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Abstract

The conventional paradigm in neural question

answering (QA) for narrative content is limited

to a two-stage process: first, relevant text pas-

sages are retrieved and, subsequently, a neural

network for machine comprehension extracts

the likeliest answer. However, both stages are

largely isolated in the status quo and, hence,

information from the two phases is never prop-

erly fused. In contrast, this work proposes

RankQA1: RankQA extends the conventional

two-stage process in neural QA with a third

stage that performs an additional answer re-

ranking. The re-ranking leverages different

features that are directly extracted from the

QA pipeline, i. e., a combination of retrieval

and comprehension features. While our inten-

tionally simple design allows for an efficient,

data-sparse estimation, it nevertheless outper-

forms more complex QA systems by a signif-

icant margin: in fact, RankQA achieves state-

of-the-art performance on 3 out of 4 bench-

mark datasets. Furthermore, its performance

is especially superior in settings where the size

of the corpus is dynamic. Here the answer re-

ranking provides an effective remedy against

the underlying noise-information trade-off due

to a variable corpus size. As a consequence,

RankQA represents a novel, powerful, and

thus challenging baseline for future research

in content-based QA.

1 Introduction

Question answering (QA) has recently experi-

enced considerable success in variety of bench-

marks due to the development of neural QA (Chen

et al., 2017; Wang et al., 2018). These systems

largely follow a two-stage process. First, a mod-

ule for information retrieval selects text passages

which appear relevant to the query from the cor-

1Code is available from https://github.com/

bernhard2202/rankqa

pus. Second, a module for machine comprehen-

sion extracts the final answer, which is then re-

turned to the user. This two-stage process is neces-

sary for condensing the original corpus to passages

and eventually answers; however, the dependence

limits the extent to which information is passed on

from one stage to the other.

Extensive efforts have been made to facilitate

better information flow between the two stages.

These works primarily address the interface be-

tween the stages (Lee et al., 2018; Lin et al.,

2018), i. e., which passages and how many of them

are forwarded from information retrieval to ma-

chine comprehension. For instance, the QA per-

formance is dependent on the corpus size and the

number of top-n passages that are fed into the

module for machine comprehension (Kratzwald

and Feuerriegel, 2018). Nevertheless, machine

comprehension in this approach makes use of only

limited information (e. g., it ignores the confi-

dence or similarity information computed during

retrieval).

State-of-the-art approaches for selecting better

answers engineer additional features within the

machine comprehension model with the implicit

goal of considering information retrieval. For

instance, the DrQA architecture of Chen et al.

(2017) includes features pertaining to the match

between question words and words in the para-

graph. Certain other works also incorporate a lin-

ear combination of paragraph and answer score

(Lee et al., 2018). Despite that, the use is lim-

ited to simplistic features and the potential gains

of re-ranking remain untapped.

Prior literature has recently hinted at potential

benefits from answer re-ranking, albeit in a differ-

ent setting (Wang et al., 2017): the authors studied

multi-paragraph machine comprehension at sen-

tence level, instead of a complete QA pipeline

involving an actual information retrieval module
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Figure 1: The RankQA system consisting of three modules for information retrieval, machine comprehension, and

our novel answer re-ranking. RankQA fuses information from the information retrieval and machine comprehen-

sion phase to re-rank answer candidates within a full neural QA pipeline.

over a full corpus of documents. However, when

adapting it from a multi-paragraph setting to a

complete corpus, this type of approach is known

to become computationally infeasible (cf. discus-

sion in Lee et al., 2018). In contrast, answer re-

ranking as part of an actual QA pipeline not been

previously studied.

Proposed RankQA: This paper proposes a

novel paradigm for neural QA. That is, we aug-

ment the conventional two-staged process with

an additional third stage for efficient answer re-

ranking. This approach, named “RankQA”, over-

comes the limitations of a two-stage process in the

status quo whereby both stages operate largely in

isolation and where information from the two is

never properly fused. In contrast, our module for

answer re-ranking fuses features that stem from

both retrieval and comprehension. Our approach

is intentionally light-weight, which contributes to

an efficient estimation, even when directly inte-

grated into the full QA pipeline. We show the

robustness of our approach by demonstrating sig-

nificant performance improvements over different

QA pipelines.

