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Abstract

While very deep neural networks have shown
effectiveness for computer vision and text
classification applications, how to increase the
network depth of neural machine translation
(NMT) models for better translation quality re-
mains a challenging problem. Directly stack-
ing more blocks to the NMT model results
in no improvement and even reduces perfor-
mance. In this work, we propose an effec-
tive two-stage approach with three specially
designed components to construct deeper
NMT models, which result in significant
improvements over the strong Transformer
baselines on WMT14 English→German and
English→French translation tasks.

1 Introduction

Neural machine translation (briefly, NMT), which
is built upon deep neural networks, has gained
rapid progress in recent years (Bahdanau et al.,
2014; Sutskever et al., 2014; Sennrich et al., 2015;
He et al., 2016a; Sennrich et al., 2016a; Xia et al.,
2017; Wang et al., 2019) and achieved signifi-
cant improvement in translation quality (Hassan
et al., 2018). Variants of network structures have
been applied in NMT such as LSTM (Wu et al.,
2016), CNN (Gehring et al., 2017) and Trans-
former (Vaswani et al., 2017).

Training deep networks has always been a chal-
lenging problem, mainly due to the difficulties in
optimization for deep architecture. Breakthroughs
have been made in computer vision to enable
deeper model construction via advanced initializa-
tion schemes (He et al., 2015), multi-stage train-
ing strategy (Simonyan and Zisserman, 2014), and
novel model architectures (Srivastava et al., 2015;
He et al., 2016b). While constructing very deep
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Figure 1: Performances of Transformer models with
different number of encoder/decoder blocks (recorded
on x-axis) on WMT14 En→De translation task. † de-
notes the result reported in (Vaswani et al., 2017).

neural networks with tens and even more than a
hundred blocks have shown effectiveness in im-
age recognition (He et al., 2016b), question an-
swering and text classification (Devlin et al., 2018;
Radford et al., 2019), scaling up model capac-
ity with very deep network remains challenging
for NMT. The NMT models are generally con-
structed with up to 6 encoder and decoder blocks
in both state-of-the-art research work and cham-
pion systems of machine translation competition.
For example, the LSTM-based models are usually
stacked for 4 (Stahlberg et al., 2018) or 6 (Chen
et al., 2018) blocks, and the state-of-the-art Trans-
former models are equipped with a 6-block en-
coder and decoder (Vaswani et al., 2017; Junczys-
Dowmunt, 2018; Edunov et al., 2018). Increasing
the NMT model depth by directly stacking more
blocks results in no improvement or performance
drop (Figure 1), and even leads to optimization
failure (Bapna et al., 2018).

There have been a few attempts in previous
works on constructing deeper NMT models. Zhou
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et al. (2016) and Wang et al. (2017) propose in-
creasing the depth of LSTM-based models by
introducing linear units between internal hidden
states to eliminate the problem of gradient van-
ishing. However, their methods are specially de-
signed for the recurrent architecture which has
been significantly outperformed by the state-of-
the-art transformer model. Bapna et al. (2018)
propose an enhancement to the attention mech-
anism to ease the optimization of models with
deeper encoders. While gains have been re-
ported over different model architectures includ-
ing LSTM and Transformer, their improvements
are not made over the best performed baseline
model configuration. How to construct and train
deep NMT models to push forward the state-of-
the-art translation performance with larger model
capacity remains a challenging and open problem.

In this work, we explore the potential of lever-
aging deep neural networks for NMT and propose
a new approach to construct and train deeper NMT
models. As aforementioned, constructing deeper
models is not as straightforward as directly stack-
ing more blocks, but requires new mechanisms to
boost the training and utilize the larger capacity
with minimal increase in complexity. Our solu-
tion is a new two-stage training strategy, which
“grows” a well-trained NMT model into a deeper
network with three components specially designed
to overcome the optimization difficulty and best
leverage the capability of both shallow and deep
architecture. Our approach can effectively con-
struct a deeper model with significantly better
performance, and is generally applicable to any
model architecture.

We evaluate our approach on two large-scale
benchmark datasets, WMT14 English→German
and English→French translations. Empirical stud-
ies show that our approach can significantly im-
prove in translation quality with an increased
model depth. Specifically, we achieve 1.0 and
0.6 BLEU score improvement over the strong
Transformer baseline in English→German and
English→French translations.

2 Approach

We introduce the details of our proposed approach
in this section. The overall framework is illus-
trated in Figure 2.

