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Abstract

Graphics Processing Units (GPUs) are com-
monly used to train and evaluate neural net-
works efficiently. While previous work in deep
learning has focused on accelerating opera-
tions on dense matrices/tensors on GPUs, ef-
forts have concentrated on operations involv-
ing sparse data structures. Operations using
sparse structures are common in natural lan-
guage models at the input and output layers,
because these models operate on sequences
over discrete alphabets. We present two new
GPU algorithms: one at the input layer, for
multiplying a matrix by a few-hot vector (gen-
eralizing the more common operation of mul-
tiplication by a one-hot vector) and one at the
output layer, for a fused softmax and top-N se-
lection (commonly used in beam search). Our
methods achieve speedups over state-of-the-
art parallel GPU baselines of up to 7× and
50×, respectively. We also illustrate how our
methods scale on different GPU architectures.

1 Introduction

The speedups introduced by parallel architectures
inspired the development of accelerators tailored
towards specialized functions. Graphics Process-
ing Units (GPUs) are now a standard platform for
deep learning. GPUs provide faster model training
and inference times compared to serial processors,
because they can parallelize the linear algebra op-
erations used so heavily in neural networks (Raina
et al., 2009).

Currently, major open source toolkits (Abadi
et al., 2016) provide additional layers of abstrac-
tion to support one or more parallel GPU architec-
tures. The seamless compatibility with multiple
GPUs allows researchers to train a single model
on multiple hardware platforms with no signifi-
cant changes to their code base and no specialized
knowledge about the targeted architectures. The

disadvantage of hardware agnostic APIs is the lack
of optimizations for a set of task-specific func-
tions.

Adapting parallel neural operations to a spe-
cific hardware platform is required to obtain op-
timal speed. Since matrix operations are used
heavily in deep learning, much research has been
done on optimizing them on GPUs (Chetlur et al.,
2014; Gupta et al., 2015). Recently, some efforts
have been made to other kinds of operations: se-
rial operations running on the GPU (Povey et al.,
2016), operations not involving matrix multiplica-
tions (Bogoychev et al., 2018), and models using
sparse structures (Zhang et al., 2016). In this pa-
per, we focus on sparse operations running exclu-
sively on the GPU architecture.

Much recent work in High Performance Com-
puting (HPC) and Natural Language Processing
(NLP) focuses on an expensive step of a model or
models and optimizes it for a specific architecture.
The lookup operation used in the input layer and
the softmax function used in the output are two
examples seen in machine translation, language
modeling, and other tasks. Previous work has ac-
celerated the softmax step by skipping it entirely
(Devlin et al., 2014), or approximating it (Shim
et al., 2017; Grave et al., 2017).

Another strategy is to fuse multiple tasks into a
single step. This approach increases the room for
parallelism. Recent efforts have fused the softmax
and top-N operations to accelerate beam search on
the GPU using similar approaches (Hoang et al.,
2018; Milakov and Gimelshein, 2018). Our ap-
proach differs from former methods in the follow-
ing aspects: We deliver a novel method tailored
towards scenarios seen in Neural Machine Trans-
lation (NMT), we introduce a new GPU-specific
method to obtain the top-N elements from a list
of hypotheses using a different sorting mecha-
nism, and we introduce a sparse lookup method
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for GPUs.
NMT uses beam search during inference to limit

the full set of potential output translations ex-
plored during decoding (Cho et al., 2014; Graves,
2012). This algorithm is widely used to obtain
state-of-the-art results during test time. At each
decoding time-step t, the top-N hypotheses are
chosen for further expansion and the rest are dis-
carded. The top-N selection part of the search has
been accelerated using hashing methods to avoid a
full sort (Shi et al., 2018; Pagh and Rodler, 2004).
The aim of this paper is to both combine softmax
and top-N operations seen in the last layer of a
neural network and optimize the top-N selection
operation used by several NMT models.

