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Abstract

Feature attribution methods, proposed re-
cently, help users interpret the predictions of
complex models. Our approach integrates fea-
ture attributions into the objective function to
allow machine learning practitioners to incor-
porate priors in model building. To demon-
strate the effectiveness our technique, we ap-
ply it to two tasks: (1) mitigating unintended
bias in text classifiers by neutralizing identity
terms; (2) improving classifier performance in
a scarce data setting by forcing the model to
focus on toxic terms. Our approach adds an L2

distance loss between feature attributions and
task-specific prior values to the objective. Our
experiments show that i) a classifier trained
with our technique reduces undesired model
biases without a tradeoff on the original task;
ii) incorporating priors helps model perfor-
mance in scarce data settings.

1 Introduction

One of the recent challenges in machine learn-
ing (ML) is interpreting the predictions made by
models, especially deep neural networks. Under-
standing models is not only beneficial, but nec-
essary for wide-spread adoption of more complex
(and potentially more accurate) ML models. From
healthcare to financial domains, regulatory agen-
cies mandate entities to provide explanations for
their decisions (Goodman and Flaxman, 2016).
Hence, most machine learning progress made in
those areas is hindered by a lack of model explain-
ability – causing practitioners to resort to simpler,
potentially low-performance models. To supply
for this demand, there has been many attempts for
model interpretation in recent years for tree-based
algorithms (Lundberg et al., 2018) and deep learn-
ing algorithms (Lundberg and Lee, 2017; Smilkov
et al., 2017; Sundararajan et al., 2017; Bach et al.,
2015; Kim et al., 2018; Dhurandhar et al., 2018).

Method Sentence Probability

Baseline
I am gay 0.915
I am straight 0.085

Our Method
I am gay 0.141
I am straight 0.144

Table 1: Toxicity probabilities for samples of a base-
line CNN model and our proposed method. Words are
shaded based on their attribution and italicized if attri-
bution is > 0.

On the other hand, the amount of research fo-
cusing on explainable natural language process-
ing (NLP) models (Li et al., 2016; Murdoch et al.,
2018; Lei et al., 2016) is modest as opposed to im-
age explanation techniques.

Inherent problems in data emerge in a trained
model in several ways. Model explanations can
show that the model is not inline with human judg-
ment or domain expertise. A canonical example is
model unfairness, which stems from biases in the
training data. Fairness in ML models rightfully
came under heavy scrutiny in recent years (Zhang
et al., 2018a; Dixon et al., 2018; Angwin et al.,
2016). Some examples include sentiment analysis
models weighing negatively for inputs containing
identity terms such as “jew” and “black”, and hate
speech classifiers leaning to predict any sentence
containing “islam” as toxic (Waseem and Hovy,
2016). If employed, explanation techniques help
divulge these issues, but fail to offer a remedy. For
instance, the sentence “I am gay” receives a high
score on a toxicity model as seen in Table 1. The
Integrated Gradients (Sundararajan et al., 2017)
explanation method attributes the majority of this
decision to the word “gay.” However, none of the
explanations methods suggest next steps to fix the
issue. Instead, researchers try to reduce biases in-
directly by mostly adding more data (Dixon et al.,
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2018; Chen et al., 2018), using unbiased word vec-
tors (Park et al., 2018), or directly optimizing for
a fairness proxy with adversarial training (Madras
et al., 2018; Zhang et al., 2018a). These methods
either offer to collect more data, which is costly in
many cases, or make a tradeoff between original
task performance and fairness.

In this paper, we attempt to enable injecting
priors through model explanations to rectify is-
sues in trained models. We demonstrate our ap-
proach on two problems in text classification set-
tings: (1) model biases towards protected iden-
tity groups; (2) low classification performance due
to lack of data. The core idea is to add L2 dis-
tance between Path Integrated Gradients attribu-
tions for pre-selected tokens and a target attribu-
tion value in the objective function as a loss term.
For model fairness, we impose the loss on key-
words identifying protected groups with target at-
tribution of 0, so the trained model is penalized
for attributing model decisions to those keywords.
Our main intuition is that undesirable correlations
between toxicity labels and instances of identity
terms cause the model to learn unfair biases which
can be corrected by incorporating priors on these
identity terms. Moreover, our approach allows
practitioners to impose priors in the other direction
to tackle the problem of training a classifier when
there is only a small amount of data. As shown in
our experiments, by setting a positive target attri-
bution for known toxic words 1, one can improve
the performance of a toxicity classifier in a scarce
data regime.

