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Abstract
Building explainable systems is a critical prob-

lem in the field of Natural Language Process-

ing (NLP), since most machine learning mod-

els provide no explanations for the predictions.

Existing approaches for explainable machine

learning systems tend to focus on interpret-

ing the outputs or the connections between in-

puts and outputs. However, the fine-grained
information (e.g. textual explanations for the

labels) is often ignored, and the systems do

not explicitly generate the human-readable ex-

planations. To solve this problem, we pro-

pose a novel generative explanation frame-

work that learns to make classification deci-

sions and generate fine-grained explanations

at the same time. More specifically, we intro-

duce the explainable factor and the minimum

risk training approach that learn to generate

more reasonable explanations. We construct

two new datasets that contain summaries, rat-

ing scores, and fine-grained reasons. We con-

duct experiments on both datasets, compar-

ing with several strong neural network base-

line systems. Experimental results show that

our method surpasses all baselines on both

datasets, and is able to generate concise expla-

nations at the same time.

1 Introduction

Deep learning methods have produced state-of-

the-art results in many natural language process-

ing (NLP) tasks (Vaswani et al., 2017; Yin et al.,

2018; Peters et al., 2018; Wang et al., 2018; Han-

cock et al., 2018; Ma et al., 2018). Though these

deep neural network models achieve impressive

performance, it is relatively difficult to convince

people to trust the predictions of such neural net-

works since they are actually black boxes for hu-

man beings (Samek et al., 2018). For instance,

if an essay scoring system only tells the scores

of a given essay without providing explicit rea-

sons, the users can hardly be convinced of the

judgment. Therefore, the ability to explain the

rationale is essential for a NLP system, a need

which requires traditional NLP models to provide

human-readable explanations.

In recent years, lots of works have been done

to solve text classification problems, but just a

few of them have explored the explainability of

their systems (Camburu et al., 2018; Ouyang et al.,

2018). Ribeiro et al. (2016) try to identify an inter-

pretable model over the interpretable representa-

tion that is locally faithful to the classifier. Samek

et al. (2018) use heatmap to visualize how much

each hidden element contributes to the predicted

results. Although these systems are somewhat

promising, they typically do not consider fine-

grained information that may contain information

for interpreting the behavior of models. However,

if a human being wants to rate a product, s/he

may first write down some reviews, and then score

or summarize some attributes of the product, like

price, packaging, and quality. Finally, the over-

all rating for the product will be given based on

the fine-grained information. Therefore, it is cru-

cial to build trustworthy explainable text classifi-

cation models that are capable of explicitly gener-

ating fine-grained information for explaining their

predictions.

To achieve these goals, in this paper, we pro-

pose a novel generative explanation framework for

text classification, where our model is capable of

not only providing the classification predictions

but also generating fine-grained information as ex-

planations for decisions. The novel idea behind

our hybrid generative-discriminative method is to

explicitly capture the fine-grained information in-

ferred from raw texts, utilizing the information to

help interpret the predicted classification results

and improve the overall performance. Specifically,

we introduce the notion of an explainable factor

and a minimum risk training method that learn to
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generate reasonable explanations for the overall

predict results. Meanwhile, such a strategy brings

strong connections between the explanations and

predictions, which in return leads to better perfor-

mance. To the best of our knowledge, we are the

first to explicitly explain the predicted results by

utilizing the abstractive generative fine-grained in-

formation.

In this work, we regard the summaries (texts)

and rating scores (numbers) as the fine-grained in-

formation. Two datasets that contain these kinds

of fine-grained information are collected to eval-

uate our method. More specifically, we construct

a dataset crawled from a website called PCMag1.

Each item in this dataset consists of three parts:

a long review text for one product, three short

text comments (respectively explains the property

of the product from positive, negative and neutral

perspectives) and an overall rating score. We re-

gard the three short comments as fine-grained in-

formation for the long review text. Besides, we

also conduct experiments on the Skytrax User Re-

views Dataset2, where each case consists of three

parts: a review text for a flight, five sub-field rat-

ing scores (seat comfortability, cabin stuff, food,

in-flight environment, ticket value) and an overall

rating score. As for this dataset, we regard the five

sub-field rating scores as fine-grained information

for the flight review text.