Contributions: To the best of our knowl-

edge, RankQA represents the first neural QA

pipeline with an additional third stage for an-

swer re-ranking. Despite the light-weight archi-

tecture, RankQA achieves state-of-the-art perfor-

mance across 3 established benchmark datasets.

In fact, it even outperforms more complex ap-

proaches by a considerable margin. This partic-

ularly holds true when the corpus size is vari-

able and where the resulting noise-information

trade-off requires an effective remedy. Altogether,

RankQA yields a strong new baseline for content-

based question answering.

2 RankQA

RankQA is designed as a pipeline of three consec-

utive modules (see Fig. 1), as detailed in the fol-

lowing. Our main contribution lies in the design of

the answer re-ranking component and its integra-

tion into the full QA pipeline. In order to demon-

strate the robustness of our approach, we later ex-

periment with two implementations in which we

vary module 2.

2.1 Module 1: Information Retrieval

For a given query, the information retrieval mod-

ule retrieves the top-n (here: n = 10) matching

documents from the content repository and then

splits these articles into paragraphs. These para-

graphs are then passed on to the machine com-

prehension component. The information retrieval

module is implemented analogously to the default

specification of Chen et al. (2017), scoring docu-

ments by hashed bi-gram counts.

2.2 Module 2: Machine Comprehension

The machine comprehension module extracts and

scores one candidate answer for every paragraph

of all top-n documents. Hence, this should result

in ≫ n candidate answers; however, out of these,

the machine comprehension module selects only

the top-k candidate answers [c1, . . . , ck], which

are then passed on to the re-ranker. The size k is a

hyperparameter (here: k = 40). We choose two

different implementations for the machine com-

prehension module in order to show the robustness

of our approach.

Implementation 1 (DrQA): Our first imple-

mentation is based on the DrQA document reader

(Chen et al., 2017). This is the primary system

in our experiments for two reasons. First, in neu-
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ral QA, DrQA is a well-established baseline. Sec-

ond, DrQA has become a widespread benchmark

with several adaptations, which lets us compare

our approach for answer re-ranking with other ex-

tensions that improve the retrieval of paragraphs

(Lee et al., 2018) or limit the information flow

between the retrieval and comprehension phases

(Kratzwald and Feuerriegel, 2018).

Implementation 2 (BERT-QA): QA systems

whose machine comprehension module is based

on BERT are gaining in popularity (Yang et al.,

2019a,b). Following this, we implement a sec-

ond QA pipeline where the document reader from

DrQA is replaced with BERT (Devlin et al.,

2019).2 We call this system BERT-QA and use it

as a second robustness check in our experiments.

2.3 Module 3: Answer Re-Ranking

Our re-ranking module receives the top-k candi-

date answers [c1, . . . , ck] from the machine com-

prehension module as input. Each candidate ci,

i = 1, . . . , k, consists of the actual answer span

si (i. e., the textual answer) and additional meta-

information φi such as the document ID and para-

graph ID from which it was extracted. Our module

follows a three-step procedure in order to re-rank

answers:

(i) Feature extraction: First, we extract a set of

information retrieval and machine compre-

hension features for every answer candidate

directly from the individual modules of the

QA pipeline.

(ii) Answer aggregation: It is frequently the case

that several answer candidates ci are dupli-

cates and, hence, such identical answers are

aggregated. This creates additional aggre-

gation features, which should be highly in-

formative and thus aid the subsequent re-

ranking.

(iii) Re-ranking network: Every top-k answer

candidate is re-ranked based on the features

generated in (i) and (ii).

