
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5851–5861
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

5851

Low-resource Deep Entity Resolution with Transfer and Active Learning

Jungo Kasai♥∗ Kun Qian♣ Sairam Gurajada♣
Yunyao Li♣ Lucian Popa♣

♥Paul G. Allen School of Computer Science & Engineering, University of Washington
♣IBM Research – Almaden

jkasai@cs.washington.edu
{qian.kun,Sairam.Gurajada}@ibm.com

{yunyaoli,lpopa}@us.ibm.com

Abstract

Entity resolution (ER) is the task of iden-
tifying different representations of the same
real-world entities across databases. It is a
key step for knowledge base creation and text
mining. Recent adaptation of deep learn-
ing methods for ER mitigates the need for
dataset-specific feature engineering by con-
structing distributed representations of entity
records. While these methods achieve state-
of-the-art performance over benchmark data,
they require large amounts of labeled data,
which are typically unavailable in realistic ER
applications. In this paper, we develop a
deep learning-based method that targets low-
resource settings for ER through a novel com-
bination of transfer learning and active learn-
ing. We design an architecture that allows
us to learn a transferable model from a high-
resource setting to a low-resource one. To fur-
ther adapt to the target dataset, we incorporate
active learning that carefully selects a few in-
formative examples to fine-tune the transferred
model. Empirical evaluation demonstrates that
our method achieves comparable, if not bet-
ter, performance compared to state-of-the-art
learning-based methods while using an order
of magnitude fewer labels.

1 Introduction

Entity Resolution (ER), also known as entity
matching, record linkage (Fellegi and Sunter,
1969), reference reconciliation (Dong et al.,
2005), and merge-purge (Hernández and Stolfo,
1995), identifies and links different representa-
tions of the same real-world entities. ER yields
a unified and consistent view of data and serves as
a crucial step in downstream applications, includ-
ing knowledge base creation, text mining (Zhao
et al., 2014), and social media analysis (Campbell

∗Work done during summer internship at IBM Research
– Almaden.

et al., 2016). For instance, seen in Table 1 are
citation data records from two databases, DBLP
and Google Scholar. If one intends to build a
system that analyzes citation networks of publica-
tions, it is essential to recognize publication over-
laps across the databases and to integrate the data
records (Pasula et al., 2002).

Recent work demonstrated that deep learning
(DL) models with distributed representations of
words are viable alternatives to other machine
learning algorithms, including support vector
machines and decision trees, for performing ER
(Ebraheem et al., 2018; Mudgal et al., 2018). The
DL models provide a universal solution to ER
across all kinds of datasets that alleviates the ne-
cessity of expensive feature engineering, in which
a human designer explicitly defines matching
functions for every single ER scenario. However,
DL is well known to be data hungry; in fact, the
DL models proposed in Ebraheem et al. (2018);
Mudgal et al. (2018) achieve state-of-the-art per-
formance by learning from thousands of labels.1

Unfortunately, realistic ER tasks have limited ac-
cess to labeled data and would require substantial
labeling effort upfront, before the actual learning
of the ER models. Creating a representative train-
ing set is especially challenging in ER problems
due to the data distribution, which is heavily
skewed towards negative pairs (i.e. non-matches)
as opposed to positive pairs (i.e. matches).

This problem limits the applicability of DL
methods in low-resource ER scenarios. Indeed,
we will show in a later section that the perfor-
mance of DL models degrades significantly as
compared to other machine learning algorithms
when only a limited amount of labeled data is
available. To address this issue, we propose a DL-
based method that combines transfer learning and

117k labels were used for the DBLP-Scholar scenario.

5852

DBLP
Authors Title Venue Year
M Carey, D Dewitt, J Naughton, M
Asgarian, P Brown, J Gehrke, D Shah

The Bucky Object-relational
Benchmark (Experience Paper)

SIGMOD Conference 1997

A Netz, S Chaudhuri, J Bernhardt, U
Fayyad

Integration of Data Mining with
Database Technology

VLDB 2000

Google Scholar
Authors Title Venue Year
MJ Carey, DJ Dewitt, JF Naughton,
M Asgarian, P

The Bucky Object Relational
Benchmark

Proceedings of the SIGMOD Con-
ference on Management of Data

NULL

A Netz, S Chaudhuri, J Bernhardt, U
Fayyad

Integration of Data Mining and
Relational Databases

Proc. 2000

Table 1: Data record examples from DBLP-Scholar (citation genre). The first records from DBLP and Google
Scholar (red) refer to the same publication even though the information is not identical. The second ones (blue and
brown) record different papers with the same authors and year.

active learning. We first develop a transfer learn-
ing methodology to leverage a few pre-existing
scenarios with abundant labeled data, in order to
use them in other settings of similar nature but
with limited or no labeled data. More concretely,
through a carefully crafted neural network ar-
chitecture, we learn a transferable model from
multiple source datasets with cumulatively abun-
dant labeled data. Then we use active learning
to identify informative examples from the target
dataset to further adapt the transferred model
to the target setting. This novel combination of
transfer and active learning in ER settings enables
us to learn a comparable or better performing
DL model while using significantly fewer target
dataset labels in comparison to state-of-the-art DL
and even non-DL models. We also note that the
two techniques are not dependent on each other.
For example, one could skip transfer learning if no
high-resource dataset is available and directly use
active learning. Conversely, one could use transfer
learning directly without active learning. We eval-
uate these cases in the experiments. Specifically,
we make the following contributions:

• We propose a DL architecture for ER that
learns attribute agnostic and transferable rep-
resentations from multiple source datasets us-
ing dataset (domain) adaptation.
• To the best of our knowledge, we are the first

to design an active learning algorithm for deep
ER models. Our active learning algorithm
searches for high-confidence examples and un-
certain examples, which provide a guided way
to improve the precision and recall of the trans-
ferred model to the target dataset.
• We perform extensive empirical evaluations

over multiple benchmark datasets and demon-
strate that our method outperforms state-of-

the-art learning-based models while using an
order of magnitude fewer labels.