Our work uses ideas from previous work to ac-
celerate two different operations. We focus on op-
erations that manipulate sparse structures (Saad,
1990). By sparse, we mean operations that only
require a small fraction of the elements in a tensor
to output the correct result. We propose two dif-
ferent optimizations for sparse scenarios in deep
learning: The first operation involves the first layer
of a neural network. We accelerate the first matrix
multiplication using batched sparse vectors as in-
put. The second operation is the computation of
the softmax used for beam search. We combine
the softmax and the top-N selection into one op-
eration obtaining a speedup over a parallel state-
of-the-art baseline. We show that our fused top-
N selection and sparse lookups achieve speedups
of 7× and 50× relative to other parallel NVIDIA
baselines.

2 Graphics Processing Units

GPUs are widely used to accelerate a variety of
non-neural tasks such as search (Garcia et al.,
2008), parsing (Hall et al., 2014), and sorting (Sin-
torn and Assarsson, 2008). Applications adapted
to the GPU spot different architectural properties
of the graphics card to obtain the best perfor-
mance. This section provides a short overview of
the architectural features targeted for this work.

2.1 CUDA execution model

CPUs call special functions, also called kernels,
to execute a set of instructions in parallel using
multiple threads on the GPU. Kernels can be con-
figured to create and execute an arbitrary number
of threads. The threads in a kernel are grouped
into different thread blocks (also called cooper-

ative thread arrays). Threads in the same block
can collaborate by sharing the same memory cache
or similar operations. The maximum number of
threads per block and number of blocks varies
across GPU architectures.

All threads running in the same block are as-
signed to a single Streaming Multiprocessor (SM)
on the GPU. A SM contains the CUDA cores that
execute the instructions for each thread in a sin-
gle block. The number of CUDA cores per SM
varies depending on the architecture. For exam-
ple, Volta V100 contain 64 cores per SM, while
GeForce GTX 1080s contain 128 cores per SM.
Multiple thread blocks can be assigned to a SM if
the number of blocks in the grid is larger than the
number of physical SMs. Execution time will in-
crease when more than one block is assigned to
all SMs on the device (assuming all blocks run
the same instruction). Regardless of the number
of threads per block, all SMs can only run a to-
tal of 32 threads, called a warp, asynchronously at
a time. Warp schedulers select in a round-robin
fashion a warp from an assigned block to exe-
cute in parallel. The SMs finish execution when
all blocks assigned to them complete their tasks.
Each thread running on the SM can access multi-
ple levels of memory on the graphics card, and an
efficient use of all levels significantly improves the
overall execution time on the device.

2.2 Memory

GPUs contain different levels of memory designed
to read and write data stored on the device. There
are advantages and disadvantages associated with
each memory type. The fastest memory on the
device is the register memory. The amount of
registers available per SM is limited and the ac-
cess scope is limited to a single thread during ex-
ecution. This memory is useful to hold a small
amount of variables used at the thread-level. The
next type of memory is shared memory. Shared
memory is accessible by all threads running on
the same block. While slower than registers,
shared memory provides fast read and write ac-
cess times. Shared memory also allows fast oper-
ations at the block level such as reductions, user-
managed caches, etc. The amount of shared mem-
ory per SM can range from 49KB (K40) up to
96KB (V100). The last (and slowest) type of
memory is the global memory. Global memory
latency is 100x slower than shared memory. The
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main use of this memory is to store all the data
copied from and to the host CPU. The amount
of global memory varies depending on the GPU
model (e.g. 12GB on the K40 and 16GB on the
V100).

An efficient use of the memory hierarchy pro-
vides the best performance. A parallel application
must be designed to minimize the total amount of
calls to global memory while maximizing the use
of registers and shared memory. An exclusive use
of main memory will produce the worst execution
times. Our methods focus on the efficient use of
shared and register memory for scenarios where
the data is small enough to fit.

2.3 GPU Sorting

Currently, state-of-the-art methods use a tree-
based reduction operation (Harris, 2005) to sort
the list on the GPU and obtain the top elements.
Reductions are most efficient when the input needs
to be completely sorted, yet faster algorithms can
be used if only a portion of the sorted output is
needed.

