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Abstract

Identifying the unknown (novel) user intents
that have never appeared in the training set is
a challenging task in the dialogue system. In
this paper, we present a two-stage method for
detecting unknown intents. We use bidirec-
tional long short-term memory (BiLSTM) net-
work with the margin loss as the feature ex-
tractor. With margin loss, we can learn dis-
criminative deep features by forcing the net-
work to maximize inter-class variance and to
minimize intra-class variance. Then, we feed
the feature vectors to the density-based novelty
detection algorithm, local outlier factor (LOF),
to detect unknown intents. Experiments on
two benchmark datasets show that our method
can yield consistent improvements compared
with the baseline methods.

1 Introduction

In the dialogue system, it is essential to identify
the unknown intents that have never appeared in
the training set. We can use those unknown intents
to discover potential business opportunities. Be-
sides, it can provide guidance for developers and
accelerate the system development process. How-
ever, it is also a challenging task. On the one hand,
it is often difficult to obtain prior knowledge about
unknown intents due to lack of examples. On the
other hand, it is hard to estimate the exact num-
ber of unknown intents. In addition, since user in-
tents are strongly guided by prior knowledge and
context, modeling high-level semantic concepts of
intent is still problematic.

Few previous studies are related to unknown in-
tents detection. For example, Kim and Kim (2018)
try to optimize the intent classifier and out-of-
domain detector jointly, but out-of-domain sam-
ples are still needed. The generative method (Yu
et al., 2017) try to generate positive and negative
examples from known classes by using adversar-

ial learning to augment training data. However,
the method does not work well in the discrete data
space like text, and a recent study (Nalisnick et al.,
2019) suggests that this approach may not work
well on real-world data. Brychcin and Král try to
model intents through clustering. Still, it does not
make good use of prior knowledge provided by
known intents, and clustering results are usually
unsatisfactory.

Although there is a lack of prior knowledge
about unknown intents, we can still leverage the
advantage of known label information. Scheirer
et al. (2013); Fei and Liu (2016) suggest that a
m-class classifier should be able to reject exam-
ples from unknown class while performing m-
class classification tasks. The reason is that not
all test classes have appeared in the training set,
which forms a (m+1)-class classification problem
where the (m+1)th class represents the unknown
class. This task is called open-world classification
problem. The main idea is that if an example dis-
similar to any of known intents, it is considered as
the unknown. In this case, we use known intents
as prior knowledge to detect unknown intents and
simplify the problem by grouping unknown intents
into a single class.

Bendale and Boult (2016) further extend the
idea to deep neural networks (DNNs). Shu et al.
(2017) achieve the state-of-the-art performance by
replacing the softmax layer of convolution neural
network (CNN) with a 1-vs-rest layer consist of
sigmoid and tightening the decision threshold of
probability output for detection.

DNN such as BiLSTM (Goo et al., 2018; Wang
et al., 2018c) has demonstrated the ability to learn
high-level semantic features of intents. Neverthe-
less, it is still challenging to detect unknown in-
tents when they are semantically similar to known
intents. The reason is that softmax loss only fo-
cuses on whether the sample is correctly classi-
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Figure 1: The architecture of the proposed two-stage method. We acquire intent representation by training an
intent classifier on known intent with BiLSTM and learn discriminative deep features through LMCL. Then, we
use LOF to detect unknown intents during the testing stage.

fied, and does not require intra-class compactness
and inter-class separation. Therefore, we replace
softmax loss with margin loss to learn more dis-
criminative deep features.

The approach is widely used in face recogni-
tion (Liu et al., 2016, 2017; Ranjan et al., 2017).
It forces the model to not only classify correctly
but also maximize inter-class variance and mini-
mize intra-class variance. Concretely, we use large
margin cosine loss (LMCL) (Wang et al., 2018b)
to accomplish it. It formulates the softmax loss
into cosine loss with L2 norm and further max-
imizes the decision margin in the angular space.
Finally, we feed the discriminative deep features to
a density-based novelty detection algorithm, local
outlier factor (LOF), to detect unknown intents.

We summarize the contributions of this paper as
follows. First, we propose a two-stage method for
unknown intent detection with BiLSTM. Second,
we introduce margin loss on BiLSTM to learn dis-
criminative deep features, which is suitable for the
detection task. Finally, experiments conducted on
two benchmark dialogue datasets show the effec-
tiveness of the proposed method.