2 Background and Related Work

2.1 Entity Resolution

Let D1 and D2 be two collections of entity
records. The task of ER is to classify the entity
record pair 〈e1, e2〉, ∀e1 ∈ D1, e2 ∈ D2, into
a match or a non-match. This is accomplished
by comparing entity record e1 to e2 on their
corresponding attributes. In this paper, we assume
records in D1 and D2 share the same schema
(set of attributes). In cases where they have
different attributes, one can use schema matching
techniques (Rahm and Bernstein, 2001) to first
align the schemas, followed by data exchange
techniques (Fagin et al., 2009). Each attribute
value is a sequence of words. Table 1 shows
examples of data records from an ER scenario,
DBLP-Scholar (Köpcke et al., 2010) from the
citation genre and clearly depicts our assumption
of datasets handled in this paper.

Since the entire Cartesian product D1 × D2

often becomes large and it is infeasible to run
a high-recall classifier directly, we typically
decompose the problem into two steps: blocking
and matching. Blocking filters out obvious non-
matches from the Cartesian product to obtain a
candidate set. Attribute-level or record-level tf-idf
and jaccard similarity can be used for blocking cri-
teria. For example, in the DBLP-Scholar scenario,
one blocking condition could be based on apply-
ing equality on “Year”. Hence, two publications in
different years will be considered as obvious non-
matches and filtered out from the candidate set.
Then, the subsequent matching phase classifies
the candidate set into matches and non-matches.

5853

Figure 1: Deep ER model architecture with dataset
adaptation via gradient reversal. Only two attributes
are shown. W s indicate word vectors.

2.2 Learning-based Entity Resolution

As described above, after the blocking step, ER
reduces to a binary classification task on candi-
date pairs of data records. Prior work has pro-
posed learning-based methods that train classifiers
on training data, such as support vector machines,
naive bayes, and decision trees (Christen, 2008;
Bilenko and Mooney, 2003). These learning-
based methods first extract features for each record
pair from the candidate set across attributes in the
schema, and use them to train a binary classifier.
The process of selecting appropriate classification
features is often called feature engineering and it
involves substantial human effort in each ER sce-
nario. Recently, Ebraheem et al. (2018) and Mud-
gal et al. (2018) have proposed deep learning mod-
els that use distributed representations of entity
record pairs for classification. These models ben-
efit from distributed representations of words and
learn complex features automatically without the
need for dataset-specific feature engineering.

3 Deep ER Model Architecture

We describe the architecture of our DL model that
classifies each record pair in the candidate set into
a match or a non-match. As shown in Fig. 1, our
model encompasses a sequence of steps that com-
putes attribute representations, attribute similarity
and finally the record similarity for each input pair
〈e1, e2〉. A matching classifier uses the record sim-
ilarity representation to classify the pair. For an
extensive list of hyperparameters and training de-
tails we chose, see the appendix.

Input Representations. For each entity record
pair 〈e1, e2〉, we tokenize the attribute values and

vectorize the words by external word embeddings
to obtain input representations (W s in Fig. 1). We
use the 300 dimensional fastText embeddings (Bo-
janowski et al., 2017), which capture subword in-
formation by producing word vectors via charac-
ter n-grams. This vectorization has the benefit
of well representing out-of-vocabulary words (Bo-
janowski et al., 2017) that frequently appear in ER
attributes. For instance, venue names SIGMOD
and ACL are out of vocabulary in the publicly
available GloVe vectors (Pennington et al., 2014),
but we clearly need to distinguish them.

Attribute Representations. We build a universal
bidirectional RNN on the word input representa-
tions of each attribute value and obtain attribute
vectors (attr1 and attr2 in Fig. 1) by concatenat-
ing the last hidden units from both directions. Cru-
cially, the universal RNN allows for transfer learn-
ing between datasets of different schemas without
error-prone schema mapping. We found that gated
recurrent units (GRUs, Cho et al. (2014)) yielded
the best performance on the dev set as compared to
simple recurrent neural networks (SRNNs, Elman
(1990)) and Long Short-Term Memory networks
(LSTMs, Hochreiter and Schmidhuber (1997)).
We also found that using BiGRU with multiple
layers did not help, and we will use one-layer Bi-
GRUs with 150 hidden units throughout the exper-
iments below.

Attribute Similarity. The resultant attribute rep-
resentations are then used to compare attributes of
each entity record pair. In particular, we compute
the element-wise absolute difference between the
two attribute vectors for each attribute and con-
struct attribute similarity vectors (sim1 and sim2

in Fig. 1). We also considered other comparison
mechanisms such as concatenation and element-
wise multiplication, but we found that absolute
difference performs the best in development, and
we will report results from absolute difference.

Record Similarity. Given the attribute similarity
vectors, we now combine those vectors to repre-
sent the similarity between the input entity record
pair. Here, we take a simple but effective approach
of adding all attribute similarity vectors (sim in
Fig. 1). This way of combining vectors ensures
that the final similarity vector is of the same di-
mensionality regardless of the number of attributes
and facilitates transfer of all the subsequent pa-
rameters. For instance, the DBLP-Scholar and

5854

Cora2 datasets have four and eight attributes re-
spectively, but the networks can share all weights
and biases between the two. We also tried methods
such as max pooling and average pooling, but none
of them outperformed the simple addition method.

Matching Classification. We finally feed the sim-
ilarity vector for the two records to a two-layer
multilayer perceptron (MLP) with highway con-
nections (Srivastava et al., 2015) and classify the
pair into a match or a non-match (“Matching Clas-
sifier” in Fig. 1). The output from the final layer
of the MLP is a two dimensional vector and we
normalize it by the softmax function to obtain a
probability distribution. We will discuss dataset
adaptation for transfer learning in the next section.

