed-
dings pre-trained using these objectives on a sub-
set of Wikipedia (560K paragraphs). The second
row of Table 3 shows that both approaches suffer a
drop in downstream accuracy when pre-trained on
out-of-domain data. Interestingly, CNN-SC still
performs best, indicating that sentence content is
more suitable for downstream classification.

Another advantage of our sentence content ob-
jective over reconstruction is that it better corre-
lates to downstream accuracy (see Appendix A.2).
For reconstruction, there is no apparent cor-
relation between BLEU and downstream accu-
racy; while BLEU increases with the number of
epochs, the downstream performance quickly be-
gins to decrease. This result indicates that early
stopping based on BLEU is not feasible with
reconstruction-based pre-training objectives.

With fine-tuning, CNN-SC substantially boosts
accuracy and generalization We switch gears

6This objective requires computing a probability distribu-
tion over the whole vocabulary for every token of the para-
graph, making it prohibitively slow to train.

Model Yelp DBPedia Yahoo

purely supervised w/o external data
ngrams TFIDF 95.4 98.7 68.5
Large Word ConvNet 95.1 98.3 70.9
Small Word ConvNet 94.5 98.2 70.0
Large Char ConvNet 94.1 98.3 70.5
Small Char ConvNet 93.5 98.0 70.2
SA-LSTM (word level) NA 98.6 NA
Deep ConvNet 95.7 98.7 73.4
CNN (Zhang et al., 2017) 95.4 98.2 72.6

pre-training + fine-tuning w/o external data
CNN-R (Zhang et al., 2017) 96.0 98.8 74.2
CNN-SC (ours) 96.6 99.0 74.9

pre-training + fine-tuning w/ external data
ULMFiT (Howard and Ruder, 2018) 97.8 99.2 NA

Table 4: CNN-SC outperforms other baseline models
that do not use external data, including CNN-R. All
baseline models are taken from Zhang et al. (2017).

now to our fine-tuning experiments. Specifically,
we take the CNN encoder pre-trained using our
sentence content objective and then fine-tune it
on downstream classification tasks with super-
vised labels. While our previous version of CNN-
SC created just a single positive/negative pair of
examples from a single paragraph, for our fine-
tuning experiments we create a pair of examples
from every sentence in the paragraph to maxi-
mize the training data. For each task, we com-
pare against the original CNN-R model in (Zhang
et al., 2017). Figure 3 shows the model perfor-
mance with fine-tuning on 0.1% to 100% of the
training set of each dataset. One interesting result
is that CNN-SC relies on very few training exam-
ples to achieve comparable accuracy to the purely
supervised CNN model. For instance, fine-tuning
CNN-SC using just 500 labeled training examples
surpasses the accuracy of training from scratch on
100,000 labeled examples, indicating that the sen-
tence content encoder generalizes well. CNN-SC
also outperforms CNN-R by large margins when
only small amounts of labeled training data are
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available. Finally, when all labeled training data
is used, CNN-SC achieves higher classification ac-
curacy than CNN-R on all three datasets (Table 4).

While CNN-SC exhibits a clear preference
for target task unlabeled data (see Table 3), we
can additionally leverage large amounts of unla-
beled general-domain data by incorporating pre-
trained word representations from language mod-
els into CNN-SC. Our results show that fur-
ther improvements can be achieved by train-
ing the sentence content objective on top of the
pre-trained language model representations from
ULMFiT (Howard and Ruder, 2018) (see Ap-
pendix A.3), indicating that our sentence content
objective learns complementary information. On
Yelp, it exceeds the performance of training from
scratch on the whole labeled data (560K exam-
ples) with only 0.1% of the labeled data.

CNN-SC implicitly learns to distinguish be-
tween class labels The substantial difference in
downstream accuracy between pre-training on in-
domain and out-of-domain data (Table 3) implies
that the sentence content objective is implicitly
learning to distinguish between class labels (e.g.,
that a candidate sentence with negative sentiment
is unlikely to belong to a paragraph with positive
sentiment). If true, this result implies that CNN-
SC prefers not only in-domain data but also a rep-
resentative sample of paragraphs from all class la-
bels. To investigate, we conduct an additional ex-
periment that restricts the class label from which
negative sentence candidates s− are sampled. We
experiment with two sources of s−: (1) paragraphs
of the same class label as the probe paragraph
(CNN-SC−), and (2) paragraphs from a different
class label (CNN-SC+). Figure 4 reveals that the
performance of CNN-SC drops dramatically when
trained on the first dataset and improves when
trained on the second dataset, which confirms our
hypothesis.

