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Abstract

We present a fully automated workflow for
phylogenetic reconstruction on large datasets,
consisting of two novel methods, one for fast
detection of cognates and one for fast Bayesian
phylogenetic inference. Our results show that
the methods take less than a few minutes to
process language families that have so far re-
quired large amounts of time and computa-
tional power. Moreover, the cognates and
the trees inferred from the method are quite
close, both to gold standard cognate judgments
and to expert language family trees. Given
its speed and ease of application, our frame-
work is specifically useful for the exploration
of very large datasets in historical linguistics.

1 Introduction

Computational historical linguistics is a relatively
young discipline which aims to provide automated
solutions for those problems which have been
traditionally dealt with in an exclusively manual
fashion in historical linguistics. Computational
historical linguists thus try to develop automated
approaches to detect historically related words
(called “cognates”; Jäger et al. 2017; List et al.
2017; Rama et al. 2017; Rama 2018a), to infer lan-
guage phylogenies (“language trees”; Rama et al.
2018; Greenhill and Gray 2009), to estimate the
time depths of language families (Rama, 2018b;
Chang et al., 2015; Gray and Atkinson, 2003),
to determine the homelands of their speakers
(Bouckaert et al., 2012; Wichmann et al., 2010),
to determine diachronic word stability (Pagel and
Meade, 2006; Rama and Wichmann, 2018), or to
estimate evolutionary rates for linguistic features
(Greenhill et al., 2010).

Despite the general goal of automating tradi-
tional workflows, the majority of studies con-
cerned with phylogenetic reconstruction (includ-
ing studies on dating and homeland inference) still

make use of expert judgments to determine cog-
nate words in linguistic datasets, because detect-
ing cognates is usually regarded as hard to auto-
mate. The problem of manual annotation is that
the process is very time consuming and may show
a lack of objectivity, as inter-annotator agreement
is rarely tested when creating new datasets. The
last twenty years have seen a surge of work in
the development of methods for automatic cog-
nate identification. Current methods reach high
accuracy scores compared to human experts (List
et al., 2017) and even fully automated workflows
in which phylogenies are built from automatically
inferred cognates do not differ a lot from phylo-
genies derived from expert’s cognate judgments
(Rama et al., 2018).

Despite the growing amount of research de-
voted to automated word comparison and fully au-
tomated phylogenetic reconstruction workflows,
scholars have so far ignored the computational
effort required to apply the methods to large
amounts of data. While the speed of the current
workflows can be ignored for small datasets, it
becomes a challenge with increasing amounts of
data, and some of the currently available methods
for automatic cognate detection can only be ap-
plied to datasets with maximally 100 languages.
Although methods for phylogenetic inference can
handle far more languages, they require enormous
computational efforts, even for small language
families of less than 20 varieties (Kolipakam et al.,
2018), which make it impossible for scholars per-
form exploratory studies in Bayesian frameworks.

In this paper, we propose an automated frame-
work for fast cognate detection and fast Bayesian
phylogenetic inference. Our cognate detection al-
gorithm uses an alignment-free technique based
on character skip-grams (Järvelin et al., 2007),
which has the advantage of neither requiring hand-
crafted nor statistically trained matrices of proba-



6226

ble sound correspondences to be supplied.1 Our
fast approach to Bayesian inference uses a sim-
ulated annealing variant (Andrieu et al., 2003)
of the original MCMC algorithm to compute a
maximum-a-posteriori (MAP) tree in a very short
amount of time.

Testing both our fast cognate detection and our
fast phylogenetic reconstruction approach on pub-
licly available datasets, we find that the results
presented in the paper are comparable to the al-
ternative, much more time-consuming algorithms
currently in use. Our automatic cognate detec-
tion algorithm shows results comparable to those
achieved by the SCA approach (List, 2014), which
is one of the best currently available algorithms
that work without inferring regular sound cor-
respondences prior to computation (List et al.,
2017). Our automatically inferred MAP trees
come close to the expert phylogenies reported in
Glottolog (Hammarström et al., 2017), and are at
least as good as the phylogenies inferred with Mr-
Bayes (Ronquist et al., 2012), one of the most
popular programs for phylogenetic inference. In
combination, our new approaches offer a fully au-
tomated workflow for phylogenetic reconstruction
in computational historical linguistics, which is so
fast that it can be easily run on single core ma-
chines, yielding results of considerable quality in
less than 15 minutes for datasets of more than 50
languages.