Training Objectives. We train the networks to
minimize the negative log-likelihood loss. We use
the Adam optimization algorithm (Kingma and
Ba, 2015) with batch size 16 and an initial learn-
ing rate of 0.001, and after each epoch we evaluate
our model on the dev set. Training terminates after
20 epochs, and we choose the model that yields the
best F1 score on the dev set and evaluate the model
on the test data.

4 Deep Transfer Active Learning for ER

We introduce two orthogonal frameworks for our
deep ER models in low resource settings: transfer
and active learning. We also introduce the notion
of likely false positives and likely false negatives,
and provide a principled active labeling method in
the context of deep ER models, which contributes
to stable and high performance.

4.1 Adversarial Transfer Learning

The architecture described above allows for sim-
ple transfer learning: we can train all parameters
in the network on source data and use them to
classify a target dataset. However, this method of
transfer learning can suffer from dataset-specific
properties. For example, the author attribute in
the DBLP-ACM dataset contains first names while
that in the DBLP-Scholar dataset only has first ini-
tials. In such situations, it becomes crucial to con-
struct network representations that are invariant
with respect to idiosyncratic properties of datasets.
To this end, we apply the technique of dataset (do-
main) adaptation developed in image recognition

2http://www.cs.umass.edu/mccallum/
data/cora-refs.tar

(Ganin and Lempitsky, 2015). In particular, we
build a dataset classifier with the same architec-
ture as the matching classifier (“Dataset Classi-
fier” in Fig. 1) that predicts which dataset the in-
put pair comes from. We replace the training ob-
jective by the sum of the negative log-likelihood
losses from the two classifiers. We add a gra-
dient reversal layer between the similarity vector
and the dataset classifier so that the parameters
in the dataset classifier are trained to predict the
dataset while the rest of the network is trained to
mislead the dataset classifier, thereby developing
dataset-independent internal representations. Cru-
cially, with dataset adaptation, we feed pairs from
the target dataset as well as the source to the net-
work. For the pairs from the target, we disregard
the loss from the matching classifier.

4.2 Active Learning

Since labeling a large number of pairs for each ER
scenario clearly does not scale, prior work in ER
has adopted active learning as a more guided ap-
proach to select examples to label (Tejada et al.,
2001; Sarawagi and Bhamidipaty, 2002; Arasu
et al., 2010; de Freitas et al., 2010; Isele and Bizer,
2013; Qian et al., 2017).

Designing an effective active learning algorithm
for deep ER models is particularly challenging be-
cause finding informative examples is very dif-
ficult (especially for positive examples due to
the extremely low matching ratio in realistic ER
tasks), and we need more than a handful of both
negative and positive examples in order to tune a
deep ER model with many parameters.

To address this issue, we design an iterative
active learning algorithm (Algorithm 1) that
searches for two different types of examples from
unlabeled data in each iteration: (1) uncertain ex-
amples including likely false positives and likely
false negatives, which will be labeled by human
annotators; (2) high-confidence examples includ-
ing high-confidence positives and high-confidence
negatives. We will not label high-confidence
examples and use predicted labels as a proxy.
We will show below that those carefully selected
examples serve different purposes.

Uncertain examples and high-confidence ex-
amples are characterized by the entropy of the
conditional probability distribution given by the
current model. Let K be the sampling size and the
unlabeled dataset consisting of candidate record

http://www.cs.umass.edu/â�Œmccallum/data/cora-refs.tar
http://www.cs.umass.edu/â�Œmccallum/data/cora-refs.tar

5855

pairs be DU = {xi}Ni=1. Denote the probability
that record pair xi is a match according to the
current model by p(xi). Then, the conditional
entropy of the pair H (xi) is computed by:

−p(xi) log p(xi)− (1− p(xi)) log(1− p(xi))

Uncertain examples and high-confidence exam-
ples are associated with high and low entropy.

Given this notion of uncertainty and high confi-
dence, one can simply select record pairs with top
K entropy as uncertain examples and those with
bottom K entropy as high-confidence examples.
Namely, take

argmax
D⊆DU |D|=K

∑
x∈D

H(x), argmin
D⊆DU |D|=K

∑
x∈D

H(x)

as sets of uncertain and high-confidence examples
respectively. However, these simple criteria can
introduce an unintended bias toward a certain di-
rection, resulting in unstable performance. For ex-
ample, uncertain examples selected solely on the
basis of entropy can sometimes contain substan-
tially more negative examples than positive ones,
leading the network to a solution with low recall.
To address this instability problem, we propose a
partition sampling mechanism. We first partition
the unlabeled data DU into two subsets: D

U and
DU , consisting of pairs that the model predicts as
matches and non-matches respectively. Namely,
D

U
= {x ∈ DU |p(x) ≥ 0.5}, DU = {x ∈

DU |p(x) < 0.5}.
Then, we pick top/bottom k = K/2 examples

from each subset with respect to entropy. Uncer-
tain examples are now:

argmax
D⊆DU |D|=k

∑
x∈D

H(x), argmax
D⊆DU |D|=k

∑
x∈D

H(x)

where the two criteria select likely false positives
and likely false negatives respectively. Likely
false positives and likely false negatives are useful
for improving the precision and recall of ER
models (Qian et al., 2017). However, the deep ER
models do not have explicit features, and thus we
use entropy to identify the two types of examples
in contrast to the feature-based method used in
Qian et al. (2017). High-confidence examples are
identified by:

argmin
D⊆DU |D|=k

∑
x∈D

H(x), argmin
D⊆DU |D|=k

∑
x∈D

H(x)

where the two criteria correspond to high-
confidence positives and high-confidence nega-
tives respectively. These sampling criteria equally
partition uncertain examples and high-confidence
examples into different categories. We will show
that the partition mechanism contributes to stable
and better performance in a later section.