2 Proposed Method

2.1 BiLSTM
To begin with, we use BiLSTM (Mesnil et al.,
2015) to train the intent classifier and use it as
feature extractor. Figure 1 shows the architecture
of the proposed method. Given an utterance with

maximum word sequence length ℓ, we transform a
sequence of input words w1:ℓ into m-dimensional
word embedding v1:ℓ, which is used by forward
and backward LSTM to produce feature represen-
tations x:

−→xt = LSTM(vt,
−−→ct−1),

←−xt = LSTM(vt,
←−−ct+1),

x = [−→xℓ;←−x1], (1)

where vt denotes the word embedding of input at
time step t. −→xt and ←−xt are the output vector of for-
ward and backward LSTM respectively. −→ct and ←−ct
are the cell state vector of forward and backward
LSTM respectively.

We concatenate the last output vector of forward
LSTM −→xℓ and the first output vector of backward
LSTM ←−x1 into x as the sentence representation. It
captures high-level semantic concepts learned by
the model. We take x as the input of the next stage.

2.2 Large Margin Cosine Loss (LMCL)

At the same time, we replace the softmax loss of
BiLSTM with LMCL (Nalisnick et al., 2019). We
define LMCL as the following:

LLMC =

1

N



i

− log
es·(cos (θyi,i)−m)

es·(cos (θyi,i)−m) +


j ∕=yi
es·cos θj,i

,

(2)
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Dataset Classes Vocabulary #Training #Validation #Test Class distribution
SNIPS 7 11,971 13,084 700 700 Balanced
ATIS 18 938 4,978 500 893 Imbalanced

Table 1: Statistics of SNIPS and ATIS dataset. # indicates the total number of utterances.

constrained by

cos(θj , i) = W T
j xi,

W =
W 

||W || , x =
x

||x|| , (3)

where N denotes the number of training samples,
yi is the ground-truth class of the i-th sample, s is
the scaling factor, m is the cosine margin, Wj is
the weight vector of the j-th class, and θj is the
angle between Wj and xi.

LMCL transforms softmax loss into cosine loss
by applying L2 normalization on both features and
weight vectors. It further maximizes the deci-
sion margin in the angular space. With normaliza-
tion and cosine margin, LMCL forces the model
to maximize inter-class variance and to minimize
intra-class variance. Then, we use the model as
the feature extractor to produce discriminative in-
tent representations.

2.3 Local Outlier Factor (LOF)
Finally, because the discovery of unknown intents
is closely related to the context, we feed discrimi-
native deep features x to LOF algorithm (Breunig
et al., 2000) to help us detect unknown intents in
the context with local density. We compute LOF
as the following:

LOFk(A) =


B∈Nk(A)

lrd(B)
lrd(A)

|Nk(A)|
, (4)

where Nk(A) denotes the set of k-nearest neigh-
bors and lrd denotes the local reachability density.
We define lrd as the following:

lrdk(A) =
|Nk(A)|
B∈Nk(A)

reachdistk(A,B), (5)

where lrdk(A) denotes the inverse of the aver-
age reachability distance between object A and its
neighbors. We define reachdistk(A,B) as the fol-
lowing:

reachdistk(A,B) = max{k-dist(B), d(A,B)},
(6)

where d(A,B) denotes the distance between A and
B, and k-dist denotes the distance of the object A
to the kth nearest neighbor. If an example’s lo-
cal density is significantly lower than its k-nearest
neighbor’s, it is more likely to be considered as the
unknown intents.

3 Experiments

3.1 Datasets
We have conducted experiments on two publicly
available benchmark dialogue datasets, including
SNIPS and ATIS (Tür et al., 2010). The detailed
statistics are shown in Table 1.

SNIPS 1 SNIPS is a personal voice assistant
dataset which contains 7 types of user intents
across different domains.

ATIS (Airline Travel Information System) 2

ATIS dataset contains recordings of people mak-
ing reservations with 18 types of user intent in the
flight domain.

3.2 Baselines
We compare our methods with state-of-the-art
methods and a variant of the proposed method.

1. Maximum Softmax Probability (MSP)
(Hendrycks and Gimpel, 2016) Consider the
maximum softmax probability of a sample as
the score, if a sample does not belong to any
known intents, its score will be lower. We
calculate and apply a confidence threshold on
the score as the simplest baseline where the
threshold is set as 0.5.

2. DOC (Shu et al., 2017) It is the state-of-the-
art method in the field of open-world classifi-
cation. It replaces softmax with sigmoid ac-
tivation function as the final layer. It further
tightens the decision boundary of the sigmoid
function by calculating the confidence thresh-
old for each class through statistics approach.