In the following, we describe the fast cognate
detection program in Section 2. We describe both
the regular variant of the phylogenetic inference
program and our simulated annealing variant in
Section 3. We present the results of our automated
cognate detection and phylogenetic inference ex-
periments and discuss the results in Section 4. We
conclude the paper and present pointers to future
work in Section 5.

2 Fast Cognate Detection

Numerous methods for automatic cognate detec-
tion in historical linguistics have been proposed
in the past (Jäger et al., 2017; List, 2014; Rama
et al., 2017; Turchin et al., 2010; Arnaud et al.,
2017). Most of them are based on the same gen-
eral workflow, by which – in a first stage – all pos-
sible pairs of words within the same meaning slot

1Although Rama (2015) uses skip-grams, the approach in
the paper requires hand-annotated data which we intend to
overcome in this paper.

of a wordlist are compared with each other in or-
der to compute a matrix of pairwise distances or
similarities. In a second stage, a flat cluster algo-
rithm or a network partitioning algorithm is used
to partition all words into cognate sets, taking the
information in the matrix of word pairs as basis
(List et al., 2018b). Differences between the algo-
rithms can be found in the way in which the pair-
wise word comparisons are carried out, to which
degree some kind of pre-processing of the data is
involved, or which algorithm for flat clustering is
being used.

Since any automated word comparison that
starts from the comparison of word pairs needs to
calculate similarities or distances for all n2−n

2 pos-
sible word pairs in a given concept slot, the com-
putation cost for all algorithms which employ this
strategy exponentially increases with the number
of words being compared. If methods addition-
ally require to pre-process the data, for example
to search across all language-pairs for language-
specific similarities, such as regularly correspond-
ing sounds (List et al., 2017; Jäger et al., 2017),
the computation becomes impractical for datasets
of more than 100 languages.

A linear time solution was first proposed by
Dolgopolsky (1964). Its core idea is to represent
all sound sequences in a given dataset by their con-
sonant classes. A consonant class is hereby un-
derstood as a rough partitioning of speech sounds
into groups that are conveniently used by histor-
ical linguistics when comparing languages (such
as velars, [k, g, x], dentals [t, d, T], or liquids [r,
l, K], etc.). The major idea of this approach is
to judge all words as cognate whose initial two
consonant classes match. Given that the method
requires only that all words be converted to their
first consonant classes, this approach, which is
now usually called consonant-class matching ap-
proach (CCM, Turchin et al. 2010), is very fast,
since its computation costs are linear with respect
to the number of words being compared. The task
of assigning a given word to a given cognate set is
already fulfilled by assigning a word a given string
of consonant classes.

The drawback of the CCM approach is a certain
lack of accuracy. While being quite conservative
when applied to words showing the same meaning,
the method likewise misses many valid matches
and thus generally shows a low recall. This is most
likely due to the fact that the method does not not
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contain any alignment component. Words are con-
verted to sound-class strings and only complete
matches are allowed, while good partial matches
can often be observed in linguistic data, as can
be seen from the comparison of English daughter,
represented as TVTVR in sound classes compared
to German Tochter TVKTVR.

In order to develop an algorithm for automatic
cognate detection which is both fast and shows
a rather high degree of accuracy, we need to
(1) learn from the strategy employed by the CCM
method in avoiding any pairwise word compari-
son, while – at the same time – (2) avoiding the
problems of the CCM method by allowing for a
detailed sequence comparison based on some kind
alignment techniques. Since the CCM method
only compares the first two consonants per word,
it cannot identify words like English daughter and
German Tochter as cognate, although the overall
similarity is obvious when comparing the whole
strings.

A straightforward way to account for our two
requirements is using skip-grams of sound-class
representations and to represent words and sound-
class skip-grams in a given dataset in form of a
bipartite network, in which words are assigned to
one type of node, and skip-grams to another one.
In such a network, we could compute multiple
representations of TVTVR and TVKTVR directly
and later see, in which of them the two sequences
match. If, for example, we computed all n-grams
of length 5 allowing to skip one, we would receive
TVTVR for English (only possible solution) and
VKTVR, TKTVR, TVTVR, TVKVR, TVKTR, and
TVKTV for German, with TVTVR matching the
English word, and thus being connected to both
words by an edge in our bipartite network (see Fig-
ure 1).