Algorithm 1 Deep Transfer Active Learning
Require:

Unlabeled data DU , sampling size K, batch size B,
max. iteration number T , max. number of epochs I .

Ensure:
Denote the deep ER parameters and the set of
labeled examples by W and DL respectively.
Update(W, DL, B) denotes a parameter update
function that optimizes the negative log-likelihood of
the labeled data DL with batch size B. Set k = K/2.

1: Initialize W via transfer learning. Initialize also
DL = ∅

2: for t ∈ {1, 2, ..., T} do
3: Select k likely false positives and k likely false

negatives from DU and remove them from DU .
Label those examples and add them to DL.

4: Select k high-confidence positives and k high-
confidence negatives from DU and add them with
positive and negative labels to DL.

5: for t ∈ {1, 2, ..., I} do
6: W ← Update(W, DL, B)
7: Run deep ER model on DL with W and get the

F1 score.
8: if the F1 score improves then
9: Wbest ←W

10: end if
11: end for
12: W ←Wbest

13: end for
14: return W

High-confidence examples prevent the network
from overfitting to selected uncertain examples
(Wang et al., 2017). Moreover, they can give
the DL model more labeled data without actual
manual effort. Note that we avoid using any en-
tropy level thresholds to select examples, and in-
stead fix the number of examples. In contrast,
the active learning framework for neural network
image recognition in Wang et al. (2017) uses
entropy thresholds. Such thresholds necessitate
fine-tuning for each target dataset: Wang et al.
(2017) use different thresholds for different im-
age recognition datasets. However, since we do
not have sufficient labeled data for the target in
low-resource ER problems, the necessity of fine-
tuning thresholds would undermine the applicabil-
ity of the active learning framework.

5856

dataset genre size matches attr
DBLP-ACM citation 12,363 2,220 4
DBLP-Scholar citation 28,707 5,347 4
Cora citation 50,000 3,969 8
Fodors-Zagats restaurant 946 110 6
Zomato-Yelp restaurant 894 214 4
Amazon-Google software 11,460 1,167 3

Table 2: Post-blocking statistics of the ER datasets we
used. (attr denotes the number of attributes.)

5 Experiments

5.1 Experimental Setup

For all datasets, we first conduct blocking to re-
duce the Cartesian product to a candidate set.
Then, we randomly split the candidate set into
training, development, and test data with a ra-
tio of 3:1:1. For the datasets used in Mud-
gal et al. (2018) (DBLP-ACM, DBLP-Scholar,
Fodors-Zagats, and Amazon-Google), we adopted
the same feature-based blocking strategies and
random splits to ensure comparability with the
state-of-the-art method. The candidate set of Cora
was obtained by randomly sampling 50,000 pairs
from the result of the jaccard similarity-based
blocking strategy described in Wang et al. (2011).
The candidate set of Zomato-Yelp was taken from
Das et al. (2016).3 All dataset statistics are given
in Table 2. For evaluation, we compute precision,
recall, and F1 score on the test sets. In the ac-
tive learning experiments, we hold out the test sets
a priori and sample solely from the training data
to ensure fair comparison with non-active learning
methods. The sampling size K for active learning
is 20. As preprocessing, we tokenize with NLTK
(Bird et al., 2009) and lowercase all attribute val-
ues. For every configuration, we run experiments
with 5 random initializations and report the aver-
age. Our DL models are all implemented using the
publicly available deepmatcher library.4

5.2 Baselines

We establish baselines using a state-of-the-art
learning-based ER package, Magellan (Konda
et al., 2016). We experimented with the following
6 learning algorithms: Decision Tree, SVM, Ran-

3We constructed Zomato-Yelp by merging Restaurants 1
and 2, which are available in Das et al. (2016). Though the
two datasets share the same source, their schemas slightly
differ: Restaurants 1 has an address attribute that contains
zip code, while Restaurants 2 has a zip code attribute and
an address attribute. We put a null value for the zip code
attribute in Restaurants 1 and avoid merging errors.

4https://github.com/anhaidgroup/
deepmatcher

0 1000 2000 3000 4000 5000 6000 7000

92

93

94

95

96

97

98

Labeled Training examples

F1

Deep Learning
Decision Tree

SVM
Random Forest

Naive Bayes
Logistic Regression
Linear Regression

Figure 2: Performance vs. data size (DBLP-ACM).

dom Forest, Naive Bayes, Logistic Regression,
and Linear Regression. We use the same feature
set as in Mudgal et al. (2018). See the appendix
for extensive lists of features chosen.

5.3 Results and Discussions

Model Performance and Data Size. Seen in Fig.
2 is F1 performance of different models with vary-
ing data size on DBLP-ACM. The DL model im-
proves dramatically as the data size increases and
achieves the best performance among the 7 mod-
els when 7000 training examples are available. In
contrast, the other models suffer much less from
data scarcity with an exception of Random Forest.
We observed similar patterns in DBLP-Scholar
and Cora. These results confirm our hypothesis
that deep ER models are data-hungry and require
a lot of labeled data to perform well.

Transfer Learning. Table 3 shows results from
our transfer learning framework when used in iso-
lation (i.e., without active learning, which we will
discuss shortly). Our dataset adaptation method
substantially ameliorates performance when the
target is DBLP-Scholar (from 41.03 to 53.84 F1
points) or Cora (from 38.3 to 43.13 F1 points)
and achieves the same level of performance on
DBLP-ACM. Transfer learning with our dataset
adaptation technique achieves a certain level of
performance without any target labels, but we
still observe high variance in performance (e.g.
6.21 standard deviation in DBLP-Scholar) and a
huge discrepancy between transfer learning and
training directly on the target dataset. To build a
reliable and stable ER model, a certain amount of
target labels may be necessary, which leads us to
apply our active learning framework.