We validate our approach on the Wikipedia
toxic comments dataset (Wulczyn et al., 2017).
Our fairness experiments show that the classifiers
trained with our method achieve the same perfor-
mance, if not better, on the original task, while
improving AUC and fairness metrics on a syn-
thetic, unbiased dataset. Models trained with our
technique also show lower attributions to identity
terms on average. Our technique produces much
better word vectors as a by-product when com-
pared to the baseline. Lastly, by setting an attribu-
tion target of 1 on toxic words, a classifier trained
with our objective function achieves better perfor-
mance when only a subset of the data is present.

1Full list of identity terms and toxic terms used as priors
can be found in supplemental material. Please note the toxic
terms are not censored.

2 Feature Attribution

In this section, we give formal definitions of fea-
ture attribution and a primer on [Path] Integrated
Gradients (IG), which is the basis for our method.

Definition 2.1. Given a function f : Rn →
[0, 1] that represents a model, and an input x =
(x1, ..., xn) ∈ Rn. An attribution of the prediction
at input x is a vector a = (a1, ..., an) and ai is
defined as the attribution of xi.

Feature attribution methods have been studied
to understand the contribution of each input fea-
ture to the output prediction score. This con-
tribution, then, can further be used to interpret
model decisions. Linear models are considered to
be more desirable because of their implicit inter-
pretability, where feature attribution is the product
of the feature value and the coefficient. To some,
non-linear models such as gradient boosting trees
and neural networks are less favorable due to the
fact that they do not enjoy such transparent contri-
bution of each feature and are harder to interpret
(Lou et al., 2012).

Despite the complexity of these models, prior
work has been able to extract attributions with gra-
dient based methods (Smilkov et al., 2017), Shap-
ley values from game theory (SHAP) (Lundberg
and Lee, 2017), or other similar methods (Bach
et al., 2015; Shrikumar et al., 2017). Some of
these attributions methods, for example Path Inter-
grated Gradients and SHAP, not only follow Def-
inition 2.1, but also satisfy axioms or properties
that resemble linear models. One of these axioms
is completeness, which postulates that the sum of
attributions should be equal to the difference be-
tween uncertainty and model output.

Integrated Gradients
Integrated Gradients (Sundararajan et al., 2017)
is a model attribution technique applicable to all
models that have differentiable inputs w.r.t. out-
puts. IG produces feature attributions relative to
an uninformative baseline. This baseline input is
designed to produce a high-entropy prediction rep-
resenting uncertainty. IG, then, interpolates the
baseline towards the actual input, with the predic-
tion moving from uncertainty to certainty in the
process. Building on the notion that the gradient
of a function, f , with respect to input can charac-
terize sensitivity of f for each input dimension, IG
simply aggregates the gradients of f with respect
to the input along this path using a path integral.
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The crux of using path integral rather than over-
all gradient at the input is that f ’s gradients might
have been saturated around the input and integrat-
ing over a path alleviates this phenomenon. Even
though there can be infinitely many paths from a
baseline to input point, Integrated Gradients takes
the straight path between the two. We give the for-
mal definition from the original paper in 2.2.

Definition 2.2. Given an input x and baseline x′,
the integrated gradient along the ith dimension is
defined as follows.

IGi(x,x
′) ::=

(xi − x′i)×
∫ 1

α=0

∂f(x′+α×(x−x′))
∂xi

dα
(1)

where ∂f(x)
∂xi

represents the gradient of f along the
ith dimension at x.

In the NLP setting, x is the concatenated em-
bedding of the input sequence. The attribution of
each token is the sum of the attributions of its em-
bedding.

There are other explainability methods that at-
tribute a model’s decision to its features, but we
chose IG in this framework due to several of its
characteristics. First, it is both theoretically justi-
fied (Sundararajan et al., 2017) and proven to be
effective in NLP-related tasks (Mudrakarta et al.,
2018). Second, the IG formula in 2.2 is differen-
tiable everywhere with respect to model parame-
ters. Lastly, it is lightweight in terms of imple-
mentation and execution complexity.

3 Incorporating Priors

Problems in data manifest themselves in a trained
model’s performance on classification or fairness
metrics. Traditionally, model deficiencies were
addressed by providing priors through extensive
feature engineering and collecting more data. Re-
cently, attributions help uncover deficiencies caus-
ing models to perform poorly, but do not offer ac-
tionability.