Similarly, when computing a modified variant
of skip-grams based on n-grams of size 3, where
only consonants are taken into account, and in
which we allow to replace up to one segment sys-
tematically by a gap-symbol (“-”), we can see
from Table 1 that the structure of matching n-
grams directly reflects the cognate relations, with
Greek çEri “hand” opposed to German Hand and
English hand (both cognate), as well as Russian
[ruka], Polish rẼNka (both cognate).

Note that the use of skip-grams here mimics the
alignment component of those automatic cognate
detection methods in which alignments are used.

The difference is that we do not compute the align-
ments between a sequence pair only, but project
each word to a potential (and likewise also re-
stricted) alignment representation. Note also that
– even if skip-grams may take some time to com-
pute – our approach presented here is essentially
linear in computation time requirements, since the
skip-gram calculation represents a constant factor.
When searching for potential cognates in our bi-
partite network, we can say that (A) all connected
components correspond to cognate sets, or (B) use
some additional algorithm to partition the bipar-
tite network into our putative cognate sets. While
computation time will be higher in the latter case,
both cases will be drastically faster than existing
popular methods for automatic cognate detection,
since our bipartite-graph-based approach essen-
tially avoids pairwise word comparisons.

Following these basic ideas, we have devel-
oped a new method for fast cognate detection us-
ing bipartite networks of sound-class-based skip-
grams (BipSkip), implemented as a Python li-
brary (see SI 1). The basic working procedure
is extremely straightforward and consists of three
stages. In a first stage, a bipartite network of
words and their corresponding skip-grams is con-
structed, with edges drawn between all words and
their corresponding skip-grams. In a second, op-
tional stage, the bipartite graph is refined by delet-
ing all skip-gram nodes which are linked to fewer
word nodes than a user-defined threshold. In a
third stage, the bipartite graph is projected to a
monopartite graph and partitioned into cognate
sets, either by its connected components, or with
help of graph partitioning algorithms such as, e.g.,
Infomap (Rosvall and Bergstrom, 2008).

Since it is difficult to assess which kinds of
skip-grams and which kinds of sound-class sys-
tems would yield the most promising results, we
conducted an exhaustive parameter training us-
ing the data of List (2014, see details reported
in SI 2). This resulted in the following parame-
ters used as default for our approach: (1) compute
skip grams exclusively from consonant classes,
(2) compute skip-grams of length 4, (3) include
a gapped version of each word form (allowing
for matches with a replacement), (4) use the SCA
sound class model (List, 2014), and (5) prune
the graph by deleting all skip-gram nodes which
link to less than 20% of the median degree of
all skip-gram nodes in the data. This setting

https://doi.org/10.5281/zenodo.3237508
https://doi.org/10.5281/zenodo.3237508
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TKTVR TVKTR TVKTV TVKVR TVTVR VKTVR

daughterTochter

Figure 1: Bipartite graph of English daughter, German Tochter, and their corresponding sound-class-based skip-
grams of size 5.

yielded F-scores of 0.854 (connected components
partitioning) and 0.852 (Infomap partitioning) on
the training data (using B-Cubes as measure, cf.
Amigó et al. 2009 and section 4.2), suggesting
that our BipSkip method performs in a manner
comparable to the SCA method for automatic cog-
nate detection (List, 2014), which is based on
pairwise sequence comparison methods using im-
proved sound class models and alignment tech-
niques. This also means that it clearly outperforms
the CCM approach on the training data (scoring
0.8) as well as the computationally rather demand-
ing edit distance approach (scoring 0.814, see List
et al. 2017).

IPA çeri hant hænd ruka rẼNka
Cognacy 1 2 2 3 3
Sound Classes CERI HANT HENT RYKA RENKA

H-T - + + - -
HN- - + + - -
HNT - + + - -
R-K - - - + +

Table 1: Shared skip-grams in words meaning “hand”
in Greek, German, English, Russian, and Polish reflect
the known cognate relations of the word.

