
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5059–5069
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

5059

HIBERT: Document Level Pre-training of Hierarchical Bidirectional
Transformers for Document Summarization

Xingxing Zhang, Furu Wei and Ming Zhou
Microsoft Research Asia, Beijing, China

{xizhang,fuwei,mingzhou}@microsoft.com

Abstract
Neural extractive summarization models usu-
ally employ a hierarchical encoder for doc-
ument encoding and they are trained us-
ing sentence-level labels, which are created
heuristically using rule-based methods. Train-
ing the hierarchical encoder with these inac-
curate labels is challenging. Inspired by the
recent work on pre-training transformer sen-
tence encoders (Devlin et al., 2018), we pro-
pose HIBERT (as shorthand for HIerachical
Bidirectional Encoder Representations from
Transformers) for document encoding and a
method to pre-train it using unlabeled data. We
apply the pre-trained HIBERT to our summa-
rization model and it outperforms its randomly
initialized counterpart by 1.25 ROUGE on the
CNN/Dailymail dataset and by 2.0 ROUGE
on a version of New York Times dataset. We
also achieve the state-of-the-art performance
on these two datasets.

1 Introduction

Automatic document summarization is the task of
rewriting a document into its shorter form while
still retaining its important content. Over the
years, many paradigms for document summariza-
tion have been explored (see Nenkova and McK-
eown (2011) for an overview). The most popular
two among them are extractive approaches and ab-
stractive approaches. As the name implies, extrac-
tive approaches generate summaries by extract-
ing parts of the original document (usually sen-
tences), while abstractive methods may generate
new words or phrases which are not in the original
document.

Extractive summarization is usually modeled
as a sentence ranking problem with length con-
straints (e.g., max number of words or sentences).
Top ranked sentences (under constraints) are se-
lected as summaries. Early attempts mostly lever-
age manually engineered features (Filatova and

Hatzivassiloglou, 2004a). Based on these sparse
features, sentence are selected using a classifier or
a regression model. Later, the feature engineering
part in this paradigm is replaced with neural net-
works. Cheng and Lapata (2016) propose a hierar-
chical long short-term memory network (LSTM;
Hochreiter and Schmidhuber 1997) to encode a
document and then use another LSTM to predict
binary labels for each sentence in the document.
This architecture is widely adopted recently (Nal-
lapati et al., 2017; Narayan et al., 2018; Zhang
et al., 2018). Our model also employs a hierarchi-
cal document encoder, but we adopt a hierarchical
transformer (Vaswani et al., 2017) rather a hier-
archical LSTM. Because recent studies (Vaswani
et al., 2017; Devlin et al., 2018) show the trans-
former model performs better than LSTM in many
tasks.

Abstractive models do not attract much atten-
tion until recently. They are mostly based on se-
quence to sequence (seq2seq) models (Bahdanau
et al., 2015), where a document is viewed a se-
quence and its summary is viewed as another se-
quence. Although seq2seq based summarizers
can be equipped with copy mechanism (Gu et al.,
2016; See et al., 2017), coverage model (See et al.,
2017) and reinforcement learning (Paulus et al.,
2017), there is still no guarantee that the generated
summaries are grammatical and convey the same
meaning as the original document does. It seems
that extractive models are more reliable than their
abstractive counterparts.

However, extractive models require sentence
level labels, which are usually not included in
most summarization datasets (most datasets only
contain document-summary pairs). Sentence la-
bels are usually obtained by rule-based methods
(e.g., maximizing the ROUGE score between a set
of sentences and reference summaries) and may
not be accurate. Extractive models proposed re-

5060

cently (Cheng and Lapata, 2016; Nallapati et al.,
2017) employ hierarchical document encoders and
even have neural decoders, which are complex.
Training such complex neural models with inac-
curate binary labels is challenging. We observed
in our initial experiments on one of our dataset
that our extractive model (see Section 3.3 for de-
tails) overfits to the training set quickly after the
second epoch, which indicates the training set
may not be fully utilized. Inspired by the recent
pre-training work in natural language processing
(Peters et al., 2018; Radford et al., 2018; Devlin
et al., 2018), our solution to this problem is to
first pre-train the “complex”’ part (i.e., the hier-
archical encoder) of the extractive model on unla-
beled data and then we learn to classify sentences
with our model initialized from the pre-trained en-
coder. In this paper, we propose HIBERT, which
stands for HIerachical Bidirectional Encoder
Representations from Transformers. We design
an unsupervised method to pre-train HIBERT for
document modeling. We apply the pre-trained
HIBERT to the task of document summarization
and achieve state-of-the-art performance on both
the CNN/Dailymail and New York Times dataset.

2 Related Work

In this section, we introduce work on extractive
summarization, abstractive summarization and
pre-trained natural language processing models.
For a more comprehensive review of summariza-
tion, we refer the interested readers to Nenkova
and McKeown (2011) and Mani (2001).

Extractive Summarization Extractive summa-
rization aims to select important sentences (some-
times other textual units such as elementary dis-
course units (EDUs)) from a document as its sum-
mary. It is usually modeled as a sentence rank-
ing problem by using the scores from classifiers
(Kupiec et al., 1995), sequential labeling models
(Conroy and O’leary, 2001) as well as integer lin-
ear programmers (Woodsend and Lapata, 2010).
Early work with these models above mostly lever-
age human engineered features such as sentence
position and length (Radev et al., 2004), word fre-
quency (Nenkova et al., 2006) and event features
(Filatova and Hatzivassiloglou, 2004b).