2.3.1 Feature Extraction

During this step, we extract several features from

the information retrieval and machine compre-

hension modules for all top-k answer candidates,

2We used the official implementation from https://

github.com/google-research/bert

which can later be fused; see a detailed overview

in Tbl. 1. These features are analogously com-

puted by most neural QA systems, albeit for other

purposes than re-ranking. Nevertheless, this fact

should highlight that such features can be obtained

without additional costs. The actual set of features

depends on the implementation of the QA system

(e. g., DrQA extracts additional named entity fea-

tures, as opposed to BERT-QA).

From the information retrieval module, we ob-

tain: (i) the document-question similarity; (ii) the

paragraph-question similarity; (iii) the paragraph

length; (iv) the question length; and (v) indicator

variables that specify with which word a question

starts (e. g., “what”, “who”, “when”, etc.).

From the machine comprehension module, we

extract: (i) the original score of the answer can-

didate; (ii) the original rank of the candidate an-

swer; (iii) part-of-speech tags of the answer; and

(iv) named entity features of the answer. The latter

two are extracted only for DrQA and encoded via

indicator variables that specify whether the answer

span contains a named entity or part-of-speech tag

(e. g., PERSON=1 or NNS=1).

2.3.2 Answer Aggregation

It is frequently the case that several candidate an-

swers are identical and, hence, we encode this

knowledge as a set of additional features. The

idea of answer aggregation is similar to Lee et al.

(2018) and Wang et al. (2017), although there are

methodological differences: the previous authors

sum the probability scores for identical answers,

whereas the aim in RankQA is to generate a rich

set of aggregation features.

That is, we group all answer candidates with an

identical answer span. Formally, we merge two

candidate answers ci and cj if their answer span

is equal, i. e., si = sj . We keep the information

retrieval and machine comprehension features of

the initially higher-ranked candidate cmin{i,j}. In

addition, we generate further aggregation features

as follows: (i) the number of times a candidate

with an equal answer span appears within the top-

k candidates; (ii) the rank of its first occurrence;

(iii) the sum, mean, minimum, and maximum of

the span scores; and (iv) the sum, mean, minimum,

and maximum of the document-question similarity

scores. Altogether, this results, for each candidate

answer ci, in a vector xi containing all features

from information retrieval, machine comprehen-

sion, and answer aggregation.
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Feature Group Description Aggregation Impl.

INFORMATION RETRIEVAL FEATURES

Document-query similarity Similarity between the question and the full docu-
ment the answer was extracted from.

min, max, avg, sum both

Paragraph-query similarity Similarity between the question and the paragraph
the answer was extracted from.

— both

Length features Length of the document, length of the paragraph,
and length of the question.

— both

Question type The question type is a 13-dimensional vector indi-
cating weather the questions started with the words
What was, What is, What, In what, In

which, In, When, Where, Who, Why, Which,
Is, or <other>.

— both

MACHINE COMPREHENSION FEATURES

Span features The score of the answer candidate as assigned di-
rectly from the MC module, proportional to the
probability of the answer given the paragraph, i. e.,
∝ p(a|p).

min, max, avg, sum both

Named entity features A 13-dimensional vector indicating whether one
of following 13 named entities is contained
within the answer span: location, person,
organization, money, percent, date,
time, set, duration, number, ordinal,
misc, and <other>.

— only 1

Part-of-speech features A 45-dimensional vector indicating which part-of-
speech tag is contained within the answer span. We
use the Penn Treebank PoS tagset. (Marcus et al.,
1993).

— only 1

Ranking Original ranking of the answer candidate. number of occurrences both

Table 1: Detailed description of all features used in our answer re-ranking component.

2.3.3 Re-Ranking Network

Let xi ∈ R
d be the d-dimensional feature vec-

tor for the answer candidate ci, i = 1, . . . , k.

We score each candidate via the following ranking

network, i. e., a two-layer feed-forward network

f(xi) that is given by

f(xi) = ReLU(xiA
T + b1)B

T + b2, (1)

where A ∈ R
m×d and B ∈ R

1×m are trainable

weight matrices and where b1 ∈ R
m and b2 ∈ R

are linear offset vectors.