Our model consists of a bottom module with
N blocks of encoder and decoder (the grey com-
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Figure 2: The overall framework of our proposed deep
model architecture. N and M are the numbers of
blocks in the bottom module (i.e., grey parts) and top
module (i.e., blue and green parts). Parameters of
the bottom module are fixed during the top module
training. The dashed parts denote the original train-
ing/decoding of the bottom module. The weights of
the two linear operators before softmax are shared.

ponents in Figure 2), and a top module with M
blocks (the blue and green components). We de-
note the encoder and decoder of the bottom mod-
ule as enc1 and dec1, and the corresponding two
parts of the top module as enc2 and dec2. An
encoder-decoder attention mechanism is used in
the decoder blocks of the NMT models, and here
we use attn1 and attn2 to represent such atten-
tion in the bottom and top modules respectively.

The model is constructed via a two-stage train-
ing strategy: in Stage 1, the bottom module (i.e.,
enc1 and dec1) is trained and subsequently holds
constant; in Stage 2, only the top module (i.e.,
enc2 and dec2) is optimized.

Let x and y denote the embedding of source
and target sequence. Let ly denote the number of
words in y, and y<t denote the elements before
time step t. Our proposed model works in the fol-
lowing way:

h1 = enc1(x); h2 = enc2(x+ h1); (1)

s1,t = dec1(y<t,attn1(h1)), ∀t ∈ [ly]; (2)

s2,t = dec2(y<t + s1,<t,attn2(h2)), (3)

which contains three key components specially de-
signed for deeper model construction, including:
(1) Cross-module residual connections: As
shown in Eqn.(1), the encoder enc1 of the bot-
tom module encodes the input x to a hidden repre-
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sentation h1, then a cross-module residual connec-
tion is introduced to the top module and the repre-
sentation h2 is eventually produced. The decoders
work in a similar way as shown in Eqn.(2) and (3).
This enables the top module to have direct access
to both the low-level input signals from the word
embedding and high-level information generated
by the bottom module. Similar principles can be
found in Wang et al. (2017); Wu et al. (2018).

(2) Hierarchical encoder-decoder attention: We
introduce a hierarchical encoder-decoder attention
calculated with different contextual representa-
tions as shown in Eqn.(2) and (3), where h1 is used
as key and value for attn1 in the bottom module,
and h2 for attn2 in the top module. Hidden states
from the corresponding previous decoder block
are used as queries for both attn1 and attn2
(omitted for readability). In this way, the strong
capability of the well trained bottom module can
be best preserved regardless of the influence from
top module, while the newly stacked top module
can leverage the higher-level contextual represen-
tations. More details can be found from source
code in the supplementary materials.

(3) Deep-shallow decoding: At the decoding
phase, enc1 and dec1 work together accord-
ing to Eqn.(1) and Eqn.(2) as a shallow net-
work netS , integrate both bottom and top mod-
ule works as a deep network netD according to
Eqn.(1)∼Eqn.(3). netS and netD generate the
final translation results through reranking.

Discussion

• Training complexity: As aforementioned, the
bottom module is trained in Stage 1 and only pa-
rameters of the top module are optimized in Stage
2. This significantly eases optimization difficulty
and reduces training complexity. Jointly training
the two modules with minimal training complex-
ity is left for future work.

• Ensemble learning: What we propose in this pa-
per is a single deeper model with hierarchical con-
textual information, although the deep-shallow de-
coding is similar to the ensemble methods in terms
of inference complexity (Zhou, 2012). While
training multiple diverse models for good ensem-
ble performance introduces high additional com-
plexity, our approach, as discussed above, “grows”
a well-trained model into a deeper one with mini-
mal increase in training complexity. Detailed em-
pirical analysis is presented in Section 3.3.

3 Experiments

We evaluate our proposed approach on two large-
scale benchmark datasets. We compare our ap-
proach with multiple baseline models, and analyze
the effectiveness of our deep training strategy.

3.1 Experiment Design

Datasets We conduct experiments to evaluate
the effectiveness of our proposed method on two
widely adopted benchmark datasets: the WMT141

English→German translation (En→De) and the
WMT14 English→French translation (En→Fr).
We use 4.5M parallel sentence pairs for En→De
and 36M pairs for En→Fr as our training data2.
We use the concatenation of Newstest2012 and
Newstest2013 as the validation set, and New-
stest2014 as the test set. All words are seg-
mented into sub-word units using byte pair encod-
ing (BPE)3 (Sennrich et al., 2016b), forming a vo-
cabulary shared by the source and target languages
with 32k and 45k tokens for En→De and En→Fr
respectively.

Architecture The basic encoder-decoder frame-
work we use is the strong Transformer model. We
adopt the big transformer configuration follow-
ing Vaswani et al. (2017), with the dimension of
word embeddings, hidden states and non-linear
layer set as 1024, 1024 and 4096 respectively. The
dropout rate is 0.3 for En→De and 0.1 for En→Fr.
We set the number of encoder/decoder blocks for
the bottom module as N = 6 following the com-
mon practice, and set the number of additionally
stacked blocks of the top module as M = 2. Our
models are implemented based on the PyTorch im-
plementation of Transformer4 and the code can be
found in the supplementary materials.