Active Learning. Fig. 3 shows results from our
active learning as well as the 7 algorithms trained
on labeled examples of corresponding size that are

https://github.com/anhaidgroup/deepmatcher
https://github.com/anhaidgroup/deepmatcher

5857

Target DBLP-ACM DBLP-Scholar Cora
Method Prec Recall F1 Prec Recall F1 Prec Recall F1
Train on Source 86.98 98.38 92.32±1.15 73.41 43.20 41.03±6.33 92.54 24.22 38.30±3.77

+Adaptation 88.71 96.21 92.31±1.36 88.06 39.03 53.84±6.21 40.64 52.16 43.13±3.62

Train on Target 98.30 98.60 98.45±0.22 92.72 93.08 92.94±0.47 98.01 99.37 98.68±0.26

Mudgal et al. (2018) – – 98.4 – – 93.3 – – –
Table 3: Transfer learning results (citation genre). We report standard deviations of the F1 scores. For each target
dataset, the source is given by the other two datasets (e.g., the source for DBLP-ACM is DBLP-Scholar and Cora.)

0 100 200 300 400

82

84

86

88

90

92

94

96

98

Labeled Training examples

F1
sc

or
es

(a) DBLP-ACM

0 200 400 600 800 1000

60

70

80

90

Labeled Training examples

(b) DBLP-Scholar

0 200 400 600 800 1000
20

30

40

50

60

70

80

90

100

Labeled Training examples

(c) Cora

Deep Transfer Active Deep Active Deep Learning Decision Tree SVM
Random Forest Naive Bayes Logistic Regression Linear Regression

Figure 3: Low-resource performances on different datasets.

randomly sampled.5 Deep transfer active learning
(DTAL) initializes the network parameters by
transfer learning whereas deep active learning
(DAL) starts with a random initialization. We
can observe that DTAL models remedy the data
scarcity problem as compared to DL models with
random sampling in all three datasets. DAL can
achieve competitive performance to DTAL at the
expense of faster convergence.

Seen in Table 4 is performance comparison
of different algorithms in low-resource and high-
resource settings. (We only show the SVM re-
sults since SVM performed best in each config-
uration among the 6 non-DL algorithms.) First,
deep transfer active learning (DTAL) achieves the
best performance in the low-resource setting of
each dataset. In particular, DTAL outperforms the
others to the greatest degree in Cora (97.68 F1
points) probably because Cora is the most com-
plex dataset with 8 attributes in the schema. Non-
DL algorithms require many interaction features,
which lead to data sparsity. Deep active learning
(DAL) also outperforms SVM and yields compa-
rable performance to DTAL. However, the stan-
dard deviations in performance of DAL are sub-
stantially higher than those of DTAL (e.g. 4.15

5We average the results over 5 random samplings.

vs. 0.33 in DBLP-ACM), suggesting that transfer
learning provides useful initializations for active
learning to achieve stable performance.

One can argue that DTAL performs best in the
low-resource scenario, but the other algorithms
can also boost their low-resource performance by
active learning. While there are many approaches
to active learning on feature-based (non-DL) ER
(e.g. Bellare et al. (2012); Qian et al. (2017)) that
yield strong performance under certain condition,
it requires further research to quantify how these
methods perform with varying datasets, genres,
and blocking functions. It should be noted, how-
ever, that in DBLP-Scholar and Cora, DTAL in
the low-resource setting even significantly outper-
forms SVM (and the other 5 algorithms) in the
high-resource scenario. These results imply that
DTAL would significantly outperform SVM with
active learning in the low-resource setting since
the performance with the full training data with la-
bels serves as an upper bound. Moreover, we can
observe that DTAL with a limited amount of data
(less than 6% of training data in all datasets), per-
forms comparably to DL models with full training
data. Therefore, we have demonstrated that a deep
ER system with our transfer and active learning
frameworks can provide a stable and reliable solu-

5858

Dataset Method Train Size F1
DTAL 400 97.89±0.33

DAL 400 95.35±4.15

DL 400 93.40±2.61

SVM 400 96.97±0.69

DL 7,417 98.45±0.22

DBLP-ACM

SVM 7,417 98.35±0.14

DTAL 1000 89.54±0.39

DAL 1000 88.76±0.76

DL 1000 83.33±1.26

SVM 1000 85.36±0.32

DL 17,223 92.94±0.47

DBLP-Scholar

SVM 17,223 88.56±0.46

DTAL 1000 97.68±0.39

DAL 1000 97.05±0.64

DL 1000 84.35±4.25

SVM 1000 87.66±3.15

DL 30,000 98.68±0.26

Cora

SVM 30,000 95.39±0.31

Table 4: Low-resource (shaded) and high-resource (full
training data) performance comparison. DTAL, DAL,
and DL denote deep transfer active learning, deep ac-
tive learning, and deep learning (random sampling).

tion to entity resolution with low annotation effort.

Other Genre Results. We present results from
the restaurant and software genres.6 Shown in
Table 5 are results of transfer and active learning
from Zomato-Yelp to Fodors-Zagats. Similarly
to our extensive experiments in the citation
genre, the dataset adaptation technique facilitates
transfer learning significantly, and only 100 active
learning labels are needed to achieve the same
performance as the model trained with all target
labels (894 labels). Fig. 4 shows low-resource
performance in the software genre. The relative
performance among the 6 non-DL approaches
differs to a great degree as the best non-DL model
is now logistic regression, but deep active learning
outperforms the rest with 1200 labeled examples
(10.4% of training data). These results illustrate
that our low-resource frameworks are effective in
other genres as well.