The top-N operation can be accelerated with an
improved sorting algorithm for the beam search
task on the GPU. Beam search only requires the
top-N entries for each mini-batch, and the entries
do not need to be sorted in a specific order (as-
cending or descending). Storing the irrelevant el-
ements for beam search back into global memory
is not required for this task and should be avoided.
A clear optimization is to obtain the top elements
in each minibatch using a faster sorting algorithm.

Distinct sorting algorithms can be used to ob-
tain the top elements from a set of candidates. Pre-
vious work introduced custom sorting algorithms
for specific tasks using multi-core CPU (Tridgell,
1999) and GPU setups (Satish et al., 2009; Govin-
daraju et al., 2006).

3 Background

In this section, we describe two sparse operations
commonly used in deep learning, especially for
NLP: at the input layer, multiplication by a sparse
matrix, and at the output layer, softmax and selec-
tion of the top-N elements.

3.1 N-hot lookup

In models whose inputs are words, the input layer
typically looks up a learned word embedding for
each word. Equivalently, it represents each word

as a one-hot vector (whose dimensionality is equal
to the vocabulary size, K) and multiplies it (as a
row vector) by a K × M matrix B whose rows are
word embeddings. Then, a minibatch of L words
can be represented as a L×K matrix A whose rows
are one-hot vectors, so that the product C = AB is
a matrix whose rows are the embeddings of the
words in the minibatch. Deep learning toolkits
(Neubig et al., 2017; Jia et al., 2014) do not per-
form a full matrix multiplication; typically, they
implement a specialized operation to do this.

A problem arises, however, when the input vec-
tor is not a one-hot vector, but an “N-hot” vec-
tor. For example, we might use additional dimen-
sions of the vector to represent subword or part-
of-speech tag information (Niehues et al., 2011;
Collobert et al., 2011; Chiu and Nichols, 2016). In
this case, it would be appropriate to use a sparse
matrix library like cuSPARSE, but we show below
that we can do better.

3.2 Softmax
The softmax function (Equation 1) is widely used
in deep learning to output a categorical probability
distribution:

softmax(z) j =
exp(z j)∑
j′ exp(z j′)

(1)

For better numerical stability, all deep learning
toolkits actually compute the softmax as follows:

softmax(z) j =
exp(z j −max(z))∑
j′ exp(z j′ −max(z))

(2)

This alternative requires different optimizations on
the GPU given the max operation. Recent work
(Milakov and Gimelshein, 2018) explore different
techniques to calculate this safe softmax version
efficiently.

3.3 Beam search and top-N selection
Some applications in deep learning require ad-
ditional computations after the softmax function.
During NMT decoding, the top-N probabilities
from softmax(z) are chosen at every time-step t
and used as an input to the next search step t+1. It
is common practice to obtain the top-N elements
after the softmax operation. Naively, we can do
this by sorting the probabilities and then taking the
first N elements, as shown in Algorithm 1. This
operation is sparse in nature given the fact that sev-
eral hypotheses are discarded during search. The
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Algorithm 1 Serial minibatched softmax and top-
N algorithm.
Input C ∈ RL×K

Output D ∈ RL×N

1: for ` ← 1, . . . , L do
2: d` ← 0
3: for k ← 1, . . . ,K do
4: for ` ← 1, . . . , L do
5: d` += exp(C[`][k])
6: for k ← 1, . . . ,K do . softmax
7: for ` ← 1, . . . , L do
8: C[`][k]← exp(C[`][k])/d`
9: for ` ← 1, . . . L do . top-N

10: c← sort(C[`])
11: D[`]← c[1 : N]
12: return D

retrieval of non-zero elements in a sparse input
parallels the top-N scenario. (Beam search also re-
quires that we keep track of the original column in-
dices (i.e., the word IDs) of the selected columns;
this is not shown in Algorithm 1 for simplicity.)

In NMT, the top-N operation consumes a sig-
nificant fraction of time during decoding. Hoang
et al. (2018) find that the softmax operation takes
5% of total decoding time, whereas finding the
top-N elements can take up to 36.8%. So there
is a large potential benefit from speeding up this
step.

4 Method

In this section, we present our algorithms for N-
hot lookup (§4.1) and fused softmax and top-N se-
lection (§4.2).