During our experiments, we tested various rank-

ing mechanisms, even more complicated architec-

tures such as recurrent neural networks that read

answers, paragraphs, and questions. Despite their

additional complexity, the resulting performance

improvements over our straightforward re-ranking

mechanisms were only marginal and, oftentimes,

we even observed a decline.

2.4 Estimation: Custom Loss/Sub-Sampling

The parameters in f(·) are not trivial to learn.

We found that sampling negative (incorrect) and

positive (correct) candidates, in combination with

a binary classification loss or a regression loss,

was not successful. As a remedy, we propose the

following combination of ranking loss and sub-

sampling, which proved beneficial in our experi-

ments.

We implement a loss L, which represents a

combination of a pair-wise ranking loss Lrank and

an additional regularization Lreg, in order to train

our model. Given two candidate answers i, j with

i 6= j for a given question, the binary variables yi
and yj denote whether the respective candidate an-

swers are correct or incorrect. Then we minimize

the following pair-wise ranking loss adapted from

Burges et al. (2005), i. e.,

Lrank(xi, xj) =

[

yi − σ (f(xi)− f(xj))

]2

. (2)

Here f(·) denotes our previous ranking network

and σ(·) the sigmoid function. An additional

penalty is used to regularize the parameters and

prevent the network from overfitting. It is given

by

Lreg = ‖A‖1 + ‖B‖1 + ‖b1‖1 + ‖b2‖1. (3)

Finally, we optimize L = Lrank + λLreg using
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mini-batch gradient descent with λ as a tuning pa-

rameter.

We further implement a customized sub-

sampling procedure, since the majority of candi-

date answers generated during training are likely

to be incorrect. To address the pair-wise loss dur-

ing sub-sampling, we proceed as follows: we first

generate a list of answer candidates for every ques-

tion in our training set using the feature extraction

and aggregation mechanisms from our re-ranking.

Then we iterate through this list and sample a pair

of candidate answers (xi, xj) if and only if they

are at adjacent ranks (i is ranked directly before j

i. e., iff j = i + 1). We specifically let our train-

ing focus on pairs that are originally ranked high,

i. e., j < 4, and ignore training pairs ranked lower.

During inference, we still score all top-10 answer

candidates and select the best-scoring answer.

3 Experimental Design

3.1 Content Base and Datasets

Following earlier research, our content base com-

prises documents from the English Wikipedia. For

comparison purposes, we use the same dump as

in prior work (e. g., Chen et al., 2017; Lee et al.,

2018).3 We do not use pre-selected documents or

other textual content in order to answer questions.

We base our experiments on four well-

established datasets.

SQuAD The Stanford Question and An-

swer Dataset (SQuAD) contains more

than 100 000 question-answer-paragraph

triples (Rajpurkar et al., 2016). We use

SQuADOPEN, which ignores the paragraph

information.

WikiMovies This dataset contains several thou-

sand question-answer pairs from the movie

industry (Miller et al., 2016). It is designed

such that all questions can be answered by a

knowledge-base (i. e., Open Movie Database)

or full-text content (Wikipedia).

CuratedTREC This dataset is a collection of

question-answer pairs from four years of Text

Retrieval Conference (TREC) QA challenges

(Baudiš and Šedivý, 2015).

WebQuestions The answers to questions in

this dataset are entities in the Freebase

3Downloaded from https://github.com/

facebookresearch/DrQA

knowledge-base (Berant et al., 2013). We

use the adapted version of Chen et al. (2017),

who replaced the Freebase-IDs with textual

answers.

3.2 Training Details

Our sourcecode and pre-trained model are

available at: https://github.com/

bernhard2202/rankqa.

RankQA: The information retrieval module is

based on the official implementation of Chen et al.