Active Learning Sampling Strategies. As
discussed in a previous section, we adopted high-
confidence sampling and a partition mechanism
for our active learning. Here we analyze the effect
of the two methods. Table 6 shows deep transfer
active learning performance in DBLP-ACM with
varying sampling strategies. We can observe that
high-confidence sampling and the partition mech-

6We intend to apply our approaches to more genres, but
unfortunately we lack large publicly available ER datasets in
other genres than citation. Applications to non-English lan-
guages are also of interest. We leave this for future.

Method Prec Recall F1
Train on Src 100.00 6.37 11.76±6.84

+Adaptation 95.33 57.27 70.13±19.89

+100 active labels 100.00 100.00 100.00±0.00

Train on Tgt 100.00 100.00 100.00±0.00

Mudgal et al. (2018) – – 100

Table 5: Transfer and active learning results in the
restaurant genre. The target and source datasets are
Fodors-Zagats and Zomato-Yelp respectively.

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

Labeled Training examples

F1

Deep Active
Deep Learning
Decision Tree

SVM
Random Forest

Naive Bayes
Logistic Regression
Linear Regression

Figure 4: Low-resource performance (software genre).

anism contribute to high and stable performance
as well as good precision-recall balance. Notice
that there is a huge jump in recall by adding
partition while precision stays the same (row 4 to
row 3). This is due to the fact that the partition
mechanism succeeds in finding more false nega-
tives. The breakdown of labeled examples (Table
7) shows that is indeed the case. It is noteworthy
that the partition mechanism lowers the ratio of
misclassified examples (FP+FN) in the labeled
sample set because partitioning encourages us to
choose likely false negatives more aggressively,
yet false negatives tend to be more challenging to
find in entity resolution due to the skewness to-
ward the negative (Qian et al., 2017). We observed
similar patterns in DBLP-Scholar and Cora.

6 Further Related Work

Transfer learning has proven successful in fields
such as computer vision and natural language
processing, where networks for a target task
is pretrained on a source task with plenty of
training data (e.g. image classification (Donahue
et al., 2014) and language modeling (Peters et al.,
2018)). In this work, we developed a transfer
learning framework for a deep ER model. Con-
current work (Thirumuruganathan et al., 2018) to
ours has also proposed transfer learning on top
of the features from distributed representations,
but they focused on classical machine learning
classifiers (e.g., logistic regression, SVMs, deci-
sion trees, random forests) and they did not con-

5859

Sampling Method Prec Recall F1
High-Confidence 93.32 97.21 95.19±2.21

Partition 96.14 97.12 96.61±0.57

High-Conf.+Part. 97.63 97.84 97.73±0.43

Top K Entropy 96.16 89.64 92.07±9.73

Table 6: Low-resource performance (300 labeled ex-
amples) of different sampling strategies (DBLP-ACM).

Method FP TP FN TN
Part 79.65.9 70.45.9 59.25.6 90.85.6

W/o Part 101.67.7 57.415.9 41.64.4 99.422.5

Table 7: Breakdown of 300 labeled samples (uncertain
samples) from deep transfer active learning in DBLP-
ACM. Part, FP, TP, FN, and TN denote the partition
mechanism, false positives, true positives, false nega-
tives, and true negatives respectively.

sider active learning. Their distributed represen-
tations are computed in a “bag-of-words” fashion,
which can make applications to textual attributes
more challenging (Mudgal et al., 2018). More-
over, their method breaks attribute boundaries for
tuple representations in contrast to our approach
that computes a similarity vector for each attribute
in an attribute-agnostic manner. In a complex ER
scenario, each entity record is represented by a
large number of attributes, and comparing tuples
as a single string can be infeasible. Other prior
work also proposed a transfer learning framework
for linear model-based learners in ER (Negahban
et al., 2012).

7 Conclusion

We presented transfer learning and active learning
frameworks for entity resolution with deep learn-
ing and demonstrated that our models can achieve
competitive, if not better, performance as com-
pared to state-of-the-art learning-based methods
while only using an order of magnitude less la-
beled data. Although our transfer learning alone
did not suffice to construct a reliable and stable en-
tity resolution system, it contributed to faster con-
vergence and stable performance when used to-
gether with active learning. These results serve
as further support for the claim that deep learning
can provide a unified data integration method for
downstream NLP tasks. Our frameworks of trans-
fer and active learning for deep learning models
are potentially applicable to low-resource settings
beyond entity resolution.

Acknowledgments

We thank Sidharth Mudgal for assistance with
the DeepMatcher/Magellan libraries and replicat-
ing experiments. We also thank Vamsi Meduri,
Phoebe Mulcaire, and the anonymous reviewers
for their helpful feedback. JK was supported by
travel grants from the Masason Foundation fellow-
ship.

References
Arvind Arasu, Michaela Götz, and Raghav Kaushik.

2010. On active learning of record matching pack-
ages. In Proc. of SIGMOD.

Kedar Bellare, Suresh Iyengar, Aditya G.
Parameswaran, and Vibhor Rastogi. 2012. Ac-
tive sampling for entity matching. In Proc. of
KDD.

Mikhail Bilenko and Raymond J. Mooney. 2003.
Adaptive duplicate detection using learnable string
similarity measures. In Proc. of KDD, pages 39–48,
New York, NY, USA. ACM.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural Language Processing with Python. OReilly
Media.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. TACL, 5:135–146.

William M. Campbell, Lin Li, Charlie K. Dagli, Joel
Acevedo-Aviles, K. Geyer, Joseph P. Campbell, and
C. Priebe. 2016. Cross-domain entity resolution in
social media. In Proc. of SocialNLP.

Kyunghyun Cho, Bart van Merrienboer, aglar Gülehre,
Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proc. of
EMNLP.