3 Fast Phylogenetic Inference

Methods for Bayesian phylogenetic inference in
evolutionary biology and historical linguistics
(Yang and Rannala, 1997) are all based on the fol-
lowing Bayes rule:

f(Ψ|X) =
f(X|Ψ)f(Ψ)

f(X)
, (1)

where each state Ψ is composed of τ the tree
topology, T the branch length vector of the tree,
and θ the substitution model parameters where X
is a binary cognate data matrix where each col-
umn codes a cognate set as a binary vector. The
posterior distribution f(Ψ|X) is difficult to calcu-
late analytically since one has to sum over all the
possible rooted topologies ( (2L−3)!

2L−2(L−2)!
) increases

factorially with the number of languages in the

sample. Therefore, Markov Chain Monte Carlo
(MCMC) methods are used to estimate the poste-
rior probability of Ψ.

The Metropolis-Hastings algorithm (a MCMC
algorithm) is used to sample the parameters from
the posterior distribution. This algorithm con-
structs a Markov chain by proposing a new state
Ψ∗ and then accepting the proposed state Ψ∗ with
the probability given in equation 2 where, q(.) is
the proposal distribution.

r =
f(X|Ψ∗)f(Ψ∗)

f(X|Ψ)f(Ψ)

q(Ψ|Ψ∗)

q(Ψ∗|Ψ)
(2)

The likelihood of the data to the new parameters
is computed using the pruning algorithm (Felsen-
stein, 2004, 251-255), which is a special case of
the variable elimination algorithm (Jordan et al.,
2004). We assume that the parameters τ,T, θ
are independent of each other. In the above pro-
cedure, a Markov chain is run for millions of
steps and sampled at regular intervals (called thin-
ning) to reduce autocorrelation between the sam-
pled states. A problem with the above procedure
is that the chain can get stuck in a local maxima
when the posterior has multiple peaks. A different
approach known as Metropolis-coupled Markov
Chain Monte-Carlo methods (MC3) has been ap-
plied to phylogenetics to explore the tree space ef-
ficiently (Altekar et al., 2004).

3.1 MC3

In the MC3 approach, n chains are run in parallel
where n − 1 chains are heated by raising the pos-
terior probability to a power 1/Ti where Ti is the
temperature of ith chain defined as 1 + δ(i − 1)
where δ > 0. A heated chain (i > 1) can ex-
plore peaks more efficiently than the cold chain
since the posterior density is flattened. The MC3
approach swaps the states between a cold chain
and a hot chain at regular intervals using a mod-
ified Metropolis-Hastings ratio. This swapping
procedure allows the cold chain to explore multi-
ple peaks in the tree space successfully. The MC3
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procedure is computationally expensive since it
requires multiple CPU cores to run the Markov
chains in parallel. As a matter of fact, Rama
et al. (2018) employ the MC3 procedure (as im-
plemented in MrBayes; Ronquist et al., 2012) to
infer family phylogenetic trees from automatically
inferred cognate judgments.

3.2 Simulated Annealing

In this paper, we employ a computationally less
intensive and a fast procedure inspired from simu-
lated annealing (Andrieu et al., 2003) to infer the
maximum-a-posteriori (MAP) tree. We refer the
simulated annealing MCMC as MAPLE (MAP es-
timation for Language Evolution) in the rest of the
paper. In this procedure, the Metropolis-Hastings
ratio is computed according to the equation 3.
In this equation, the initial temperature T0 is set
to a high value and then decreased according to
a cooling schedule until Ti → 0 . The final
state of the chain is treated as the maximum-a-
posteriori (MAP) estimate of the inference pro-
cedure. We implement our own tree inference
software in Cython which is made available along
with the paper.

r =

(
f(X|Ψ∗)f(Ψ∗)

f(X|Ψ)f(Ψ)

)1/Ti q(Ψ|Ψ∗)

q(Ψ∗|Ψ)
(3)

All our Bayesian analyses use binary datasets
with states 0 and 1. We employ the General-
ized Time Reversible Model (Yang, 2014, Ch.1)
for computing the transition probabilities between
individual states (0, 1). The rate variation across
cognate sets is modeled using a four category dis-
crete Γ distribution (Yang, 1994) which is sampled
from a Γ distribution with shape parameter α.