(2017).4 The same holds true for the pre-trained

DrQA-DS model, which we used without alter-

ations. For BERT-QA, we use the uncased BERT

base model and fine-tune it for three epochs on

the SQuAD training split with the default parame-

ters.5

Datasets: We use the training splits of SQuAD,

CuratedTREC, WikiMovies, and WebQuestions

for training and model selection. In order to bal-

ance differently-sized datasets, we use 10 % of

the smallest training split for model selection and

90 % for training. For every other dataset, we take

the same percentage of samples for model selec-

tion and all other samples for training. We monitor

the loss on the model selection data and stop train-

ing if it did not decrease within the last 10 epochs

or after a total of 100 epochs. Finally, we use the

model with the lowest error on the model selection

data for evaluation. Analogous to prior work, we

use the test splits of CuratedTREC, WikiMovies,

and WebQuestions, as well as the development

split for SQuAD, though only for the final eval-

uation. In order to account for different character-

istics in the datasets, we train a task-specific model

individually for every dataset following the same

procedure.

Parameters: During training, we use Adam

(Kingma and Ba, 2014) with a learning rate of

0.0005 and a batch size of 256. The hidden layer

is set to m = 512 units. We set the number

of top-n documents to n = 10 and the number

of top-k candidate answers that are initially gen-

erated to k = 40. We optimize λ over λ ∈
{5 · 10−4, 5 · 10−5}. All numerical features are

scaled to be within [0, 1]. Moreover, we apply an

additional log-transformation.

4Available at https://github.com/

facebookresearch/DrQA
5Available at https://github.com/

google-research/bert
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SQuADOPEN CuratedTREC WebQuestions WikiMovies

Baseline: DrQA (Chen et al., 2017) 29.8 25.4 20.7 36.5

DrQA extensions:
Paragraph Ranker (Lee et al., 2018) 30.2 35.4 19.9 39.1
Adaptive Retrieval 29.6 29.3 19.6 38.4
(Kratzwald and Feuerriegel, 2018)

Other architectures:

R3 (Wang et al., 2018) 29.1 28.4 17.1 38.8
DS-QA (Lin et al., 2018) — 29.1 18.5 —
Min. Context (Min et al., 2018) 34.6 — — —

RankQA (general) 34.5 32.4 21.8 43.3
RankQA (task-specific) 35.3 34.7 22.3 43.1

Upper bound: perfect re-ranking for k = 40 54.2 65.9 53.8 65.0

Table 2: Exact matches of RankQA compared to DrQA as natural baseline without re-ranking and state-of-the-art

systems for neural QA. We use a general model that is trained on all datasets, and a task-specific model that is

trained individually for every dataset. The two best results for every dataset are marked in bold.

4 Results

We conduct a series of experiments to evaluate our

RankQA system. First, we evaluate the end-to-end

performance over the four abovementioned bench-

mark datasets and compare our system to various

other baselines. Second, we show the robustness

of answer re-ranking by repeating these experi-

ments with our second implementation, namely

BERT-QA. Third, we replicate the experiments of

Kratzwald and Feuerriegel (2018) to evaluate the

robustness against varying corpus sizes. Fourth,

we analyze errors and discuss feature importance

in numerical experiments.

During our experiments, we measure the end-

to-end performance of the entire QA pipeline in

terms of exact matches. That is, we count the frac-

tion of questions for which the provided answer

matches one of the ground truth answers exactly.

Unless explicitly mentioned otherwise, we refer to

the first implementation, namely re-ranking based

on the DrQA architecture.

4.1 Performance Improvement from Answer

Re-Ranking

Tbl. 2 compares performance across different neu-

ral QA systems from the literature. The DrQA sys-

tem (Chen et al., 2017) is our main baseline as it

resembles RankQA without the answer re-ranking

step. Furthermore, we compare ourselves against

other extensions of the DrQA pipeline such as the

Paragraph Ranker (Lee et al., 2018) or Adaptive

Retrieval (Kratzwald and Feuerriegel, 2018). Fi-

nally, we compare against other state-of-the-art

QA pipelines, namely, R3 (Wang et al., 2018), DS-

QA (Lin et al., 2018), and the Min. Context system

from Min et al. (2018). For RankQA, we use, on

the one hand, a general model that is trained on all

four datasets simultaneously. On the other hand,

we account for the different characteristics of the

datasets and thus employ task-specific models that

are trained separately on every dataset.