To this end, we propose to add an extra term to
the objective function to penalize the L2 distance
between model attributions on certain features and
target attribution values. This modification allows
model practitioners to inject priors. For exam-
ple, consider a model that tends to predict every
sentence containing “gay” as toxic in a comment
moderation system. Penalizing non-zero attribu-
tions on the tokens identifying protected groups

would force the model to focus more on the con-
text words rather than mere existence of certain
tokens.

We give the formal definition of the new ob-
jective function that incorporates priors as the fol-
lows:

Definition 3.1. Given a vector t of size n, where
n is the length of the input sequence and ti is the
attribution target value for the ith token in the in-
put sequence. The prior loss for a scalar output is
defined as:

Lprior(a, t) =
n∑
i

(ai − ti)2 (2)

where ai refers to attribution of the ith token as in
Definition 2.1.

For a multi-class problem, we train our model
with the following joint objective,

Ljoint = L(y,p) + λ
C∑
c

Lprior(ac, tc) (3)

where ac and tc are the attribution and attribution
target for class c, λ is the hyperparameter that con-
trols the stength of the prior loss andL is the cross-
entropy loss defined as follows:

L(y,p) =
C∑
c

−yc log(pc) (4)

where y is an indicator vector of the ground truth
label and pc is the posterior probability of class c.

The joint objective function is differentiable
w.r.t. model parameters when attribution is cal-
culated through Equation 1 and can be trained
with most off-the-shelf optimizers. The proposed
objective is not dataset-dependent and is applica-
ble to different problem settings such as sentiment
classification, abuse detection, etc. It only requires
users to specify the target attribution value for to-
kens of interest in the corpus. We illustrate the ef-
fectiveness of our method by applying it to a toxic
comment classification problem. In the next sec-
tion, we first show how we set the target attribution
value for identity terms to remove unintended bi-
ases while retaining the same performance on the
original task. Then, using the same technique, we
show how to set target attribution for toxic words
to improve classifier performance in a scarce data
setting.
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Identity Base Imp TOK Ours
gay .272 .353 -.006 .000

homosexual .085 .388 -.006 -.000
queer .071 .28 -.006 .000

teenage .030 -0.02 -.006 -.001
lesbian .012 .046 -.006 .001

vocab avg -.002 -.001 -.004 -.001

Table 2: Subset of identity terms we used and their
mean attribution value on the test set. Method names
are abbreviated with the prefix. The last row is the av-
erage across all vocabularies.

4 Experiments

We incorporate human prior in model building on
two applications. First, we tackle the problem of
unintended bias in toxic comment classification
(Dixon et al., 2018) with our proposed method.
For our experiments, we aim to mitigate the issue
of neutral sentences with identity terms being clas-
sified as toxic for a given a set of identity terms. A
subset of the identity terms are listed in the first
column of Table 2. Second, we force the model
to focus on a list of human-selected toxic terms
under scarce data scenario to increase model per-
formance.

In the following section, we introduce the
dataset we train and evaluate on along with a syn-
thetic dataset to further validate our fairness im-
provements. After that, we describe our experi-
mental setup. Then, we compare our method to a
classifier trained without the prior loss and 2 other
baselines. Lastly, we show the results demonstrat-
ing usefulness of our approach with data scarcity.

4.1 Dataset

In this work, we use a dataset containing com-
ments from Wikipedia Talk Pages (Dixon et al.,
2018). Number of samples are 95,692 / 32,128 /
31,866 in the train/dev/test sets respectively. The
ratio of positive (toxic) labels in the training set
is 9.7%. The dataset was annotated by human
raters, where toxicity was defined as a “rude, dis-
respectful, or unreasonable comment that is likely
to make you leave a discussion” per Dixon et al.
(2018). Please refer to the corresponding paper
for more details about collection methodology, bi-
ases present in the data, and toxicity distribution
per comment length.

We also use a synthetically generated dataset to
validate our approach on fairness as in Park et al.

Template Examples Labels
I am Identity Non-toxic
Hug Identity Non-toxic
Being Identity is wonderful Non-toxic
I hate Identity Toxic
You are a moronic Identity Toxic
Name is a disgusting Identity Toxic

Table 3: Example templates used to generate the syn-
thetic dataset for evaluation.