Empirically, we evaluate our model-agnostic

method on several neural network baseline mod-

els (Kim, 2014; Liu et al., 2016; Zhou and Wang,

2018) for both datasets. Experimental results sug-

gest that our approach substantially improves the

performance over baseline systems, illustrating

the advantage of utilizing fine-grained informa-

tion. Meanwhile, by providing the fine-grained

information as explanations for the classification

results, our model is an understandable system

that is worth trusting. Our major contributions are

three-fold:

• We are the first to leverage the generated fine-

grained information for building a genera-

tive explanation framework for text classifi-

cation, propose an explanation factor, and in-

troduce minimum risk training for this hybrid

generative-discriminative framework;

• We evaluate our model-agnostic explanation

1https://www.pcmag.com/
2https://github.com/quankiquanki/

skytrax-reviews-dataset

framework with different neural network ar-

chitectures, and show considerable improve-

ments over baseline systems on two datasets;

• We provide two new publicly available ex-

plainable NLP datasets that contain fine-

grained information as explanations for text

classification.

2 Task Definition and Notations

The research problem investigated in this paper

is defined as: How can we generate fine-grained

explanations for the decisions our classification

model makes? To answer this question, we may

first investigate what are good fine-grained expla-

nations. For example, in sentiment analysis, if a

product A has three attributes: i.e., quality, practi-

cality, and price. Each attribute can be described

as “HIGH” or “LOW”. And we want to know

whether A is a “GOOD” or “BAD” product. If

our model categorizes A as “GOOD” and it tells

that the quality of A is “HIGH”, the practicality

is “HIGH” and the price is “LOW”, we can regard

these values of attributes as good explanations that

illustrate why the model judges A to be “GOOD”.

On the contrary, if our model produces the same

values for the attributes, but it tells that A is a

“BAD” product, we then think the model gives bad

explanations. Therefore, for a given classification

prediction made by the model, we would like to

explore more on the fine-grained information that

can explain why it comes to such a decision for

the current example. Meanwhile, we also want to

figure out whether the fine-grained information in-

ferred from the input texts can help improve the

overall classification performance.

We denote the input sequence of texts to be

S{s1, s2, . . . , s|S|}, and we want to predict which

category yi(i ∈ [1, 2, . . . , N ]) the sequence S be-

longs to. At the same time, the model can also pro-

duce generative fine-grained explanations ec for

yi.

3 Generative Explanation Framework

In this part, we introduce our proposed Genera-

tive Explanation Framework (GEF). Figure 1 il-

lustrates the architecture of our model.

3.1 Base Classifier and Generator

A common way to do text classification tasks is

using an Encoder-Predictor architecture (Zhang
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Figure 1: The architecture of the Generative Explana-

tion Framework. E encodes S into a representation

vector ve. P gives the probability distribution Ppred

for categories. We extract the ground-truth probability

p̃pred from Ppred. Generator G takes ve as input and

generates explanations ec. Classifier C and Predictor

P both predict classes y. C will predict a probabil-

ity distribution Pclassified when taking ec as input, and

predict Pgolden when taking eg as input, and then out-

put the ground-truth probability p̃classified and p̃golden.

The explanation factor EF (S) is calculated through

p̃pred, p̃classified and p̃golden.

et al., 2015; Lai et al., 2015). As shown in Figure

1, a text encoder E takes the input text sequence

S, and encodes S into a representation vector ve.

A category predictor P then gets ve as input and

outputs the category yi and its corresponding prob-

ability distribution Ppred.

As mentioned above, a desirable model should

not only predict the overall results yi, but also pro-

vide generative explanations to illustrate why it

makes such predictions. A simple way to generate

explanations is to feed ve to an explanation gen-

erator G to generate fine-grained explanations ec.
This procedure is formulated as:

ve = Encoder([s1, s2, · · · , s|S|]) (1)

Ppred = Predictor(ve) (2)

y = argmax
i

(Ppred,i) (3)

ec = fG(WG · ve + bG) (4)

where Encoder maps the input sequence

[s1, s2, · · · , s|S|] into the representation vector ve;

the Predictor takes the ve as input and outputs

the probability distribution over classification

categories by using the softmax.

During the training process, the overall loss L is

composed of two parts, i.e., the classification loss

Lp and explanation generation loss Le:

L(eg, S, θ) = Lp + Le (5)

where θ represents all the parameters.