Training We use Adam (Kingma and Ba, 2014)
optimizer following the optimization settings and
default learning rate schedule in Vaswani et al.
(2017) for model training. All models are trained
on 8 M40 GPUs.

1http://www.statmt.org/wmt14/
translation-task.html

2Training data are constructed with filtration rules fol-
lowing https://github.com/pytorch/fairseq/
tree/master/examples/translation

3https://github.com/rsennrich/
subword-nmt

4https://github.com/pytorch/fairseq

http://www.statmt.org/wmt14/translation-task.html
http://www.statmt.org/wmt14/translation-task.html
https://github.com/pytorch/fairseq/tree/master/examples/translation
https://github.com/pytorch/fairseq/tree/master/examples/translation
https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt
https://github.com/pytorch/fairseq
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Table 1: The test set performances of WMT14 En→De
and En→Fr translation tasks. ‘†’ denotes the perfor-
mance figures reported in the previous works.

Model En→De En→Fr

Transformer (6B)† 28.40 41.80
Transformer (6B) 28.91 42.69
Transformer (8B) 28.75 42.63
Transparent Attn (16B)† 28.04 −
Ours (8B) 29.92 43.27

Evaluation We evaluate the model perfor-
mances with tokenized case-sensitive BLEU5

score (Papineni et al., 2002) for the two transla-
tion tasks. We use beam search with a beam size
of 5 and length penalty 0.6 for both tasks.

3.2 Results

We compare our method (Ours) with the Trans-
former baselines of 6 blocks (6B) and 8 blocks
(8B), and a 16-block Transformer with transparent
attention (Transparent Attn (16B))6 (Bapna et al.,
2018). We also reproduce a 6-block Transformer
baseline, which has better performance than what
is reported in (Vaswani et al., 2017) and we use it
to initialize the bottom module in our model.

From the results in Table 1, we see that our
proposed approach enables effective training for
deeper network and achieves significantly better
performances compared to baselines. With our
method, the performance of a well-optimized 6-
block model can be further boosted by adding two
additional blocks, while simply using Transformer
(8B) will lead to a performance drop. Specifi-
cally, we achieve a 29.92 BLEU score on En→De
translation with 1.0 BLEU improvement over the
strong baselines, and achieve a 0.6 BLEU im-
provement for En→Fr. The improvements are sta-
tistically significant with p < 0.01 in paired boot-
strap sampling (Koehn, 2004).

3.3 Analysis

To further study the effectiveness of our proposed
framework, we present additional comparisons in

5https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

6We directly use the performance figure from (Bapna
et al., 2018), which uses the base Transformer configura-
tion. We run the method of our own implementation with
the widely adopted and state-of-the-art big setting, but no
improvement has been observed.
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Figure 3: The test performances of WMT14 En→De
translation task.

En→De translation with two groups of baseline
approaches in Figure 3:

(1) Direct stacking (DS): we extend the 6-block
baseline to 8-block by directly stacking 2 addi-
tional blocks. We can see that both training from
scratch (DS scratch) and “growing” from a well-
trained 6-block model (DS grow) fails to improve
performance in spite of larger model capacity. The
comparison with this group of models shows that
directly stacking more blocks is not a good strat-
egy for increasing network depth, and demon-
strates the effectiveness and necessity of our pro-
posed mechanisms for training deep networks.

(2) Ensemble learning (Ensemble): we present the
two-model ensemble results for fair comparison
with our approach that involves a two-pass deep-
shallow decoding. Specifically, we present the en-
semble performances of two independently trained
6-block models (Ensemble 6B/6B), and ensemble
of one 6-block and one 8-block model indepen-
dently trained from scratch (Ensemble 6B/8B). As
expected, the ensemble method improves transla-
tion quality over the single model baselines by a
large margin (over 0.8 BLEU improvement). Re-
garding training complexity, it takes 40 GPU days
(5 days on 8 GPU) to train a single 6-block model
from scratch, 48 GPU days for a 8-block model ,
and 8 GPU days to “grow” a 6-block model into
8-block with our approach. Therefore, our model
is better than the two-model ensemble in terms of
both translation quality (more than 0.3 BLEU im-
provement over the ensemble baseline) and train-
ing complexity.

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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4 Conclusion

In this paper, we propose a new training strategy
with three specially designed components, includ-
ing cross-module residual connection, hierarchical
encoder-decoder attention and deep-shallow de-
coding, to construct and train deep NMT mod-
els. We show that our approach can effectively
construct deeper model with significantly better
performance over the state-of-the-art transformer
baseline. Although only empirical studies on the
transformer are presented in this paper, our pro-
posed strategy is a general approach that can be
universally applicable to arbitrary model architec-
tures, including LSTM and CNN. In future work,
we will further explore an efficient strategy that
can jointly train all modules of the deep model
with minimal increase in training complexity.
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