4.1 Sparse input lookups
Our sparse N-hot lookup method, shown in Al-
gorithm 2, multiplies a sparse matrix A in Com-
pressed Sparse Row (CSR) format by a row-major
matrix B to yield a dense matrix C.

CSR is widely used to store and process sparse
matrices. This format stores all non-zero elements
of a sparse matrix A contiguously into a new struc-
ture Av. Two additional vectors Ar and Ac are re-
quired to access the values in Av. An example of
the CSR format is illustrated in Figure 1. Ar is first
used to access the columns storing the non-zero el-
ements in row `. The number of non-zero elements
for a row ` can be computed by accessing Ar[`]
and calculating its offset with the next element

1 0 2 0 0

0 3 0 4 0

0 5 6 0 0

0 0 0 7 8

(a)

Ar 0 2 4 6 8

Ac 0 2 1 3 1 2 3 4

AV 1 2 3 4 5 6 7 8

(b)

Figure 1: Example CSR representation for a sparse ma-
trix (a). The CSR representation (b) relies on three lists
R, C, and V to store a sparse matrix. R represents the
rows, C the columns, and V stores the non-zero values.

Ar[` + 1]. Ar[`] is also used to index the lists con-
taining the columns (Ac) and corresponding non-
zero values (Av) in row A[`]. For example, to cal-
culate the number of non-zero values in the second
row of Figure 1, The offset Ar[3] − Ar[2] = 2 is
calculated. Finally, Ar[2] points to positions 4 and
5 on Ac and Av storing the columns and non-zero
values for that specific row.

Our method computes the matrix multiplication
by processing the elements of the output matrix C
in parallel. For our experiments, we process 32
(warp size) rows and columns in parallel for the
input matrices. We cannot use a stride size larger
than 32, since certain GPU architectures do not al-
low a 2 dimensional block larger than 32 × 32 (or
a block containing more than 1024 threads total).
Although this method is fairly straightforward, we
will see below that it outperforms other methods
when N is small, as we expect it to be.

4.2 Fused softmax and top-N

The beam size, or top-N, used in NMT is usually
small, with the most commonly used values rang-
ing from 1 to 75 (Sutskever et al., 2014; Koehn
and Knowles, 2017). Because of this, we base our
implementation on insertion sort, which is O(K2),
where K is the number of elements to be sorted,
but is reasonably efficient for small arrays. It can
be easily modified into a top-N selection algorithm
that runs in O(KN) time (Algorithm 3). Unlike in-
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Algorithm 2 Sparse matrix multiplication using
the CSR format.
Input Ar ∈ R

L, Ac ∈ R
LN , Av ∈ R

LN , B ∈ RK×M

Output C ∈ RL×M

1: parfor m← 1, . . . ,M do . Block level
2: parfor ` ← 1, . . . , L do . Block level
3: x← 0
4: kstart ← Ar[m]
5: kend ← Ar[m + 1]
6: for k ← kstart, . . . , kend − 1 do
7: z← Ac[k]
8: y← Av[k]
9: x += y × B[z][`]

10: C[`][m]← x
11: return C

Algorithm 3 Top-N selection based on insertion
sort.
Input array C ∈ RK

Output array D ∈ RN

1: for n← 1, . . . ,N do
2: D[n]← −∞
3: for k ← 1, . . .K do
4: for n← 1, . . . ,N do
5: if C[k] > D[n] then
6: swap D[n] and C[k]

sertion sort, it maintains separate buffers for the
sorted portion (D) and the unsorted portion (C); it
also performs an insertion by repeating swapping
instead of shifting.

The key to our method is that we can paral-
lelize the loop over k (line 3) while maintaining
correctness, as long as the comparison and swap
can be done atomically. To see this, note that no
swap can ever decrease the value of one of the
D[n]. Furthermore, because for each k, we com-
pare C[k] with every element of D, it must be the
case that after looping over all n (line 4), we have
C[k] ≤ D[n] for all n. Therefore, when the algo-
rithm finishes, D contains the top-N values.