MCMC moves We employ multiple moves to
sample the parameters. For continuous parame-
ters such as branch lengths and shape parameter
we use a multiplier move with exponential dis-
tribution (µ = 1) as the proposal distribution.
In the case of the stationary frequencies, we em-
ploy a uniform slider move that randomly selects
two states and proposes a new frequency such that
the sum of the frequencies of the states does not
change. We use two tree moves: Nearest neighbor
interchange (NNI) and a specialized Subpruning
and Regrafting move that operates on leaf nodes
to propose new trees (Lakner et al., 2008).

Cooling Schedule The cooling schedule is very
important for the best performance of a simulated
annealing algorithm (Andrieu et al., 2003). We
experimented with a linear cooling schedule that
starts with a high initial temperature T0 and re-
duces the temperature at iteration i through Ti =
λTi−1 where 0.85 <= λ <= 0.96 (Du and
Swamy, 2016). We decrease the value of Ti un-
til Ti = 10−5. In this paper, we experiment with
reducing the temperature over step size s starting
from an initial temperature T0.

4 Evaluation

4.1 Materials

All the data for training and testing was taken
from publicly available sources and has further
been submitted along with the supplementary ma-
terial accompanying this paper. For training of
the parameters of our BipSkip approach for fast
cognate detection, the data by List (2014) was
used in the form provided by List et al. (2017).
This dataset consists of six subsets each cover-
ing a subgroup of a language family of moder-
ate size and time depth (see SI 2). To test the
BipSkip method, we used both the test set of List
et al. (2017), consisting of six distinct datasets of
moderate size, as well as five large datasets from
five different language families (Austronesian,
Austro-Asiatic, Indo-European, Pama-Nyungan,
and Sino-Tibetan) used for the study by Rama
et al. (2018) on the potential of automatic cognate
detection methods for the purpose of phylogenetic
reconstruction. The latter dataset was also used to
test the MAPLE approach for phylogenetic infer-
ence. The other two datasets could not be used
for the phylogenetic inference task, since these
datasets contain a large number of largely unre-
solved dialect varieties for which no expert classi-
fications are available at the moment. More infor-
mation on all datasets is given in Table 2.

4.2 Evaluation Methods

We evaluate the results of the automatic cognate
detection task through B-Cubed scores (Amigó
et al., 2009), a measure now widely used for the
task of assessing how well a given cognate de-
tection method performs on a given test dataset
(Hauer and Kondrak, 2011; List et al., 2016; Jäger
et al., 2017; List et al., 2017). B-Cubed scores are
reported in form of precision, recall, and F-scores,
with high precision indicating a high amount of

https://doi.org/10.5281/zenodo.3237508
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Dataset Concepts Languages Cognates

Austronesian 210 20 2864
Bai 110 9 285
Chinese 140 15 1189
Indo-European 207 20 1777
Japanese 200 10 460
Ob-Ugrian 110 21 242
(a) BipSkip training data.

Dataset Concepts Languages Cognates

Bahnaric 200 24 1055
Chinese 180 18 1231
Huon 139 14 855
Romance 110 43 465
Tujia 109 5 179
Uralic 173 7 870
(b) BipSkip test data.

Dataset Concepts Languages Cognates

Austronesian 210 45 3804
Austro-Asiatic 200 58 1872
Indo-European 208 42 2157
Pama-Nyungan 183 67 6634
Sino-Tibetan 110 64 1402
(c) BipSkip and MAPLE test data.

Table 2: Datasets (name, concepts, and languages),
used for training (a) and testing of BipSkip (b, c) and
MAPLE (c). Data in (a) is from List (2014), data in (b)
is from List et al. (2017), and data in (c) comes from
Rama et al. (2018).

true positives, and high recall indicating a high
amount of true negatives. Details along with an
example on how B-Cubed scores can be inferred
are given in List et al. (2017). An implementa-
tion of the B-Cubed measure is available from the
LingPy Python library for quantitative tasks in his-
torical linguistics (List et al., 2018a).

We evaluate the performance of the phyloge-
netic reconstruction methods by comparing them
to expert phylogenies through the Generalized
Quartet Distance (GQD), which is a variant of the
quartet distance originally developed in bioinfor-
matics (Christiansen et al., 2006) and adapted for
linguistic trees by Pompei et al. (2011). A quar-
tet consists of four languages and can either be a
star or a butterfly. The quartet distance is defined
as the total number of different quartets divided
by the total number of possible quartets (

(n
4

)
) in

the tree. This definition of quartet distance pe-
nalizes the tree when the gold standard tree has
non-binary nodes which is quite common in lin-

guistic phylogenies. The GQD version disregards
star quartets and computes the distance between
the inferred tree and the gold standard tree as the
ratio between the number of different butterflies
and the total number of butterflies in the gold stan-
dard tree.