3.2 Explanation Factor

The simple supervised way to generate explana-

tions, as demonstrated in the previous subsection,

is quite straightforward. However, there is a sig-

nificant shortcoming of this generating process: it

fails to build strong connections between the gen-

erative explanations and the predicted overall re-

sults. In other words, the generative explanations

seem to be independent of the predicted overall re-

sults. Therefore, in order to generate more rea-

sonable explanations for the results, we propose

to use an explanation factor to help build stronger

connections between the explanations and predic-

tions.

As we have demonstrated in the introduction

section, fine-grained information will sometimes

reflect the overall results more intuitively than the

original input text sequence. For example, given a

review sentence, “The product is good to use”, we

may not be sure if the product should be rated as

5 stars or 4 stars. However, if we see that the at-

tributes of the given product are all rated as 5 stars,

we may be more convinced that the overall rating

for the product should be 5 stars.

So in the first place, we pre-train a classifier

C, which also learns to predict the category y by

directly taking the explanations as input. More

specifically, the goal of C is to imitate human be-

ings’ behavior, which means that C should predict

the overall results more accurately than the base

model that takes the original text as the input. We

prove this assumption in the experiments section.

We then use the pre-trained classifier C to help

provide a strong guidance for the text encoder E,

making it capable of generating a more informa-

tive representation vector ve. During the training

process, we first get the generative explanations ec
by utilizing the explanation generator G. We then

feed this generative explanations ec to the clas-

sifier C to get the probability distribution of the

predicted results Pclassified. Meanwhile, we can
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also get the golden probability distribution Pgold

by feeding the golden explanations eg to C. The

process can be formulated as:

Pclassified = softmax(fC(WC · ec + bC)) (6)

Pgold = softmax(fC(WC · eg + bC)) (7)

In order to measure the distance among pre-

dicted results, generated explanations and golden

generations, we extract the ground-truth probabil-

ity p̃classified, p̃pred, p̃gold from Pclassified, Ppred,

Pgold respectively. They will be used to measure

the discrepancy between the predicted result and

ground-truth result in minimum risk training.

We define our explanation factor EF (S) as:

EF (S) = |p̃classified − p̃gold|+
|p̃classified − p̃pred|

(8)

There are two components in this formula.

• The first part |p̃classified − p̃gold| represents

the distance between the generated expla-

nations ec and the golden explanations eg.

Since we pre-train C using golden explana-

tions, we hold the view that if similar ex-

planations are fed to C, similar predictions

should be generated. For instance, if we feed

a golden explanation “Great performance” to

the classifier C and it tells that this explana-

tion means “a good product”, then we feed

another explanation “Excellent performance”

to C, it should also tell that the explanation

means “a good product”. For this task, we

hope that ec can express the same or similar

meaning as eg.

• The second part |p̃classified − p̃pred| repre-

sents the relevance between the generated ex-

planations ec and the original texts S. The

generated explanations should be able to in-

terpret the overall result. For example, if the

base model predicts S to be “a good prod-

uct”, but the classifier tends to classify ec to

be the explanations for “a bad product”, then

ec cannot properly explain the reason why the

base model gives such predictions.

3.3 Minimum Risk Training
In order to remove the disconnection between fine-

grained information and input text, we use Mini-

mum risk training (MRT) to optimize our models,

which aims to minimize the expected loss, i.e., risk

over the training data (Ayana et al., 2016). Given a

sequence S and golden explanations eg, we define

Y(eg, S, θ) as the set of predicted overall results

with parameter θ. We define Δ(y, ỹ) as the se-

mantic distance between predicted overall results

y and ground-truth ỹ. Then, the objective function

is defined as:

LMRT (eg, S, θ) =
∑

(eg ,S)∈D
EY(eg ,S,θ)Δ(y, ỹ)

(9)

where D presents the whole training dataset.

In our experiment, EY(eg ,S,θ) is the expectation

over the set Y(eg, S, θ), which is the overall loss

in Equation 5. And we define Explanation Fac-

tor EF (S) as the semantic distance of input texts,

generated explanations and golden explanations.

Therefore, the objective function of MRT can be

further formalized as:

LMRT (eg, S, θ) =
∑

(eg ,S)∈D
L(eg, S, θ)EF (S)

(10)

MRT exploits EF (S) to measure the loss,

which learns to optimize GEF with respect to the

specific evaluation metrics of the task. Though

LMRT can be 0 or close to 0 when p̃classified,

p̃pred and p̃gold are close, this cannot guarantee

that generated explanations are close to the golden

explanations. In order to avoid the total degrada-

tion of loss, we define our final loss function as the

sum of MRT loss and explanation generation loss:

Lfinal =
∑

(eg ,S)∈D
L+ LMRT (11)

We try different weighting scheme for the over-

all loss, and get best performance with 1 :1.