A direct comparison between DrQA and

RankQA demonstrates a performance improve-

ment from up to 7.0 percentage points when using

RankQA, with an average gain of 4.9 percentage

points over all datasets. Given the identical im-

plementation of information retrieval and machine

comprehension, this increase is solely attributable

to our answer re-ranking. Our RankQA also out-

performs all other state-of-the-art QA systems in 3

out of 4 datasets by a notable margin. This holds

true for extensions of DrQA (Paragraph Ranker

and Adaptive Retrieval) and other neural QA ar-

chitectures (R3 and DS-QA).

This behavior is also observed in the case of the

task-specific re-ranking model, which is trained

for every dataset individually. Here we achieve

performance improvements of up to 9.3 percent-

age points, with an average performance gain of

5.8 percentage points. The results on the Cu-

ratedTREC task deserve further discussion. Evi-

dently, the dataset is particular in the sense that it

is very sensitive to specific features. This is con-

firmed later in our analysis of feature importance

and explains why the task-specific RankQA is in-

ferior the general model by a large margin.

Finally, in the last row of Tbl. 2, we provide the

results of a perfect re-ranker that always chooses
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Figure 2: Robustness of answer re-ranking against a

variable corpus size. We measure the exact matches for

the CuratedTREC dataset while varying the corpus size

from one thousand to over five million documents.

the correct answer if present. This system repre-

sents an upper bound of the degree to which re-

ranking could improve results without changing

the information retrieval or machine comprehen-

sion models.

4.2 Robustness Check: BERT-QA

In order to demonstrate the robustness of an-

swer re-ranking across different implementations,

we repeat experiments from above based on the

BERT-QA system. The results are shown in Tbl. 3.

The first row displays the results without an-

swer re-ranking. The second row shows the re-

sults after integrating our re-ranking module in the

QA pipeline. As one can see, answer re-ranking

yields significant performance improvements over

all four datasets, ranging between 12.5 and 5.5
percentage points. The last row again lists an up-

per bound as would have been obtained by a per-

fect re-ranking system with access to the ground-

truth labels. The performance differences between

DrQA and BERT can be attributed to the fact that

we trained BERT only on the SQuAD dataset,

while the pre-trained DrQA model was trained on

all four datasets.

4.3 Performance Sensitivity to Corpus Size

Corpora of variable size are known to pose dif-

ficulties for neural QA systems. Kratzwald and

Feuerriegel (2018) ran a series of experiments

in which they monitored the end-to-end perfor-

mance of different top-n systems (i. e., extracting

the answer from the top-10 documents compared

to extracting the answer from the top-1 document

only). During the experiments, they increased

the size of the corpus from one thousand to over

five million documents. They found that select-

ing n = 10 is more beneficial for a large corpus,

while n = 1 is preferable for small ones. They re-

ferred to this phenomenon as a noise-information

trade-off: a large n increases the probability that

the correct answer is extracted, while a small n

reduces the chance that noisy answers will be in-

cluded in the candidate list. As a remedy, the au-

thors proposed an approach for adaptive retrieval

that chooses an independent top-n retrieval for ev-

ery query.

We replicated the experiments of Kratzwald and

Feuerriegel (2018)6 and evaluated our RankQA

system in the same setting, as shown in Fig. 2.