Fusing this algorithm with the softmax algo-
rithm, we obtain Algorithm 4. It takes an in-
put array C containing a minibatch of logits and
returns an array D with the top-N probabilities
and an array E with their original indices. The
comparisons in our method are carried out by the
CUDA atomicMax operation (line 12). This func-
tion reads a value D′[`][n] and computes the max-

Algorithm 4 Parallel fused batched softmax, and
top-N algorithm. The comment “kernel-level”
means a loop over blocks, and the comment
“block-level” means a loop over threads in a block.
Input C ∈ RL×K

Output D ∈ RL×N , E ∈ {1, . . . ,K}L×N

1: parfor ` ← 1, . . . , L do . kernel-level
2: d` ← 0
3: e` ← −∞
4: for n← 1, . . .N do
5: D′[`][n]← pack(−∞, 0)
6: parfor ` ← 1, . . . , L do . kernel-level
7: parfor k ← 1, . . . ,K do . block-level
8: x← C[`][k]
9: y← pack(x, k)

10: e` ← atomicMax(C[`][k], e`)
11: for n← 1, . . . ,N do
12: c′ ← atomicMax(D′[`][n], y)
13: if c′ < y then
14: y← c′

15: syncthreads()
16: d` += exp(C[`][k] − e`)
17: syncthreads()
18: for n← 1, . . . ,N do
19: x, i← unpack(D′[`][n])
20: D[`][n]← exp(x)/d`
21: E[`][n]← i
22: return D

imum between it and a second value y. The larger
is stored back into D′[`][n], and the original value
of D′[`][n] is returned as c′. This operation is per-
formed as one atomic transaction. The following
two lines (13-14) set y to the smaller of the two
values.

Our algorithm recovers the original column in-
dices (m) with a simple extension following Ar-
gueta and Chiang (2017). We pack each probabil-
ity as well as its original column index into a sin-
gle 64-bit integer before the sorting step (line 5),
with the probability in the upper 32 bits and the
column index in the lower 32 bits. This represen-
tation preserves the ordering of probabilities, so a
single atomicMax operation on the packed repre-
sentation will atomically update both the probabil-
ity and the index.

The final aspect to consider is the configura-
tion of the kernel calls from the host CPU. The
grid layout must be configured correctly to use this
method. The top-N routine relies on specific ker-
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(a) Tesla V100

Method
Number of dense values (N)

1 2 3 4 5 10 50 100

ours 0.02 0.02 0.02 0.02 0.02 0.03 0.06 0.11
cuBLAS 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.15
cuSPARSE 0.15 0.16 0.16 0.16 0.16 0.17 0.16 0.19

(b) TITAN X

Method
Number of dense values (N)

1 2 3 4 5 10 50 100

ours 0.03 0.04 0.05 0.07 0.08 0.14 0.49 0.90
cuBLAS 1.79 1.63 1.68 1.68 1.70 1.57 1.27 0.86
cuSPARSE 0.12 0.12 0.12 0.12 0.13 0.13 0.16 0.21

Table 1: Performance comparison for the N-hot lookups against the NVIDIA baseline using dimensions L = 100,
K = 10240, N = 512. Each time (in ms) is an average over ten runs. Fastest times are in bold.

nel and memory configurations to obtain the best
performance. The number of kernel blocks must
be equal to the number of elements in the mini-
batch. This means that batch sizes smaller than
or equal to the number of SMs on the GPU will
run more efficiently given only one block, or less,
will run on all SMs in parallel. The overall perfor-
mance will be affected if multiple blocks are as-
signed to all SMs. The number of SMs on the GPU
varies depending on the architecture. For exam-
ple, the Tesla V100 GPU contains 80 SMs, while
the Pascal TITAN X contains 30 SMs. This means
that our method will perform better on newer GPU
architectures with a large amount of SMs. The
number of threads in the block is an additional as-
pect to consider for our method.

The block size used for our experiments is fixed
to 256 for all the experiments. This number can
be adapted if the expected number of hypotheses
to sort is smaller than 256 (the number of threads
must be divisible by 32). The amount of shared
memory allocated per block depends on the size
of N. The auxiliary memory used to store the top-
N elements must fit in shared memory to obtain
the best performance. A large N will use a combi-
nation of shared and global memory affecting the
overall execution of our method.