3.4 Application Case
Generally, the fine-grained explanations are in dif-

ferent forms for a real-world dataset, which means

that ec can be in the form of texts or in the form of

numerical scores. We apply GEF to both forms of

explanations using different base models.

3.4.1 Case 1: Text Explanations
To test the performance of GEF on generating text

explanations, we apply GEF to Conditional Vari-

ational Autoencoder (CVAE) (Sohn et al., 2015).

We here utilize CVAE because we want to gen-

erate explanations conditioned on different emo-

tions (positive, negative and neural) and CVAE
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Figure 2: Structure of CVAE+GEF. There are totally

4 categories for the classification, and the ground-truth

category is 2 in this example. We assume that the pre-

trained classifier is a ”perfect” classifier that will cor-

rectly predict the final label to be 2 when taking eg as

input. So we wish the classifier can also predict the fi-

nal result as label 2 when taking ec as input. This is

why we focus on p̃classified and p̃gold.

is found to be capable of generating emotional

texts and capturing greater diversity than tradi-

tional SEQ2SEQ models.

We give an example of the structure of

CVAE+GEF in Figure 2. For space consideration,

we leave out the detailed structure of CVAE, and

will elaborate it in the supplementary materials.

In this architecture, golden explanations eg and

generated explanations ec are both composed of

three text comments: positive comments, negative

comments, and neutral comments, which are fine-

grained explanations for the final overall rating.

The classifier is a skip-connected model of bidi-

rectional GRU-RNN layers (Felbo et al., 2017). It

takes three kinds of comments as inputs, and out-

puts the probability distribution over the predicted

classifications.

3.4.2 Case 2: Numerical Explanations
Another frequently employed form of the fine-

grained explanations for the overall results is nu-

merical scores. For example, when a user wants to

rate a product, s/he may first rate some attributes

of the product, like the packaging, price, etc. Af-

ter rating all the attributes, s/he will give an over-

all rating for the product. So we can say that

the rating for the attributes can somewhat explain

why the user gives the overall rating. LSTM and

CNN are shown to achieve great performance in

text classification tasks (Tang et al., 2015), so we

use LSTM and CNN models as the encoder E re-

spectively. The numerical explanations are also re-

garded as a classification problem in this example.

4 Dataset

We conduct experiments on two datasets where we

use texts and numerical ratings to represent fine-

grained information respectively. The first one is

crawled from a website called PCMag, and the

other one is the Skytrax User Reviews Dataset.

Note that all the texts in the two datasets are pre-

processed by the Stanford Tokenizer3 (Manning

et al., 2014).

4.1 PCMag Review Dataset

This dataset is crawled from the website PCMag.

It is a website providing reviews for electronic

products, like laptops, smartphones, cameras and

so on. Each item in the dataset consists of three

parts: a long review text, three short comments,

and an overall rating score for the product. Three

short comments are summaries of the long review

respectively from positive, negative, neutral per-

spectives. An overall rating score is a number

ranging from 0 to 5, and the possible values that

the score could be are {1.0, 1.5, 2.0, ..., 5.0}.

Since long text generation is not what we focus

on, the items where review text contains more than

70 sentences or comments contain greater than 75

tokens are filtered. We randomly split the dataset

into 10919/1373/1356 pairs for train/dev/test set.

The distribution of the overall rating scores within

this corpus is shown in Table 1.

4.2 Skytrax User Reviews Dataset

We incorporate an airline review dataset scraped

from Skytraxs Web portal. Each item in this

dataset consists of three parts: i.e., a review text,

five sub-field scores and an overall rating score.

The five sub-field scores respectively stand for the

user’s ratings for seat comfortability, cabin stuff,

food, in-flight environment, and ticket value, and

each score is an integer between 0 and 5. The over-

all score is an integer between 1 and 10.

Similar to the PCMag Review Dataset, we filter

out the items where the review contains more than

3https://nlp.stanford.edu/software/
tokenizer.html
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Overall Score 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Number 21 60 283 809 2399 3981 4838 1179 78

Table 1: Distribution of examples by each overall rating score in PCMag Review Dataset.