4.3 Implementation
Both methods are implemented in form of Python
packages available – along with detailed installa-
tion instructions – from the supplemental material
accompanying the paper (SI 1 and SI 4). While
the BipSkip method for fast cognate detection is
implemented in form of a plug-in for the LingPy
library and thus accepts the standard wordlist for-
mats used in LingPy as input format, MAPLE
reads the data from files encoded in the Nexus for-
mat (Maddison et al., 1997).

4.4 Results
Fast Cognate Detection We tested the two vari-
ants, of the new BipSkip approach for automatic
cognate detection, connected components and In-
fomap (Rosvall and Bergstrom, 2008), on the two
test sets (see Table 2) and calculated the B-Cubed
precision, recall, and F-scores. To allow for a
closer comparison with cognate detection algo-
rithms of similar strength, we also calculated the
results for the SCA method for cognate detection
described in List et al. (2017), and the CCM ap-
proach described in Section 2. The SCA method
uses the Sound-Class-Based Alignment algorithm
(List, 2014) to derive distance scores for all word
pairs in a given meaning slot and uses a flat ver-
sion of the UPGMA method (Sokal and Michener,
1958) to cluster words into cognate sets. Table 3
lists the detailed results for all four approaches and
all 11 subsets of the two datasets, including the
computation time.

As can be seen from the results in Table 3,
the BipSkip algorithm clearly outperforms the
CCM method in terms of overall accuracy on
both datasets. It also comes very close in per-
formance to the SCA method, while at the same
time only requiring a small amount of the time re-
quired to run the SCA analysis. An obvious weak-
ness of our current BipSkip implementation is the
performance on South-East Asian language data.
Here, we can see that the exclusion of tones and
vowels, dictated by our training procedure, leads
to a higher amount of false positives. Unfortu-
nately, this cannot be overcome by simply includ-

https://doi.org/10.5281/zenodo.3237508
https://doi.org/10.5281/zenodo.3237508
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Dataset CCM BipSkip-CC BipSkip-IM SCA

P R FS P R FS P R FS P R FS
Bahnaric 0.92 0.63 0.75 0.82 0.87 0.84 0.85 0.85 0.85 0.88 0.84 0.86
Chinese 0.81 0.74 0.78 0.66 0.95 0.77 0.68 0.93 0.78 0.80 0.79 0.79
Huon 0.89 0.84 0.87 0.73 0.95 0.80 0.73 0.93 0.81 0.79 0.93 0.86
Romance 0.94 0.61 0.74 0.91 0.89 0.90 0.92 0.86 0.89 0.93 0.81 0.87
Tujia 0.97 0.74 0.84 0.89 0.95 0.90 0.89 0.90 0.90 0.97 0.83 0.89
Uralic 0.96 0.86 0.91 0.84 0.93 0.88 0.84 0.93 0.88 0.91 0.91 0.91

TOTAL 0.92 0.74 0.81 0.81 0.91 0.85 0.82 0.90 0.85 0.88 0.85 0.86

TIME 0m1.400s 0m2.960s 0m5.909s 0m25.768s
(a) Test Data from List et al. 2017

Dataset CCM BipSkip-CC BipSkip-IM SCA

P R FS P R FS P R FS P R FS
Austro-Asiatic 0.79 0.64 0.71 0.61 0.81 0.70 0.67 0.77 0.72 0.73 0.80 0.76
Austronesian 0.88 0.58 0.70 0.72 0.72 0.72 0.77 0.68 0.72 0.82 0.74 0.77
Indo-European 0.89 0.64 0.75 0.82 0.73 0.77 0.86 0.69 0.77 0.89 0.74 0.81
Pama-Nyungan 0.64 0.82 0.72 0.71 0.79 0.75 0.75 0.77 0.76 0.59 0.85 0.69
Sino-Tibetan 0.78 0.35 0.48 0.59 0.62 0.60 0.61 0.59 0.60 0.73 0.46 0.56