(2018); Dixon et al. (2018). The dataset is created
using a set of templates, developed by Dixon et al.
(2018) 2, where placeholders are replaced with dif-
ferent identity terms. We show a subset of exam-
ple templates in Table 3 and selected identity terms
along with their mean attributions across the test
set in Table 2. We mainly evaluate the effective-
ness of our debiasing technique on this dataset be-
cause the original test sets follow the same biased
distribution. Intuition is that predictions returned
for sentences containing different identity terms in
the exact same context should be similar. Hence,
this dataset enables us to quantify the performance
of a classifier in more detail when controlled on
identity.

4.2 Experimental Setup

For the text classifier, we built a convolutional
neural network (CNN) classifier as in Kim (2014).
The network contains a convolution layer with
128 2-, 3-, 4-gram filters for a sequence length
of 100 followed by a max-pooling layer and soft-
max function. Embeddings were randomly initial-
ized and their size was set to 128. Shorter se-
quences are padded with <pad> token and longer
sequences are truncated. Tokens occurring 5 times
or more are retained in the vocabulary. We set
dropout as 0.2 and used Adam (Kingma and Ba,
2015) as our optimizer with initial learning rate
set to 0.001. We didn’t perform extensive network
architecture search to improve the performance as
it is a reasonably strong classifier with the initial
performance of 95.5% accuracy.

The number of interpolating steps for IG is set
to 50 (as in the original paper) for calculating Rie-
mann approximation of the integral. Since the out-
put of the binary classification can be reduced to a
single scalar output by taking the posterior of the

2https://github.com/conversationai/
unintended-ml-bias-analysis

https://github.com/conversationai/unintended-ml-bias-analysis
https://github.com/conversationai/unintended-ml-bias-analysis
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Whole Dataset Acc F1 AUC FP FN
Baseline .955 .728 .948 .010 .035

Importance .957 .739 .953 .009 .034
TOK Replace .939 .607 .904 .014 .047
Our Method .958 .752 .960 .009 .032
Fine-tuned .955 .720 .954 .007 .038

Table 4: Performance on the Wikipedia toxic comment
dataset. Columns represent Accuracy, F-1 score, Area
Under ROC curve, False Positive, and False Negative.
Numbers represent the mean of 5 runs. Maximum vari-
ance is .012.

positive (toxic) class, the prior is only added to the
positive class in equation 3 . We set

ti =

{
k, if xi ∈ I
ai, otherwise

, (5)

where I is the set of selected terms and xi being
the i th token in the sequence.

For fairness experiments, we set k to be 0 and
I to the set of identity terms with the hope that
these terms should be as neutral as possible when
making predictions. Hyperparamter λ is searched
in the range of (1, 108) and increased from 1 by a
scale of 10 on the dev set and we pick the one with
best F-1 score. λ is set to 106 for the final model.

For data scarcity experiments, we set k to 1 and
I to the set of toxic terms to force the model to
make high attributions to these terms. Hyperpa-
rameter λ is set to 105 across all data size exper-
iments by tuning on the dev set with model given
1% of training data.

Each experiment was repeated for 5 runs with
10 epochs and the best model is selected accord-
ing to the dev set. Training takes 1 minute for a
model with cross-entropy loss and 30 minutes for
a model with joint loss on an NVidia V100 GPU.
However, reducing the step size in IG for calcu-
lating Riemann approximation of the integral to
10 steps reduces the training time to 6 minutes.
Lastly, training with joint loss reaches its best per-
formance in later epochs than training with cross-
entropy loss.

Implementation Decisions
When taking the derivative with respect to the loss,
we treat the interpolated embeddings as constants.
Thus, the prior loss does not back-propagate to
the embedding parameters. There are two reasons
that lead to this decision: (i) taking the gradient of
the interpolate operation would break the axioms

Identity Acc F1 AUC FP FN
Baseline .931 .692 .910 .011 .057

Importance .933 .704 .945 .012 .055
TOK Replace .910 .528 .882 .008 .081
Our Method .934 .697 .949 .008 .058
Finetuned .928 .660 .940 .007 .064

Table 5: Performance statistics of all approaches on the
Wikipedia dataset filtered on samples including iden-
tity terms. Numbers represent the mean of 5 runs. Max-
imum variance is .001.

that IG guarantees; (ii) the Hessian of the embed-
ding matrix is slow to compute. The implementa-
tion decision does not imply that prior loss has no
effect on the word embeddings, though. During
training, the model parameters are updated with
respect to both losses. Therefore, the word embed-
dings had to adjust accordingly to the new model
parameters by updating the embedding parameters
with cross-entropy loss.