Overall Score 1 2 3 4 5 6 7 8 9 10
Number 4073 2190 1724 1186 1821 1302 2387 3874 4008 4530

Table 2: Distribution of examples by each overall rating score in Skytrax User Reviews Dataset.

Embedding hidden batch size
PCMag GloVe, 100 128 32
Skytrax random, 100 256 64

Table 3: Experimental settings for our experiments.

Note that for CNN, we additionally set filter number to

be 256 and filter sizes to be [3, 4, 5, 6].

300 tokens. Then we randomly split the dataset

into 21676/2710/2709 pairs for train/dev/test set.

The distribution of the overall rating scores within

this corpus is shown in Table 2.

5 Experiments and Analysis

5.1 Experimental Settings
As the goal of this study is to propose an ex-

planation framework, in order to test the effec-

tiveness of proposed GEF, we use the same ex-

perimental settings on the base model and on

the base model+GEF. We use GloVe (Pennington

et al., 2014) word embedding for PCMag dataset

and minimize the objective function using Adam

(Kingma and Ba, 2014). The hyperparameter set-

tings for both datasets are listed in Table 3. Mean-

while, since the generation loss is larger than clas-

sification loss for text explanations, we stop updat-

ing the predictor after classification loss reaches

a certain threshold (adjusted based on dev set) to

avoid overfitting.

5.2 Experimental Results
5.2.1 Results of Text Explanations
We use BLEU (Papineni et al., 2002) scores to

evaluation the quality of generated text explana-

tions. Table 4 shows the comparison results of ex-

planations generated by CVAE and CVAE+GEF.

There are considerable improvements on the

BLEU scores of explanations generated by

CVAE+GEF over the explanations generated by

CVAE, which demonstrates that the explanations

generated by CVAE+GEF are of higher quality.

BLEU-1 BLEU-2 BLEU-3 BLEU-4

Pos.
CVAE 36.1 13.5 3.7 2.2
CVAE+GEF 40.1 15.6 4.5 2.6

Neg.
CVAE 33.3 14.1 3.1 2.2
CVAE+GEF 35.9 16.0 4.0 2.9

Neu.
CVAE 30.0 8.8 2.0 1.2
CVAE+GEF 33.2 10.2 2.5 1.5

Table 4: BLEU scores for generated explanations.

Pos., Neg., Neu. respectively stand for positive, neg-

ative and neural explanations. The low BLEU-3 and

BLEU-4 scores are because the target explanations

contain many domain-specific words with low fre-

quency, which makes it hard for the model to generate

accurate explanations.

Acc% (Dev) Acc% (Test)

CVAE 42.07 42.58
CVAE+GEF 44.04 43.67
Oracle 46.43 46.73

Table 5: Classification accuracy on PCMag Review

Dataset. Oracle means if we feed ground-truth text

explanations to the Classifier C, the accuracy C can

achieve to do classification. Oracle confirms our as-

sumption that explanations can do better in classifica-

tion than the original text.

CVAE+GEF can generate explanations that are

closer to the overall results, thus can better illus-

trate why our model makes such a decision.

In our opinion, the generated fine-grained ex-

planations should provide the extra guidance

to the classification task, so we also compare

the performance of classification on CVAE and

CVAE+GEF. We use top-1 accuracy and top-3 ac-

curacy as the evaluation metrics for the perfor-

mance of classification. In Table 5, we compare

the results of CVAE+GEF with CVAE in both test

and dev set. As shown in the table, CVAE+GEF

has better classification results than CVAE, which

indicates that the fine-grained information can re-

ally help enhance the overall classification results.

As aforementioned, we have an assumption that

if we use fine-grained explanations for classifica-



5576

s% c% f% i% t%

LSTM 46.59 52.27 43.74 41.82 45.04
LSTM+GEF 49.13 53.16 46.29 42.34 48.25
CNN 46.22 51.83 44.59 43.34 46.88
CNN+GEF 49.80 52.49 48.03 44.67 48.76

Table 6: Accuracy of sub-field numerical explanations

on Skytrax User Reviews Dataset. s, c, f, t, v stand for

seat comfortability, cabin stuff, food, in-flight environ-

ment and ticket value, respectively.

tion, we shall get better results than using the orig-

inal input texts. Therefore, we list the performance

of the classifier C in Table 5 to make the compar-

ison. Experiments show that C has better perfor-

mance than both CVAE and CVAE+GEF, which

proves our assumption to be reasonable.