Peter Christen. 2008. Febrl: A freely available record
linkage system with a graphical user interface. In
Proc. of HDKM, pages 17–25, Darlinghurst, Aus-
tralia, Australia. Australian Computer Society, Inc.

Sanjib Das, AnHai Doan, Paul Suganthan
G. C., Chaitanya Gokhale, and Pradap
Konda. 2016. The Magellan data repository.
https://sites.google.com/site/
anhaidgroup/projects/data.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoff-
man, Ning Zhang, Eric Tzeng, and Trevor Darrell.
2014. DeCAF: A deep convolutional activation fea-
ture for generic visual recognition. In ICML, vol-
ume 32 of Proceedings of Machine Learning Re-
search, pages 647–655, Bejing, China.

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/p783.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/p783.pdf
https://dl.acm.org/citation.cfm?id=2339707
https://dl.acm.org/citation.cfm?id=2339707
https://doi.org/10.1145/956750.956759
https://doi.org/10.1145/956750.956759
https://arxiv.org/abs/1607.04606
https://arxiv.org/abs/1607.04606
https://arxiv.org/abs/1608.01386
https://arxiv.org/abs/1608.01386
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
http://dl.acm.org/citation.cfm?id=1385089.1385094
http://dl.acm.org/citation.cfm?id=1385089.1385094
https://sites.google.com/site/anhaidgroup/projects/data
https://sites.google.com/site/anhaidgroup/projects/data
http://proceedings.mlr.press/v32/donahue14.html
http://proceedings.mlr.press/v32/donahue14.html

5860

Xin Dong, Alon Halevy, and Jayant Madhavan. 2005.
Reference reconciliation in complex information
spaces. In Proc. of SIGMOD, pages 85–96, New
York, NY, USA. ACM.

Muhammad Ebraheem, Saravanan Thirumuru-
ganathan, Shafiq Joty, Mourad Ouzzani, and Nan
Tang. 2018. Distributed representations of tuples
for entity resolution. VLDB.

Jeffrey L. Elman. 1990. Finding structure in time.
Cognitive Science, 14:179–211.

Ronald Fagin, Laura M. Haas, Mauricio A. Hernández,
Renée J. Miller, Lucian Popa, and Yannis Vele-
grakis. 2009. Clio: Schema mapping creation and
data exchange. In Conceptual Modeling: Founda-
tions and Applications.

Ivan P. Fellegi and Alan B. Sunter. 1969. A theory for
record linkage. JASA.

Junio de Freitas, Gisele Lobo Pappa, Altigran Soares
da Silva, Marcos André Gonalves, Edleno Silva
de Moura, Adriano Veloso, Alberto H. F. Laen-
der, and Moisés G. de Carvalho. 2010. Active
learning genetic programming for record deduplica-
tion. IEEE Congress on Evolutionary Computation,
pages 1–8.

Yaroslav Ganin and Victor Lempitsky. 2015. Unsu-
pervised domain adaptation by backpropagation. In
Proc. of ICML, volume 37 of Proceedings of Ma-
chine Learning Research, pages 1180–1189, Lille,
France. PMLR.

Mauricio A. Hernández and Salvatore J. Stolfo. 1995.
The merge/purge problem for large databases. In
Proc. of SIGMOD, pages 127–138, New York, NY,
USA. ACM.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9:1735–
1780.

Robert Isele and Christian Bizer. 2013. Active learning
of expressive linkage rules using genetic program-
ming. J. Web Sem., 23:2–15.

Diederik P. Kingma and Jimmy Lei Ba. 2015. ADAM:
A Method for Stochastic Optimization. In ICLR.

Pradap Konda, Sanjib Das, C. PaulSuganthanG., An-
Hai Doan, Adel Ardalan, Jeffrey R. Ballard, Han
Li, Fatemah Panahi, Haojun Zhang, Jeffrey F.
Naughton, Shishir Prasad, Ganesh Krishnan, Rohit
Deep, and Vijay Raghavendra. 2016. Magellan: To-
ward building entity matching management systems.
VLDB, 9:1197–1208.

Hanna Köpcke, Andreas Thor, and Erhard Rahm. 2010.
Evaluation of entity resolution approaches on real-
world match problems. VLDB, pages 484–493.

Sidharth Mudgal, Han Li, Theodoros Rekatsinas, An-
Hai Doan, Youngchoon Park, Ganesh Krishnan, Ro-
hit Deep, Esteban Arcaute, and Vijay Raghavendra.
2018. Deep learning for entity matching: A design
space exploration. In Proc. of SIGMOD, pages 19–
34, New York, NY, USA. ACM.

Sahand N. Negahban, Benjamin I. P. Rubinstein, and
Jim Gemmell. 2012. Scaling multiple-source entity
resolution using statistically efficient transfer learn-
ing. In Proc. of CIKM.

Hanna M. Pasula, Bhaskara Marthi, Brian Milch, Stu-
art J. Russell, and Ilya Shpitser. 2002. Identity un-
certainty and citation matching. In Proc. of NeurIS.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors for
word representation. In Proc. of EMNLP.

Matthew E. Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee, and
Luke S. Zettlemoyer. 2018. Deep contextualized
word representations. In Proc. of NAACL.

Kun Qian, Lucian Popa, and Prithviraj Sen. 2017. Ac-
tive learning for large-scale entity resolution. In
CIKM, pages 1379–1388, New York, NY, USA.
ACM.

Erhard Rahm and Philip A. Bernstein. 2001. A sur-
vey of approaches to automatic schema matching.
VLDB, 10:334–350.

Sunita Sarawagi and Anuradha Bhamidipaty. 2002. In-
teractive deduplication using active learning. In
Proc. of KDD.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Training very deep networks.
In Proc. of NeurIS.

Sheila Tejada, Craig A. Knoblock, and Steven Minton.
2001. Learning object identification rules for infor-
mation integration. Inf. Syst., 26:607–633.