We see that answer re-ranking represents an effi-

cient remedy against the noise-information trade-

off. The performance of our system (solid red

line) exceeds that of any other system configura-

tion for any given corpus size. Furthermore, our

approach behaves in a more stable fashion than

adaptive retrieval. Adaptive retrieval, like many

other recent advancements (e. g., Lee et al., 2018;

Lin et al., 2018), limits the amount of information

that flows between the information retrieval and

machine comprehension modules in order to select

better answers. However, RankQA does not limit

the information, but directly re-ranks the answers

to remove noisy candidates. Our experiments sug-

gest that answer re-ranking is more efficient than

limiting the information flow when dealing with

variable-size corpora.

4.4 Error Analysis and Feature Importance

We analyze whether our system is capable of keep-

ing the set of correctly answered questions after

applying the re-ranking step. Therefore, we mea-

sure the fraction of correctly answered questions

out of those questions that had been answered cor-

rectly before re-ranking. Specifically, we found

that the ratio of answers that remained correct

varies between 94.6 % and 96.1 %. Hence, our

model does not substantially change initially cor-

rect rankings.

Feature importance: Tbl. 4 compares the rela-

tive importance of different features. This is mea-

sured by training the model with the same pa-

6Source code for adaptive retrieval avail-
able at: www.github.com/bernhard2202/

adaptive-ir-for-qa
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SQuADOPEN CuratedTrec WebQuestions WikiMovies

Baseline: BERT-QA (no re-ranking) 23.3 19.7 8.2 10.9
RankQA (implementation 2) 35.8 32.0 13.7 20.6

Upper bound: perfect re-ranking for k = 40 61.2 66.6 39.6 49.8

Table 3: Exact matches of RankQA based on the BERT-QA pipeline. We show results of the the pipline without

re-ranking, the results obtained by our re-ranking model, and an upper bound (i. e., perfect re-ranking).

SQuADOPEN CuratedTrec WebQuestions WikiMovies

Baseline: DrQA (Chen et al., 2017) 29.8 25.4 20.7 36.5

RankQA (general) 34.5 32.4 21.8 43.3

Information Retrieval Features
RankQA w/o query-document similarity 33.0 29.8 20.6 42.0
RankQA w/o query-paragraph similarity 32.1 32.0 22.0 42.1
RankQA w/o length features 32.9 31.4 22.3 42.6

Machine Comprehension Features
RankQA w/o linguistic features (POS&NER) 34.4 31.8 21.5 42.3
RankQA w/o ranking features 34.1 31.8 21.4 43.3
RankQA w/o span score 33.4 30.1 21.3 42.3

Feature Aggregation
RankQA w/o aggregation features 33.6 26.9 18.5 41.5

Table 4: Feature importance (i. e., averaged performance of exact matches on a hold-out sample). We train the

general model using the same data, but blind one group of features every time. We underline results that undershoot

the baseline and mark results in bold that surpass the general model trained on all features.

rameters and hyperparameters as before; however,

we blind one (group of) feature(s) in every round.

This was done as follows: when the information

retrieval or machine comprehension features were

blinded, we also removed the corresponding ag-

gregated features. When omitting aggregation fea-

tures, we keep the original un-aggregated feature.

We show the performance of DrQA (i. e., system

without answer re-ranking) and the full re-ranker

for the sake of comparison. The original perfor-

mance increase can only be achieved when all fea-

tures are included. This has important implica-

tions for our approach to properly fusing informa-

tion from information retrieval and machine com-

prehension. It suggests that aggregation features

are especially informative and that it is not suffi-

cient to use only a subset of those.

We can see that individual datasets reveal a dif-

ferent sensitivity to all feature groups. The Curat-

edTREC or WebQuestions datasets, for instance,

are highly sensitive to some information retrieval

features. However, in all cases, the fused combi-

nation of features from both information retrieval

and machine comprehension is crucial for obtain-

ing a strong performance.

5 Related Work

This work focus on question answering for un-

structured textual content in English. Earlier sys-

tems of this type comprise various modules such

as, for example, query reformulation (e. g., Brill

et al., 2002), question classification (Li and Roth,

2006), passage retrieval (e. g., Harabagiu et al.,

2000), or answer extraction (Shen and Klakow,

2006). However, the aforementioned modules

have been reduced to two consecutive steps with

the advent of neural QA.