5.2.2 Results of Numerical Explanations
In the Skytrax User Reviews Dataset, the overall

ratings are integers between 1 to 10, and the five

sub-field ratings are integers between 0 and 5. All

of them can be treated as classification problems,

so we use accuracy to evaluate the performance.

The accuracy of predicting the sub-field ratings

can indicate the quality of generated numerical ex-

planations. In order to prove that GEF can help

generate better explanations, we show the accu-

racy of the sub-field rating classification in Table

6. The 5 ratings evaluate the seat comfortability,

cabin stuff, food, in-flight environment, and ticket

value, respectively. As we can see from the results

in Table 6, the accuracy for 5 sub-field ratings all

get enhanced comparing with the baseline. There-

fore, we can tell that GEF can improve the quality

of generated numerical explanations.

Then we compare the result for classification in

Table 7. As the table shows, the accuracy or top-3

accuracy both get improved when the models are

combined with GEF.

Moreover, the performances of the classifier

are better than LSTM (+GEF) and CNN (+GEF),

which further confirms our assumption that the

classifier C can imitate the conceptual habits of

human beings. Leveraging the explanations can

provide guidance for the model when doing final

results prediction.

5.3 Human Evaluation
In order to prove our model-agnostic framework

can make the basic model generate explanations

more closely aligned with the classification re-

sults, we employ crowdsourced judges to evaluate

Acc% Top-3 Acc%

LSTM 38.06 76.89
LSTM+GEF 39.20 77.96
CNN 37.06 76.85
CNN+GEF 39.02 79.07
Oracle 45.00 83.13

Table 7: Classification accuracy on Skytrax User Re-

views Dataset. Oracle means if we feed ground-truth

numerical explanation to the Classifier C, the accuracy

C can achieve to do classification.

Win% Lose% Tie%

CVAE+GEF 51.37 42.38 6.25

Table 8: Results of human evaluation. Tests are con-

ducted between the text explanations generated by ba-

sic CVAE and CVAE+GEF.

a random sample of 100 items in the form of text,

each being assigned to 5 judges on the Amazon

Mechanical Turk. All the items are correctly clas-

sified both using the basic model and using GEF,

so that we can clearly compare the explainability

of these generated text explanations. We report

the results in Table 8, and we can see that over

half of the judges think that our GEF can generate

explanations more related to the classification re-

sults. In particular, for 57.62% of the tested items,

our GEF can generate better or equal explanations

comparing with the basic model.

In addition, we show some the examples of text

explanations generated by CVAE+GEF in Table

11. We can see that our model can accurately cap-

ture some key points in the golden explanations.

And it can learn to generate grammatical com-

ments that are logically reasonable. All these illus-

trate the efficient of our method. We will demon-

strate more of our results in the supplementary ma-

terials.

5.4 Error and Analysis

We focus on the deficiency of generation for text

explanation in this part.

First of all, as we can see from Table 11, the

generated text explanation tend to be shorter than

golden explanations. It is because longer expla-

nations tend to bring more loss, so GEF tends to

leave out the words that are of less informative,

like function words, conjunctions, etc. In order to

solve this problem, we may consider adding length

reward/penalty by reinforcement learning to con-

trol the length of generated texts.
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Product and
Overall Rating

Explanations

Monitor, 3.0

Positive Generated: very affordable. unique and ergonomic design. good port selection.

Positive Golden: unique design. dual hdmi ports. good color quality. energy efficient.

Negative Generated: relatively faint on some features. relatively high contrast ratio. no auto port.
Negative Golden: expensive. weak light grayscale performance. features are scarce.

Neutral Generated: the samsung series is a unique touch-screen monitor featuring a unique design
and a nice capacitive picture, but its color and grayscale performance could be better.

Neutral Golden: the samsung series is a stylish 27-inch monitor offering good color reproduction and
sharp image quality. however, it ’s more expensive than most tn monitors and has a limited feature set.

Table 9: Examples of our generated explanations. Some key points are underlined.

Second, there are 〈UNK〉s in the generated ex-

planations. Since we are generating abstractive

comments for product reviews, there may exist

some domain-specific words. The frequency of

these special words is low, so it is relatively hard

for GEF to learn to embed and generated these

words. A substituted way is that we can use copy-

mechanism (Gu et al., 2016) to generate these

domain-specific words.