4 Related work

Text embeddings and probe tasks A variety
of methods exist for obtaining fixed-length dense
vector representations of words (e.g., Mikolov
et al., 2013; Pennington et al., 2014; Peters et al.,
2018), sentences (e.g., Kiros et al., 2015; Con-
neau et al., 2017; Subramanian et al., 2018; Cer
et al., 2018), and larger bodies of text (e.g., Le and
Mikolov, 2014; Dai et al., 2015; Iyyer et al., 2015;
Li et al., 2015; Chen, 2017; Zhang et al., 2017) that
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Figure 4: CNN-SC implicitly learns to distinguish be-
tween class labels.

significantly improve various downstream tasks.
To analyze word and sentence embeddings, recent
work has studied classification tasks that probe
them for various linguistic properties (Shi et al.,
2016; Adi et al., 2017; Belinkov et al., 2017a,b;
Conneau et al., 2018; Tenney et al., 2019). In this
paper, we extend the notion of probe tasks to the
paragraph level.

Transfer learning Another line of related work
is transfer learning, which has been the driver
of recent successes in NLP. Recently-proposed
objectives for transfer learning include surround-
ing sentence prediction (Kiros et al., 2015),
paraphrasing (Wieting and Gimpel, 2017), en-
tailment (Conneau et al., 2017), machine trans-
lation (McCann et al., 2017), discourse (Jernite
et al., 2017; Nie et al., 2017), and language mod-
eling (Peters et al., 2018; Radford et al., 2018; De-
vlin et al., 2018).

5 Conclusions and Future work

In this paper, we evaluate a state-of-the-art para-
graph embedding model, based on how well it cap-
tures the sentence identity within a paragraph. Our
results indicate that the model is not fully aware of
this basic property, and that implementing a sim-
ple objective to fix this issue improves classifica-
tion performance, training speed, and generaliza-
tion ability. Future work can investigate other em-
bedding methods with a richer set of probe tasks,
or explore a wider range of downstream tasks.
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A Appendices

A.1 BoW models outperform more complex
models on our sentence content probe

In addition to the paragraph embedding models
presented in the main paper, we also experiment

Model Dimensionality Accuracy

Random – 50.0

trained on paragraphs from Hotel Reviews
CNN-R 900 66.4
BoW (CNN-R) 900 87.2
LSTM-R 900 65.4
Doc2VecC 900 90.8

pre-trained on other datasets
Word2Vec-avg 300 83.2
GloVe-avg 300 84.6
ELMo-avg 1024 88.1

Table 5: Sentence content accuracy for different para-
graph embedding methods. BoW models outperform
more complex models.

with the following embedding methods:

LSTM-R: We consider an LSTM (Hochreiter
and Schmidhuber, 1997) encoder-decoder model
paired with a reconstruction objective. Specifi-
cally, we implement a single-layer bidirectional
LSTM encoder and a two-layer unidirectional
LSTM decoder. Paragraph representations are
computed from the encoder’s final hidden state.

Doc2VecC: This model (Chen, 2017) represents
a document as an average of randomly-sampled
words from within the document. The method in-
troduces a corruption mechanism that favors rare
but important words while suppressing frequent
but uninformative ones. Doc2VecC was found
to outperform other unsupervised BoW-style al-
gorithms, including Paragraph Vector (Le and
Mikolov, 2014), on downstream tasks.

Other BoW models: We also consider other
BoW models with pre-trained word embeddings
or contextualized word representations, including
Word2Vec (Mikolov et al., 2013), Glove (Penning-
ton et al., 2014), and ELMo (Peters et al., 2018).
Paragraph embeddings are computed as the aver-
age of the word vectors. For ELMo, we take the
average of the layers.

The results of our sentence content probe task
are summarized in Table 5.

A.2 Sentence content better correlates to
downstream accuracy than
reconstruction

See Figure 5.
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Figure 5: Pre-training performance vs. downstream ac-
curacy on Yelp. Performance measured on validation
data. There is no apparent correlation between BLEU
and downstream accuracy.
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Figure 6: Further improvements can be achieved by
training sentence content (SC) on top of the pre-
trained language model (LM) representations from
ULMFiT (Howard and Ruder, 2018).

A.3 Further improvements by training
sentence content on top of pre-trained
language model representations

Figure 6 shows that further improvements can be
achieved by training sentence content on top of the
pre-trained language model representations from
ULMFiT (Howard and Ruder, 2018) on Yelp and

IMDB (Maas et al., 2011) datasets, indicating that
our sentence content objective learns complemen-
tary information.7 On Yelp, it exceeds the perfor-
mance of training from scratch on the whole la-
beled data (560K examples) with only 0.1% of the
labeled data.

7Here, we do not perform target task classifier fine-tuning
to isolate the effects of our sentence content objective.