4.3 Results on Incorporating Fairness Priors

We compare our work to 3 models with the same
CNN architecture, but different training settings:

• Baseline: A baseline classifier trained with
cross-entropy loss.

• Importance: Classifier trained with cross-
entropy loss, but the loss for samples contain-
ing identity words are weighted in the range
(1, 108), where the actual coefficient is deter-
mined to be 10 on the dev set based on F-1
score.

• TOK Replace: Common technique for mak-
ing models blind to identity terms (Garg
et al., 2018). All identity terms are replaced
with a special <id> token.

We also explore a different training schedule for
cases where a model has been trained to optimize
for a classification loss:

• Finetuned: An already-trained classifier is
finetuned with joint loss for several epochs.
The aim of this experiment is to show that
our method is also applicable for tweaking
trained models, which could be useful if the
original had been trained for a long time.



6279

gay homosexual <id>
Baseline Our method Importance Baseline Our method Importance Tok Replace
a**hole <pad> sh*t b*tch scorecard f*ck 456

f*ck jus f*cking cr*p dutchman b*tch messengers
pathetic tweaking b*tch f*g ‘oh pu**y louie
fu*king sess f*ck bulls*** 678 sucks dome
fa**ot ridiculous penis dumba*s nitrites f*cked accumulation

bas**rd ‘do suck sh*t poured pathetic ink
cr*p manhood pu**y penis nuts c*ck usher
suck dub d*ckhead moron gubernatorial fart wikiepedia
sh*t heartening moron retard convincing a**hole schizophrenics
a*s desire fa**ot gay strung fa**ot notables

Table 6: Top 10 nearest neighbors for tokens ‘gay’ and ‘homosexual’ and <id> for TOK Replace. All asterisks
are inserted by authors to replace certain characters.

Synthetic AUC FPED FNED
Baseline .885 2.77 3.51

Importance .850 2.90 3.06
TOK Replace .930 0.00 0.00
Our Method .952 0.01 0.11
Finetuned .925 0.00 0.19

Table 7: AUC and Bias mitigation metrics on synthetic
dataset. The lower the better for Bias mitigation met-
rics and is bounded by 0. Numbers represent the mean
of 5 runs. Maximum variance is 0.013.

4.3.1 Evaluation on Original Data

We first verify that the prior loss term does not
adversely affect overall classifier performance on
the main task using general performance metrics
such as accuracy and F-1. Results are shown in
Table 4. Unlike previous approaches (Park et al.,
2018; Dixon et al., 2018; Madras et al., 2018), our
method does not degrade classifier performance (it
even improves) in terms of all reported metrics.
We also look at samples containing identity terms.
Table 5 shows classifier performance metrics for
such samples.

The importance weighting approach slightly
outperforms the baseline classifier. Replacing
identity words with a special tokens, on the other
hand, hurts the performance on the main task. One
of the reasons might be that replacing all identity
terms with a token potentially removes other use-
ful information model can rely on. If we were to
make an analogy between the token replacement
method and hard ablation, then the same analogy
can be made between our method and soft abla-
tion. Hence, the information pertaining to identity
terms is not completely lost for our method, but

come at a cost.
Results for fine-tuning experiments show the

performance after 2 epochs. It is seen that the
model converges to similar performance with joint
training after only 2 epochs, albeit being slightly
poorer.

4.3.2 Evaluation on Synthetic Data
Now we run our experiments on the template-
based synthetic data. As stated, this dataset is
used to measure biases in the model since it is
unbiased towards identities. We use AUC along
with False Positive Equality Difference (FPED)
and False Negative Equality Difference (FNED),
which measure a proxy of Equality of Odds (Hardt
et al., 2016), as in Dixon et al. (2018); Park et al.
(2018). FPED sums absolute differences between
overall false positive rate and false positive rates
for each identity term. FNED calculates the same
for false negatives. Results on this dataset are
shown in Table 7. Our method provides sub-
stantial improvement on AUC and almost com-
pletely eliminates false positive and false negative
inequality across identities.

The fine-tuned model also outperforms the
baseline for mitigating the bias. The token re-
placement method comes out as a good baseline
for mitigating the bias since it treats all identi-
ties the same. The importance weighting approach
fails to produce an unbiased model.