6 Related Work

Our work is closely aligned with Explainable

Artificial Intelligence (Gunning, 2017), which is

claimed to be essential if users are to understand,

and effectively manage this incoming generation

of artificially intelligent partners. In artificial in-

telligence, providing an explanation of individual

decisions has attracted attention in recent years.

The traditional way of explaining the results is to

build connections between the input and output,

and figure out how much each dimension or ele-

ment contributes to the final output. Some previ-

ous works explain the result in two ways: evalu-

ating the sensitivity of output if input changes and

analyzing the result from a mathematical perspec-

tive by redistributing the prediction function back-

ward (Samek et al., 2018). There are some works

connecting the result with the classification model.

Ribeiro et al. (2016) selects a set of representative

instances with explanations via submodular opti-

mization. Although the method is promising and

mathematically reasonable, they cannot generate

explanations in natural forms. They focus on how

to interpret the result.

Some of the previous works have similar moti-

vations as our work. Lei et al. (2016) rationalize

neural prediction by extracting the phrases from

the input texts as explanations. They conduct their

work in an extractive way, and focus on rational-

izing the predictions. However, our work aims

not only to predict the results but also to generate

abstractive explanations, and our framework can

generate explanations both in the forms of texts

and numerical scores. Hancock et al. (2018) pro-

poses to use a classifier with natural language ex-

planations that are annotated by human beings to

do the classification. Our work is different from

theirs in that we use the natural attributes as the

explanations which are more frequent in reality.

Camburu et al. (2018) proposes e-SNLI4 by ex-

tending SNLI dataset with text explanations. And

their simple but effective model proves the fea-

sibility of generating text explanations for neural

classification models.

7 Conclusion

In this paper, we investigate the possibility of us-

ing fine-grained information to help explain the

decision made by our classification model. More

specifically, we design a Generative Explanation

Framework (GEF) that can be adapted to different

models. Minimum risk training method is applied

to our proposed framework. Experiments demon-

strate that after combining with GEF, the perfor-

mance of the base model can be enhanced. Mean-

while, the quality of explanations generated by our

model is also improved, which demonstrates that

GEF is capable of generating more reasonable ex-

planations for the decision.

Since our proposed framework is model-

agnostic, we can combine it with other natural

processing tasks, e.g. summarization, extraction,

which we leave to our future work.

4The dataset is not publicly available now. We would like
to conduct further experiments on this dataset when it is re-
leased.
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Supplemental Material

Structure of CVAE

By extending the SEQ2SEQ structure, we can

easily get a Conditional Variational Antoencoder

(CVAE) (Sohn et al., 2015; Zhou and Wang,

2018). Figure 3 shows the structure of the model.

Input ncoderExplanations 
Encoder

Input TextExplanations vc

v0

Prior NetworkRecog Network

x

c

z z’

ve

Figure 3: The structure of CVAE. The Input Encoder

encodes the input text in v0, and vc is the control sig-

nal that determines the kind of fine-grained information

(positive, negative and neutral). ve is the initial input

for the decoder. The Explanations Encoder encodes the

short comment in x. Recognition Network takes x as

input and produces the latent variable z. In our experi-

ment, the Recognition Network and the Prior Network

are both MLPs, and we use bidirectional GRU as the

Explanations Encoder and Input Encoder.

To train CVAE, we need to maximize a varia-

tional lower bound on the conditional likelihood

of x given c, where x and c are both random vari-

ables. In our experiment,c = [vc; v0], and x is the

text explanations we want to generate. This can be

rewritten as:

p(x|c) =
∫

p(x|z, c)p(z|c)dz (12)

z is the latent variable. The decoder is used to

approximate p(x|z, c), denoted as pD(x|z, c), and

Prior Network is used to approximate p(z|c), de-

noted as pP (z|c). In order to approximate the true

Overall s c f i t

9.0
pred 4.0 5.0 5.0 4.0 5.0
gold 4.0 5.0 5.0 4.0 4.0

6.0
pred 3.0 5.0 3.0 3.0 4.0
gold 4.0 5.0 3.0 3.0 4.0

2.0
pred 2.0 1.0 2.0 2.0 2.0
gold 2.0 2.0 1.0 2.0 2.0

Table 10: Examples from the results on Skytrax User

Reviews Dataset. s, c, f, i, t stand for seat comfortabil-

ity, cabin stuff, food, in-flight environment and ticket

value, respectively.

posterior p(z|x, c), we introduce Recognition Net-

work qR(z|x, c). According to Sohn et al. (2015),

we can have the lower bound of log p(x|c) as:

− L(x, c; θ) = KL(qR(z|x, c)||pP (z|c))
− EqR(z|x,c)(log pD(x|z, c)) (13)

θ is the parameters in the network. Notice that dur-

ing training, z is used to train z′ and passed to the

decoder, but during testing, the ground truth expla-

nations are absent and z′ is passed to the decoder.