TOTAL 0.80 0.61 0.67 0.69 0.73 0.71 0.73 0.70 0.71 0.75 0.72 0.72

TIME 0m2.938s 0m9.642s 0m17.642s 2m40.472s
(b) Test Data from Rama et al. 2018

Table 3: Results of the cognate detection experiments. Table (a) presents the results for the performance of the four
methods tested on the dataset by List et al. (2017): the CCM method, our new BipSkip methods in two variants
(with connected components clusters, labelled CC, and the Infomap clusters, labelled IM), and the SCA method.
Table (b) presents the results on the large testset by Rama et al. (2018). The column TIME indicates the time
the code needed to run on a Linux machine (Thinkpad X280, i5, 8GB, ArchLinux OS), using the Unix “time”
command (reporting the real time value).

ing tones in the skip-grams, since not all languages
in the South-East Asian datasets (Sino-Tibetan
and Austro-Asiatic) are tonal, and tone matchings
would thus lead to an unwanted clustering of tonal
and non-tonal languages in the data, which would
contradict certain subgroups in which tone devel-
oped only in a few language varieties, such as Ti-
betan.

The most promising approach to deal consis-
tently with language families such as Sino-Tibetan
would therefore be to extend the current approach
to identify partial instead of complete cognates
(List et al., 2016), given the prominence of pro-
cesses such as compounding or derivation in the
history of Sino-Tibetan and its descendants.

Partial cognates, however, do not offer a direct
solution to the problem, since we currently lack
phylogenetic algorithms that could handle partial
cognates (List, 2016), while approaches to convert
partial into full cognates usually require to take
semantic information into account (Sagart et al.,

2019, 10321). In addition to any attempt to im-
prove on BipSkip by enhancing the training of fea-
tures used for South-East Asian languages, consis-
tent approaches for the transformation of partial
into complete cognate sets will have to be devel-
oped in the future.

Neither of the two BipSkip approaches can
compete with the LexStat-Infomap approach,
which yields F-scores of 0.89 on the first test set
(see List et al. 2017) and 0.77 on the second test set
(see Rama et al. 2018), but this is not surprising,
given that neither of the four approaches compared
here computes regular sound correspondence in-
formation. The obvious drawback of LexStat is its
computation time, with more than 30 minutes for
the first, and more than two hours for the second
test set. While the superior results surely justify its
use, the advantage of methods like BipSkip is that
they can be used for the purpose of exploratory
data analysis or web-based applications.
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Fast Phylogenetic Inference We present the re-
sults of the phylogenetic experiments in Table 4.
Each sub-table shows the setting for s, T0 that
yielded the lowest GQD for each cognate detec-
tion method. We experimented over a wide range
of settings for s ∈ {1, 5, 10, 20, 40, 80, 100} and
T0 ∈ {10, 20, . . . , 90, 100}. We provide the time
and the number of generations taken to infer the
MAP tree for each cognate inference program and
language family. We note that the longest run
takes less than fifteen minutes across all the fami-
lies. In comparison, the results reported by Rama
et al. (2018) using MrBayes takes at least four
hours on six cores for each of the language fam-
ily using the SCA method.

We examined which settings of s/T0 give the
lowest results and found that low step sizes such
as 1 give the lowest results for a wide range of
T0. We examined the results across the settings
and found that the best results can be achieved
with a step size above 20 with initial tempera-
ture set to 50. The lowest GQD distances were
obtained with the SCA cognates. The BipSkip-
IM method emerged as the winner in the case of
the Pama-Nyungan language family. The best re-
sult for Pama-Nyungan is better than the average
GQD obtained through expert cognate judgments
reported in Rama et al. (2018). The weakness
of the BipSkip methods with respect to the Sino-
Tibetan language family is also visible in terms of
the GQD distance.

Comparing the results obtained for the SCA
cognates obtained with MAPLE against the ones
inferred with MrBayes as reported in Rama et al.
(2018), it becomes also clear that our method is
at least as good as MrBayes, showing better re-
sults in Austro-Asiatic, Austronesian, and Pama-
Nyungan.

MAPLE with gold standard cognates We fur-
ther tested if gold standard cognates make a dif-
ference in the inferred tree quality. We find that
the tree quality improves if we employ gold stan-
dard cognates to infer the trees. This result sup-
ports the research track of developing high quality
automated cognate detection systems which can
be employed to analyze hitherto less studied lan-
guage families of the world.