4.4 Nearest Neighbors of Identity Terms

Models convert input tokens to embeddings be-
fore providing them to convolutional layers. As
embeddings make up the majority of the parame-
ters of the network and can be exported for use in



6280

Ratio 1% 5% 10%

Toxic Base Ours Base Ours Base Ours
hell -.002 .035 .002 .673 .076 .624

moron -.002 .044 .002 .462 .077 .290
sh*t -.003 .078 .006 .575 .098 .437
f*ck -.003 .142 .013 .643 .282 .682
b*tch -.003 .051 .002 .397 .065 .362

Table 8: Subset of toxic terms we used in the experi-
ments and their mean attribution value on the test set
for different training sizes.

other tasks, we’re interested in how they change
for the identity terms. We show 10 nearest neigh-
bors of the terms <id> (for the token replacement
method), “gay”, and “homosexual” – top two iden-
tity terms with the most mean attribution differ-
ence (our method vs. baseline), in Table 6.

The word embedding of the term “gay” shifts
from having swear words as its neighbors to hav-
ing the <pad> token as the closest neighbor. Al-
though the term “homosexual” has lower mean at-
tribution, its neighboring words are still mostly
swear words in the baseline embedding space.
“homosexual” also moved to more neutral terms
that shouldn’t play a role in deciding if the com-
ment is toxic or not. Although they are not as high
quality as one would expect general-purpose word
embeddings to be possibly due to data size and
the model having a different objective, the results
show that our method yields inherently unbiased
embeddings. It removes the necessity to initialize
word embeddings with pre-debiased embeddings
as proposed in Bolukbasi et al. (2016).

The importance weighting technique penalizes
the model on the sentence level instead of focus-
ing on the token level. Therefore, the word em-
bedding of “gay” doesn’t seem to shift to neutral
words. The token replacement method, on the
other hand, replaces the identity terms with a to-
ken that is surrounded with neutral words in the
embedding space, so it results in greater improve-
ment on the synthetic dataset. However, since all
identity terms are collapsed into one, it’s harder
for the model to capture the context and as a result,
classification performance on the original dataset
drops.

4.5 Results on Incorporating Priors in
Different Training Sizes

We now demonstrate our approach on encourag-
ing higher attributions on toxic words to increase
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Figure 1: Test accuracy for different training sizes. The
rule based method gives positive prediction if the com-
ment includes any of the toxic temrs.

model performance in scarce data regime. We
down-sample the dataset with different ratios to
simulate a data scarcity scenario. To directly vali-
date the effectiveness of prior loss on attributions,
we first show that the attribution of the toxic words
have higher values for our method across different
data ratios compared to the baseline in Table 8.
We also show that the attribution for these terms
increases as training data increases for the base-
line method. We then show model performance
on testing data for different data size ratios for the
baseline and our method in Figure 1. Our method
outperforms the baseline by a big margin in 1%
and 5% ratio. However, the impact of our ap-
proach diminishes after adding more data, since
the model starts to learn to focus on toxic words
itself for predicting toxicity without the need for
prior injection. We can also see that both the base-
line and our method start to catch up with the rule
based approach, where we give positive prediction
if the toxic word is in the sentence, and eventually
outperform it.

5 Discussion and Related Work

For explaining ML models, recent research at-
tempts offer techniques ranging from building in-
herently interpretable models (Kim et al., 2014)
to building a proxy model for explaining a more
complex model (Ribeiro et al., 2016; Frosst and
Hinton, 2017) to explaining inner mechanics
of mostly uninterpretable neural networks (Sun-
dararajan et al., 2017; Bach et al., 2015). One
family of interpretability methods uses sensitivity
of the network with respect to data points (Koh
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and Liang, 2017) or features (Ribeiro et al., 2016)
as a form of explanation. These methods rely on
small, local perturbations and check how a net-
work’s response changes. Explaining text models
has another layer of complexity due to a lock of
proper technique to generate counterfactuals in the
form of small perturbations. Hence, interpretabil-
ity methods tailored for text are quite sparse (Mu-
drakarta et al., 2018; Jia and Liang, 2017; Mur-
doch et al., 2018).