Output Sample
In this part, we provide some samples from our

experiment.

Numerical Explanation Cases
We provide some numerical explanation cases in

Table 10.

Text Explanation Cases
We provide some text explanation cases in Table

11.
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Product and
Overall Rating

Explanations

Television, 4.0

Positive Generated: Good contrast. Good black levels. Affordable.
Positive Golden: Gorgeous 4k picture. Good color accuracy. Solid value for a large uhd screen.

Negative Generated: Mediocre black levels. Poor shadow detail. Poor off-angle viewing.
Negative Golden: Mediocre black levels. Poor input lag. Colors run slightly cool. Disappoint-
ing online features. Poor off-angle viewing.

Neutral Generated: A solid, gorgeous 4k screen that offers a sharp 4k picture, but it’s missing
some features for the competition.
Neutral Golden: A solid 4k television line, but you can get an excellent 1080p screen with
more features and better performance for much less.

Flash Drive, 3.0

Positive Generated: Simple, functional design. Handy features.
Positive Golden: Charming design. Reasonably priced. Capless design.

Negative Generated: All-plastic construction. No usb or color protection.
Negative Golden: All-plastic construction. On the slow side. Crowds neighboring ports. flash
drives geared toward younger children don’t have some sort of password protection.

Neutral Generated: The tween-friendly 〈UNK〉 colorbytes are clearly designed and offers a
comprehensive usb 3.0, but it’s not as good as the competition.
Neutral Golden: The kid-friendly dane-elec sharebytes value pack drives aren’t the quickest
or most rugged flash drives out there, but they manage to strike the balance between toy and
technology. Careful parents would be better off giving their children flash drives with some sort
of password protection.

TV, 4.0

Positive Generated: excellent picture. attractive glass-backed screen. hdr10 and dolby vision.
Positive Golden: excellent picture with wide color gamut. stylish glass-backed screen. hdr10
and dolby vision. two remotes.

Negative Generated: very expensive.
Negative Golden: very expensive.

Neutral Generated: lg’s new oledg7p series is a stylish, attractive, and attractive hdtv line
that’s a bit more but not much more attractive.
Neutral Golden: lg’s signature oledg7p series is every bit as attractive and capable as last
year’s excellent oledg6p series, but the company has a new flagship oled that’s only slightly
more expensive but a lot more impressive.

Gaming, 4.0

Positive Generated: best-looking mainline pokemon game for the nintendo 3ds and feel. date,
breathing, and dlc.
Positive Golden: best-looking mainline pokemon game to date. alola trials mix up and vary
progression over the gym-and-badge system, breathing new life into the game for longtime fans.
ride pagers improve overworld navigation.

Negative Generated: starts out very slow.
Negative Golden: starts out very slow.

Neutral Generated: the newest pokemon generation of sun/moon for the nintendo 3ds, making
the feeling of the nintendo 3ds and remixes enough ideas to new life over making any wild,
polarizing changes to the formula.
Neutral Golden: the newest pokemon generation, sun/moon for the nintendo 3ds, tweaks and
polishes the series’ core concepts and remixes enough ideas to feel fresh without making any
wild , polarizing changes to the formula.

Desktop, 3.5

Positive Generated: adjustable bulb. attractive design. energy efficient.
Positive Golden: compact all in one. $500 price point. lenovo utilities. dynamic brightness
system and eye distance system. no bloatware.

Negative Generated: limited stand. no keyboard or micro between mac.
Negative Golden: low power on benchmark tests. no usb 3.0. no hdmi. no video in or out.
only 60-day mcafee anti-virus. camera is “ always on. ”.

Neutral Generated: the lenovo thinkcentre edge is a good choice in the attractive design, and
a few attractive colors in the price. it has a little bit of the best.
Neutral Golden: the lenovo c325 is a good choice for those looking to spend only about $500
for a fully featured desktop pc. it’s bigger than a laptop, and has the power to serve your web
surfing and basic pc needs.

Table 11: Text examples from our generated explanations. 〈UNK〉 stands for “unknown word”.