5 Experiments

We run experiments on two different GPU con-
figurations. The first setup is a 16 core In-
tel(R) Xeon(R) Silver 4110 CPU connected to a

Tesla V100 CPU, and the second set is a 16-core
Intel(R) Xeon(R) CPU E5-2630 connected to a
GeForce GTX TITAN X. The dense matrices we
use are randomly generated with different floating
point values. We assume the dense representations
contain no values equal to zero. The sparse mini-
batches used for the top-N experiments are ran-
domly generated to contain a specific amount of
non-zero values per element. The indices for all
non-zero values are selected at random.

5.1 Sparse N-hot lookups

For the N-hot lookup task, we compared against
the cuBLAS1 and cuSPARSE2 parallel APIs from
NVIDIA. Both interfaces provide methods to
compute mathematical operations in parallel on
the GPU. Table 1 shows the performance of our
method against the two NVIDIA APIs for sparse
and dense matrix multiplication using different ar-
chitectures and levels of sparsity. All speedups de-
crease as the input becomes less sparse. The cuS-
PARSE baseline performs on par with the dense
cuBLAS version on the V100 architecture when
the number of non-zero elements per batch is
larger than 1. The cuSPARSE baseline performs
better than its dense counterpart on the TITAN
X architecture and worse on the V100. An ex-
planation behind this is the type of sparsity pat-
terns cuSPARSE handles and the different amount
of SMs and memory types on both architectures.

1https://developer.nvidia.com/cublas
2https://developer.nvidia.com/cusparse



6221

a) Tesla V100

Method L
Number of top-N elements

10 20 30 40 50 100 200 300 400

Ours 1 0.07 0.11 0.15 0.19 0.21 0.57 1.54 2.85 4.49
Milakov et al. 1 3.56 3.43 3.44 3.46 3.44 3.44 3.44 3.44 3.44
Speedup 50.85 32.41 23.47 18.01 14.21 6.03 2.23 1.20 0.76
Ours 512 0.14 0.22 0.30 0.39 0.49 1.15 3.03 5.70 9.05
Milakov et al. 512 7.99 8.45 7.98 8.00 8.01 8.01 8.01 8.02 8.02
Speedup 54.79 37.22 25.84 20.03 16.13 6.95 2.64 1.40 0.88

Ours 1024 0.25 0.38 0.54 0.72 0.93 2.37 6.57 12.09 19.65
Milakov et al. 1024 12.54 12.70 12.58 12.58 13.02 12.59 12.62 12.59 12.58
Speedup 50.08 32.78 23.11 17.34 13.88 5.30 1.91 1.04 0.64

b) TITAN X

Method L
Number of top-N elements

10 20 30 40 50 100 200 300 400

Ours 1 0.09 0.14 0.19 0.25 0.32 0.75 2.09 3.97 6.37
Milakov et al. 1 7.65 7.60 7.61 7.64 7.63 7.64 7.58 7.61 7.59
Speedup 84.10 54.19 39.12 29.92 23.76 10.18 3.62 1.91 1.19

Ours 512 0.59 1.03 1.53 2.17 2.96 6.55 18.94 36.20 56.70
Milakov et al. 512 19.23 19.21 19.21 19.22 19.26 19.23 19.02 18.45 18.31
Speedup 32.72 18.64 12.51 8.83 6.48 2.93 1.00 0.50 0.32

Ours 1024 1.07 1.90 2.90 4.13 5.59 12.32 35.22 63.85 101.10
Milakov et al. 1024 31.89 31.91 31.88 31.73 31.91 31.60 30.94 29.55 28.49
Speedup 29.55 16.78 10.97 7.67 5.70 2.56 0.87 0.46 0.28

Table 2: Fused softmax and top-N performance comparison against the method of Milakov and Gimelshein (2018)
using different values of N and different batch sizes. For all experiments, we set the vocabulary size to K = 10240.
Each time (in ms) is an average over ten runs. Fastest times are shown in bold.

cuSPARSE is designed to handle sparsity patterns
that translate well on several tasks with different
sparsity patterns. The multiplication time remains
constant on the V100 when a standard dense ma-
trix multiplication is used while cuSPARSE keeps
performing worse once the sparse input becomes
dense.