Convergence We investigated if the MAPLE al-
gorithm infers trees whose quality improves across
the generations by plotting the GQD of the sam-

Family s/T0 GQD NGens Time (s)

Austro-Asiatic 80/10 0.0155 18080 282.548
Austronesian 20/80 0.0446 5320 46.698
Indo-European 20/40 0.0138 5060 46.014
Pama-Nyungan 40/60 0.1476 10440 224.036
Sino-Tibetan 80/60 0.0958 20880 295.157
(a) Results for CCM cognates.

Family s/T0 GQD NGens Time (s)

Austro-Asiatic 100/90 0.0135 26900 439.005
Austronesian 100/80 0.0148 26600 285.659
Indo-European 20/80 0.0211 5320 41.544
Pama-Nyungan 80/100 0.1318 21680 435.8
Sino-Tibetan 100/10 0.0722 22600 235.774
(b) Results for SCA cognates.

Family s/T0 GQD NGens Time (s)

Austro-Asiatic 40/60 0.0415 10440 151.561
Austronesian 20/20 0.1022 4780 42.097
Indo-European 80/10 0.0322 18080 190.48
Pama-Nyungan 100/40 0.1647 25300 759.023
Sino-Tibetan 80/20 0.5218 19120 233.173
(c) Results for BipSkip-CC cognates.

Family s/T0 GQD NGens Time (s)

Austro-Asiatic 80/80 0.0245 21280 310.403
Austronesian 40/10 0.0927 9040 82.443
Indo-European 10/100 0.046 2710 28.691
Pama-Nyungan 80/70 0.0777 21120 662.447
Sino-Tibetan 40/80 0.3049 10640 129.903
(d) Results for BipSkip-IM cognates.

Table 4: Results for the MAPLE approach to fast phy-
logenetic inference for each method. The best step size
and initial temperature setting is shown as s/T0. NGens
is the number of generations, Time is the time taken to
run the inference in number of seconds on a single core
Linux machine.

Family s/T0 GQD NGens Time (s)

Austro-Asiatic 100/90 0.0058 26900 476.113
Austronesian 80/80 0.0389 21280 123.167
Indo-European 10/10 0.0135 2260 16.713
Pama-Nyungan 100/10 0.061 22600 605.319
Sino-Tibetan 100/50 0.0475 25700 206.952

Table 5: Results for gold standard cognates.

pled trees against the temperature for all the five
best settings of s/T0 (in bold in Table 4) in Fig-
ure 2. The figure clearly shows that at high tem-
perature settings, the quality of the trees is low
whereas as temperature approaches zero, the tree
quality also gets better for all the language fami-
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Figure 2: Lineplot of GQD against temperature for all the five different language families. The trendlines are
drawn using LOESS smoothing.

lies. Moreover, the curves are monotonically de-
creasing once the temperature is below 12.

5 Conclusion

In this paper we proposed an automated frame-
work for very fast and still highly reliable phyloge-
netic reconstruction in historical linguistics. Our
framework introduces two new methods. The Bip-
Skip approach uses bipartite networks of sound-
class-based skip-grams for the task of automatic
cognate detection. The MAPLE approach makes
use of simulated annealing technique to infer a
MAP tree for linguistic evolution. Both methods
are not only very fast, but – as our tests show
– also quite accurate in their performance, when
compared to similar, much slower, algorithms pro-
posed in the past. In combination, the methods can
be used to assess preliminary phylogenies from
linguistic datasets of more than 100 languages in
less than half an hour on an ordinary single core
machine.

We are well aware that our framework is by no
means perfect, and that it should be used with a
certain amount of care. Our methods are best used
for the purpose of exploratory analysis on larger

datasets which have so far not yet been thoroughly
studied. Here, we believe that the new framework
can provide considerable help to future research,
specifically also, because it does not not require
the technical support of high-end clusters.

Both methods can be further improved in mul-
tiple ways. Our cognate detection method’s weak
performance on South-East Asian languages could
be addressed by enabling it to detect partial cog-
nates instead of complete cognates. At the same
time, new models, allowing for a consistent han-
dling of multi-state characters and a direct han-
dling of partial cognates, could be added to our
fast Bayesian phylogenetic inference approach.
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