3. DOC (Softmax) A variant of DOC. It re-
places the sigmoid activation function with
softmax.

1https://github.com/snipsco/nlu-
benchmark/tree/master/2017-06-custom-intent-engines

2https://github.com/yvchen/JointSLU/tree/master/data
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SNIPS ATIS

% of known intents 25% 50% 75% 25% 50% 75%
MSP 0.0 6.2 8.3 8.1 15.3 17.2
DOC 72.5 67.9 63.9 61.6 62.8 37.7
DOC (Softmax) 72.8 65.7 61.8 63.6 63.3 38.7
LOF (Softmax) 76.0 69.4 65.8 67.3 61.8 38.9
LOF (LMCL) 79.2 84.1 78.8 69.6 63.4 39.6

Table 2: Macro f1-score of unknown intent detection with different proportion (25%, 50% and 75%) of classes
are treated as known intents on SNIPS and ATIS dataset.

Figure 2: Visualization of deep features learned with softmax and LMCL on SNIPS dataset.

4. LOF (Softmax) A variant of the proposed
method for ablation study. We use softmax
loss to train the feature extractor rather than
LMCL.

3.3 Experimental Settings

We follow the validation setting in (Fei and Liu,
2016; Shu et al., 2017) by keeping some classes
in training as unknown and integrate them back
during testing. Then we vary the number of known
classes in training set in the range of 25%, 50%,
and 75% classes and use all classes for testing.

To conduct a fair evaluation for the imbalanced
dataset, we randomly select known classes by
weighted random sampling without replacement
in the training set. If a class has more exam-
ples, it is more likely to be chosen as the known
class. Meanwhile, the class with fewer examples
still have a chance to be selected. Other classes are
regarded as unknown and we will remove them in
the training and validation set.

We initialize the embedding layer through
GloVe (Pennington et al., 2014) pre-trained word

vectors 3. For BiLSTM model, we set the output
dimension as 128 and the maximum epoch as 200
with early stop. For LMCL and LOF, we follow
the original setting in their paper. We use macro
f1-score as the evaluation metric and report the av-
erage result over 10 runs. We set the scaling factor
s as 30 and cosine margin m as 0.35, which is rec-
ommended by Wang et al. (2018a).

3.4 Results and Discussion

We show the experiment results in Table 2. Firstly,
our method consistently performs better than all
baselines in all settings. Compared with DOC, our
method improves the macro f1-score on SNIPS by
6.7%, 16.2% and 14.9% in 25%, 50%, and 75%
setting respectively. It confirms the effectiveness
of our two-stage approach.

Secondly, our method is also better than LOF
(Softmax). In Figure 2, we use t-SNE (Maaten and
Hinton, 2008) to visualize deep features learned
with softmax and LMCL. We can see that the deep
features learned with LMCL are intra-class com-

3http://nlp.stanford.edu/projects/glove/
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pact and inter-class separable, which is beneficial
for novelty detection algorithms based on local
density.

Thirdly, we observe that on the ATIS dataset,
the performance of unknown intent detection dra-
matically drops as the known intent increases. We
think the reason is that the intents of ATIS are all
in the same domain and they are very similar in
semantics (e.g., flight and flight no). The seman-
tics of the unknown intents can easily overlap with
the known intents, which leads to the poor perfor-
mance of all methods.

Finally, compared with ATIS, our approach im-
prove even better on SNIPS. Since the intent of
SNIPS is originated from different domains, it
causes the DNN to learn a simple decision func-
tion when the known intents are dissimilar to each
other. By replacing the softmax loss with the mar-
gin loss, we can push the network to further reduce
the intra-class variance and the inter-class vari-
ance, thus improving the robustness of the feature
extractor.

4 Conclusion

In this paper, we proposed a two-stage method
for unknown intent detection. Firstly, we train a
BiLSTM classifier as the feature extractor. Sec-
ondly, we replace softmax loss with margin loss to
learn discriminative deep features by forcing the
network to maximize inter-class variance and to
minimize intra-class variance. Finally, we detect
unknown intents through the novelty detection al-
gorithm. We also believe that broader families of
anomaly detection algorithms are also applicable
to our method.

Extensive experiments conducted on two
benchmark datasets show that our method can
yield consistent improvements compared with
the baseline methods. In future work, we plan
to design a solution that can identify the un-
known intent from known intents and cluster the
unknown intents in an end-to-end fashion.
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