Saravanan Thirumuruganathan, Shameem Puthiya
Parambath, Mourad Ouzzani, Nan Tang, and
Shafiq R. Joty. 2018. Reuse and adaptation
for entity resolution through transfer learning.
arXiv:1809.11084.

Jiannan Wang, Guoliang Li, Jeffrey Xu Yu, and Jian-
hua Feng. 2011. Entity matching: How similar is
similar. VLDB, 4(10):622–633.

Keze Wang, Dongyu Zhang, Ya Li, Ruimao Zhang, and
Liang Lin. 2017. Cost-effective active learning for
deep image classification. IEEE Trans. Cir. and Sys.
for Video Technol., 27(12):2591–2600.

Xin Zhao, Yuexin Wu, Hongfei Yan, and Xiaoming
Li. 2014. Group based self training for e-commerce
product record linkage. In Proc. of COLING, pages
1311–1321, Dublin, Ireland. Dublin City University
and Association for Computational Linguistics.

https://doi.org/10.1145/1066157.1066168
https://doi.org/10.1145/1066157.1066168
http://www.vldb.org/pvldb/vol11/p1454-ebraheem.pdf
http://www.vldb.org/pvldb/vol11/p1454-ebraheem.pdf
https://www.sciencedirect.com/science/article/abs/pii/036402139090002E
https://dl.acm.org/citation.cfm?id=1577347
https://dl.acm.org/citation.cfm?id=1577347
https://amstat.tandfonline.com/doi/abs/10.1080/01621459.1969.10501049#.XPFeodMzbOQ
https://amstat.tandfonline.com/doi/abs/10.1080/01621459.1969.10501049#.XPFeodMzbOQ
https://ieeexplore.ieee.org/document/5586104
https://ieeexplore.ieee.org/document/5586104
https://ieeexplore.ieee.org/document/5586104
http://proceedings.mlr.press/v37/ganin15.html
http://proceedings.mlr.press/v37/ganin15.html
https://doi.org/10.1145/223784.223807
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.sciencedirect.com/science/article/pii/S1570826813000231
https://www.sciencedirect.com/science/article/pii/S1570826813000231
https://www.sciencedirect.com/science/article/pii/S1570826813000231
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://www.vldb.org/pvldb/vol9/p1197-pkonda.pdf
http://www.vldb.org/pvldb/vol9/p1197-pkonda.pdf
http://www.vldb.org/pvldb/vldb2010/papers/E04.pdf
http://www.vldb.org/pvldb/vldb2010/papers/E04.pdf
https://doi.org/10.1145/3183713.3196926
https://doi.org/10.1145/3183713.3196926
https://arxiv.org/abs/1208.1860
https://arxiv.org/abs/1208.1860
https://arxiv.org/abs/1208.1860
http://people.csail.mit.edu/milch/papers/nipsnewer.pdf
http://people.csail.mit.edu/milch/papers/nipsnewer.pdf
https://aclweb.org/anthology/papers/D/D14/D14-1162/
https://aclweb.org/anthology/papers/D/D14/D14-1162/
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1802.05365
https://doi.org/10.1145/3132847.3132949
https://doi.org/10.1145/3132847.3132949
https://dl.acm.org/citation.cfm?id=767154
https://dl.acm.org/citation.cfm?id=767154
https://dl.acm.org/citation.cfm?id=775087
https://dl.acm.org/citation.cfm?id=775087
https://arxiv.org/abs/1507.06228
http://usc-isi-i2.github.io/papers/tejada01-is.pdf
http://usc-isi-i2.github.io/papers/tejada01-is.pdf
https://arxiv.org/abs/1809.11084
https://arxiv.org/abs/1809.11084
https://doi.org/10.14778/2021017.2021020
https://doi.org/10.14778/2021017.2021020
https://doi.org/10.1109/TCSVT.2016.2589879
https://doi.org/10.1109/TCSVT.2016.2589879
http://www.aclweb.org/anthology/C14-1124
http://www.aclweb.org/anthology/C14-1124

5861

A Appendices

A.1 Deep ER Hyperparameters
Seen in Table 8 is a list of hyperparameters
for our deep entity resolution models. We use
the same hyperparameters regardless of scenario
and dataset. We initialize the 300 dimensional
word embeddings by the character-based pre-
trained fastText vectors publicly available.7

Input Representations
Word embedding size 300
Input dropout rate 0.0

Word-level BiGRU
GRU size 150
GRU layers 1
Final ouput concat

Similarity Representations
Attr. sim. absolute diff.
Record sim. sum

Matching Classification
MLP layers 2
MLP size 300
MLP activation relu
Highway Connection Yes

Domain Classification (Adversarial)
MLP layers 2
MLP size 300
MLP activation relu
Highway Connection Yes

Training
Objective cross-entropy
Batch size 16
Epochs 20
Adam (Kingma and Ba, 2015) lrate 0.001
Adam β1 0.9
Adam β2 0.999

Table 8: Deep ER hyperparameters.

A.2 Non-DL Learning Algorithms
Magellan (Konda et al., 2016) is an open-source
package that provides state-of-the-art learning-
based algorithms for ER.8 We use the package to
run the following 6 learning algorithms for base-
lines: Decision Tree, SVM, Random Forest, Naive
Bayes, Logistic Regression, and Linear Regres-
sion. For each attribute in the schema, we ap-
ply the following similarity functions: q-gram jac-
card, cosine distance, Levenshtein disntance, Lev-
enshtein similairty, Monge-Elkan measure, and
exact matching.

7https://github.com/facebookresearch/
fastText

8https://sites.google.com/site/
anhaidgroup/projects/magellan

https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/fastText
https://sites.google.com/site/anhaidgroup/projects/magellan
https://sites.google.com/site/anhaidgroup/projects/magellan