The highest speedups are obtained when the
amount of non-zero elements is low, and the low-
est speedups are seen when the amount of non-
zero elements increase. On the V100, our method
starts performing worse than the cuBLAS base-
line when the amount of non-zero elements per
batch element is larger than 100. On the other
side, the performance of our method is worse than
cuSPARSE when the sparsity is larger than 10 on
the TITAN X architecture. Our method performs

well on newer GPU models with a larger amount
of SMs.

We also compare the performance of our
method against a one-hot lookup (i.e., N = 1) im-
plementation used in DyNet (Neubig et al., 2017).
DyNet is a C++ toolkit (with CUDA support) de-
signed for NLP models. We compare the time
it takes to execute the lookup function on the
same dimensions used for our N-hot lookup exper-
iments on both architectures. On average, DyNet
takes 0.06ms to execute the lookup on the TITAN
X architecture and 0.08ms on the V100 architec-
ture. This operation is faster than both cuBLAS
and cuSPARSE yet slower than our sparse imple-
mentation; however, this comparison is not en-
tirely fair, because the DyNet times include the
overhead of constructing a computation graph,



6222

whereas the other times only include the matrix
operation itself.

5.2 Softmax and top-N

We compared our fused softmax operation against
the current state-of-the art method from NVIDIA
(Milakov and Gimelshein, 2018). Table 2 demon-
strates the comparison of our method against the
NVIDIA baseline using two different architec-
tures. Our method outperforms the baseline on
top-N sizes smaller than or equal to 300. Our
method scales differently on both GPU archi-
tectures given the constrained amount of shared
memory on the graphics cards and the amount
of SMs available. The performance of our sug-
gested implementation will slightly degrade on
both architectures when the amount of memory
used to perform the selection overtakes the amount
of shared memory available.

The speedups against the baseline decrease as
N grows. Our execution time still outperforms the
baseline on most sizes of N used in NMT scenar-
ios. This makes our method suitable for tasks re-
quiring a small amount of elements from an output
list. If the size of N exceeds 300, different methods
should be used to obtain the most optimal perfor-
mance.

The baseline scales better than our implemen-
tation when N increases. Table 2 shows the ex-
ecution time for the baseline is not affected sig-
nificantly when N grows. The baseline does see
performance degradation when the amount of el-
ements in the mini-batch increases. This is due
to the same reduction operation used for all sizes
of N. This factor allows our method to perform
better in several scenarios where N is smaller than
or equal to 300. The baseline performs best on
scenarios where the batch size is small and the
size of the batch elements is large (about 4000).
They claim their method does not perform well
on batches with a high dimensionality if N is very
large due to the cost of computing the full reduc-
tion to sort the input weights and their ids.

The batch size affects the performance in a dif-
ferent manner on both architectures. The per-
formance scales in a different manner when the
batch size changes. On our largest experiments,
the performance for N = 400 does not degrade
significantly on the V100 architecture, while the
speedups on the TITAN X change significantly
from 1.19 to 0.32. This shows that our method

runs best on the TITAN X architecture when the
batch size is small, and the amount of top-N el-
ements required does not exceed 400. For larger
batches, the V100 architecture performs best for
all values of N. The TITAN X provides better
speedups against the baseline when the number of
elements in the mini-batch is small, and both our
method and baseline run on the same GPU device.

6 Conclusion

In this work, we introduce two parallel methods
for sparse computations found in NMT. The first
operation is the sparse multiplication found in the
input layer, and the second one is a fused softmax
and top-N. Both implementations outperform dif-
ferent parallel baselines. We obtained speedups of
up to 7× for the sparse affine transformation, and
50× for the fused softmax and top-N task.3

Future work includes the fusion of additional
operations in neural models. Matrix operations
form the largest bottleneck in deep learning. The
last affine transformation in deep neural models
can be fused with our softmax and top-N meth-
ods. The fusion of these three operations requires
a different implementation of the matrix multipli-
cation, and shared memory usage.
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