On the other hand, there are many papers crit-
icizing the aforementioned methods by question-
ing their faithfulness, correctness (Adebayo et al.,
2018; Kindermans et al., 2017) and usefulness.
Smilkov et al. (2017) show that gradient based
methods are susceptible to saturation and can be
fooled by adversarial techniques. Other sets of
papers (Miller, 2019; Gilpin et al., 2018) attack
model explanation papers from a philosophical
perspective. However, the lack of actionability
angle is often overlooked. Lipton (2018) briefly
questions the practical benefit of having model ex-
planations from a practitioners perspective. There
are several works taking advantage of model ex-
planations. Namely, using model explanations
to aid doctors in diagnosing retinopathy patients
(Sayres et al., 2018), and removing minimal fea-
tures, called pathologies, from neural networks by
tuning the model to have high entropy on patholo-
gies (Feng et al., 2018). The authors of Ross et al.
(2017) propose a similar idea to our approach in
that they regularize input gradients to alter the de-
cision boundary of the model to make it more con-
sistent with domain knowledge. However, the in-
put gradients technique has been shown to be an
inaccurate explanation technique (Adebayo et al.,
2018).

Addressing and mitigating bias in NLP mod-
els are paramount tasks as the effects on these
models adversely affect protected subpopulations
(Schmidt and Wiegand, 2017). One of the earliest
works is Calders and Verwer (2010). Later, Boluk-
basi et al. (2016) proposed to unbias word vectors
from gender stereotypes. Park et al. (2018) also
try to address gender bias for abusive language
detection models by debiasing word vectors, aug-
menting more data and changing model architec-
ture. While their results seem to show promise for
removing gender bias, their method doesn’t scale
for other identity dimensions such as race and reli-
gion. The authors of Dixon et al. (2018) highlight

the bias in toxic comment classifier models orig-
inating from the dataset. They also supplement
the training dataset from Wikipedia articles to shift
positive class imbalance for sentences containing
identity terms to dataset average. Similarly, their
approach alleviates the issue to a certain extent,
but does not scale to similar problems as their
augmentation technique is too data-specific. Also,
both methods trade original task accuracy for fair-
ness, while our method does not. Lastly, there are
several works (Davidson et al., 2017; Zhang et al.,
2018b) offering methodologies or datasets to eval-
uate models for unintended bias, but they fail to
offer a general framework.

One of the main reasons our approach improves
the model in the original task is that the model is
now more robust thanks to the reinforcement pro-
vided to the model builder through attributions.
From a fairness angle, our technique shares sim-
ilarities with adversarial training (Zhang et al.,
2018a; Madras et al., 2018) in asking the model
to optimize for an additional objective that transi-
tively unbiases the classifier. However, those ap-
proaches work to remove protected attributes from
the representation layer, which is unstable. Our
approach, on the other hand, works with basic
human-interpretable units of information – tokens.
Also, those approaches propose to sacrifice main
task performance for fairness as well.

While our method enables model builders to in-
ject priors to aid a model, it has several limita-
tions. In solving the fairness problem in ques-
tion, it causes the classifier to not focus on the
identity terms even for the cases where an iden-
tity term itself is being used as an insult. More-
over, our approach requires prior terms to be man-
ually provided, which bears resemblance to black-
list approaches and suffers from the same draw-
backs. Lastly, the evaluation methodology that
we and previous papers (Dixon et al., 2018; Park
et al., 2018) rely on are based on a synthetically-
generated dataset, which may contain biases of the
individuals creating it.

6 Conclusion and Future Work

In this paper, we proposed actionability on model
explanations that enable ML practitioners to en-
force priors on their model. We apply this tech-
nique to model fairness in toxic comment classi-
fication. Our method incorporates Path Integrated
Gradients attributions into the objective function
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with the aim of stopping the classifier from carry-
ing along false positive bias from the data by pun-
ishing it when it focuses on identity words.

Our experiments indicate that the models
trained jointly with cross-entropy and prior loss
do not suffer a performance drop on the original
task, while achieving a better performance in fair-
ness metrics on the template-based dataset. Ap-
plying model attribution as a fine-tuning step on a
trained classifier makes it converge to a more debi-
ased classifier in just a few epochs. Additionally,
we show that model can be also forced to focus on
pre-determined tokens.

There are several avenues we can explore as fu-
ture research. Our technique can be applied to
implement a more robust model by penalizing the
attributions falling outside of tokens annotated to
be relevant to the predicted class. Another av-
enue is to incorporate different model attribution
strategies such as DeepLRP (Bach et al., 2015)
into the objective function. Finally, it would be
worthwhile to invest in a technique to extract prob-
lematic terms from the model automatically rather
than providing prescribed identity or toxic terms.
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