5.1 Neural Question Answering

Neural QA systems, such as DrQA (Chen et al.,

2017) or R3 (Wang et al., 2018), are usually

designed as pipelines of two consecutive stages,

namely a module for information retrieval and a

module for machine comprehension. The over-

all performance depends on how many top-n pas-

sages are fed into the module for machine com-

prehension, which then essentially generates mul-

tiple candidate answers out of which the one with

the highest answer probability score is chosen.

However, this gives rise to a noise-information

trade-off (Kratzwald and Feuerriegel, 2018). That

is, selecting a large n generates many candidate
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answers, but increases the probability of select-

ing the wrong final answer. Similarly, retriev-

ing a small number of top-n passages reduces the

chance that the candidate answers contain the cor-

rect answer at all.

Resolving the noise-information trade-off in

neural QA has been primarily addressed by im-

proving the interplay of modules for information

retrieval and machine comprehension. Min et al.

(2018) employ sentence-level retrieval in order to

remove noisy content. Similarly, Lin et al. (2018)

utilize neural networks in order to filter noisy text

passages, while Kratzwald and Feuerriegel (2018)

forward a query-specific number of text passages.

Lee et al. (2018) re-rank the paragraphs before for-

warding them to machine comprehension. How-

ever, none of the listed works introduce answer re-

ranking to neural QA.

5.2 Answer Re-Ranking

Answer re-ranking has been widely studied for

systems other than neural QA, such as fac-

toid (Severyn and Moschitti, 2012), non-factoid

(Moschitti and Quarteroni, 2011), and definitional

question answering (Chen et al., 2006). These

methods target traditional QA systems that con-

struct answers in non-neural ways, e. g., based on

n-gram tiling (Brill et al., 2002) or constituency

trees (Shen and Klakow, 2006). However, neu-

ral QA extracts an answer directly from text using

end-to-end trainable models, rather than construct-

ing it.

With respect to the conceptual idea, closest to

our work is the approach of Wang et al. (2017),

who use a single recurrent model to re-rank mul-

tiple candidate-answers given the paragraphs they

have been extracted from. However, this work is

different from our RankQA in two ways. First,

the authors must read multiple paragraphs in par-

allel via recurrent neural networks, which limits

scalability and the maximum length of paragraphs;

see the discussion in Lee et al. (2018). In con-

trast, our approach is highly scalable and can even

be used together with complete corpora and long

documents. Second, the authors evaluated their re-

ranking in isolation, whereas we integrate our re-

ranking into the full QA pipeline where the com-

plete system is subject to extensive experiments.

There are strong theoretical arguments as to

why a better fusion of information retrieval

and machine comprehension should be benefi-

cial. First, features from information retrieval

can potentially be decisive during answer selec-

tion (for instance, similarity features or docu-

ment/paragraph length). Second, answer selection

in state-of-the-art systems ignores linguistic fea-

tures that are computed during the machine com-

prehension phase (e. g., DrQA uses part-of-speech

and named entity information). Third, although

some works aggregate scores for similar answers

(e. g., Lee et al., 2018; Wang et al., 2017), the com-

plete body information is largely ignored during

aggregation. This particularly pertains to, e. g.,

how often and with which original rank the top-

n answers were generated.

6 Conclusion

Our experiments confirm the effectiveness of a

three-stage architecture in neural QA. Here an-

swer re-ranking is responsible for bolstering the

overall performance considerably: our RankQA

represents the state-of-the-art system for 3 out of

4 datasets. When comparing it to corresponding

two-staged architecture, answer re-ranking can be

credited with an average performance improve-

ment of 4.9 percentage points. This performance

was even rendered possible with a light-weight ar-

chitecture that allows for the efficient fusion of

information retrieval and machine comprehension

features during training. Altogether, RankQA pro-

vides a new, strong baseline for future research on

neural QA.
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