As the very successful applications of neural
networks to a wide range of NLP tasks, the man-
ually engineered features (for document encod-
ing) are replaced with hierarchical LSTMs/CNNs

and the sequence labeling (or classification) model
is replaced with an LSTM decoder (Cheng and
Lapata, 2016; Nallapati et al., 2017). The ar-
chitecture is widely adopted in recent neural ex-
tractive models and is extended with reinforce-
ment learning (Narayan et al., 2018; Dong et al.,
2018), latent variable models (Zhang et al., 2018),
joint scoring (Zhou et al., 2018) and iterative doc-
ument representation (Chen et al., 2018). Re-
cently, transformer networks (Vaswani et al.,
2017) achieves good performance in machine
translation (Vaswani et al., 2017) and a range of
NLP tasks (Devlin et al., 2018; Radford et al.,
2018). Different from the extractive models
above, we adopt a hierarchical Transformer for
document encoding and also propose a method to
pre-train the document encoder.

Abstractive Summarization Abstractive sum-
marization aims to generate the summary of a
document with rewriting. Most recent abstractive
models (Nallapati et al., 2016) are based on neural
sequence to sequence learning (Bahdanau et al.,
2015; Sutskever et al., 2014). However, the gen-
erated summaries of these models can not be con-
trolled (i.e., their meanings can be quite different
from the original and contents can be repeated).
Therefore, copy mechanism (Gu et al., 2016), cov-
erage model (See et al., 2017) and reinforcement
learning model optimizing ROUGE (Paulus et al.,
2017) are introduced. These problems are allevi-
ated but not solved. There is also an interesting
line of work combining extractive and abstractive
summarization with reinforcement learning (Chen
and Bansal, 2018), fused attention (Hsu et al.,
2018) and bottom-up attention (Gehrmann et al.,
2018). Our model, which is a very good extractive
model, can be used as the sentence extraction com-
ponent in these models and potentially improves
their performance.

Pre-trained NLP Models Most model pre-
training methods in NLP leverage the natural or-
dering of text. For example, word2vec uses the
surrounding words within a fixed size window to
predict the word in the middle with a log bilin-
ear model. The resulting word embedding table
can be used in other downstream tasks. There are
other word embedding pre-training methods using
similar techniques (Pennington et al., 2014; Bo-
janowski et al., 2017). Peters et al. (2018) and
Radford et al. (2018) find even a sentence encoder

5061

Figure 1: The architecture of HIBERT during training.
senti is a sentence in the document above, which has
four sentences in total. sent3 is masked during encod-
ing and the decoder predicts the original sent3.

(not just word embeddings) can also be pre-trained
with language model objectives (i.e., predicting
the next or previous word). Language model ob-
jective is unidirectional, while many tasks can
leverage the context in both directions. Therefore,
Devlin et al. (2018) propose the naturally bidi-
rectional masked language model objective (i.e.,
masking several words with a special token in
a sentence and then predicting them). All the
methods above aim to pre-train word embeddings
or sentence encoders, while our method aims to
pre-train the hierarchical document encoders (i.e.,
hierarchical transformers), which is important in
summarization.

3 Model

In this section, we present our model HIBERT. We
first introduce how documents are represented in
HIBERT. We then describe our method to pre-train
HIBERT and finally move on to the application of
HIBERT to summarization.

3.1 Document Representation

Let D = (S1, S2, . . . , S|D|) denote a document,
where Si = (wi

1, w
i
2, . . . , w

i
|Si|) is a sentence in D

and wi
j a word in Si. Note that following common

practice in natural language processing literatures,
wi
|Si| is an artificial EOS (End Of Sentence) token.

To obtain the representation of D, we use two en-
coders: a sentence encoder to transform each sen-
tence in D to a vector and a document encoder
to learn sentence representations given their sur-
rounding sentences as context. Both the sentence
encoder and document encoder are based on the
Transformer encoder described in Vaswani et al.
(2017). As shown in Figure 1, they are nested
in a hierarchical fashion. A transformer encoder
usually has multiple layers and each layer is com-
posed of a multi-head self attentive sub-layer fol-
lowed by a feed-forward sub-layer with residual
connections (He et al., 2016) and layer normal-
izations (Ba et al., 2016). For more details of the
Transformer encoder, we refer the interested read-
ers to Vaswani et al. (2017). To learn the repre-
sentation of Si, Si = (wi

1, w
i
2, . . . , w

i
|Si|) is first

mapped into continuous space

Ei = (ei1, e
i
2, . . . , e

i
|Si|)

where eij = e(wi
j) + pj

(1)

where e(wi
j) and pj are the word and positional

embeddings of wi
j , respectively. The word embed-

ding matrix is randomly initialized and we adopt
the sine-cosine positional embedding (Vaswani
et al., 2017)1. Then the sentence encoder (a Trans-
former) transforms Ei into a list of hidden rep-
resentations (hi

1,h
i
2, . . . ,h

i
|Si|). We take the last

hidden representation hi
|Si| (i.e., the representation

at the EOS token) as the representation of sentence
Si. Similar to the representation of each word in
Si, we also take the sentence position into account.
The final representation of Si is

ĥi = hi
|Si| + pi (2)

Note that words and sentences share the same po-
sitional embedding matrix.

In analogy to the sentence encoder, as shown
in Figure 1, the document encoder is yet another
Transformer but applies on the sentence level. Af-
ter running the Transformer on a sequence of sen-
tence representations (ĥ1, ĥ2, . . . , ĥ|D|), we ob-
tain the context sensitive sentence representations
(d1,d2, . . . ,d|D|). Now we have finished the en-
coding of a document with a hierarchical bidirec-
tional transformer encoder HIBERT. Note that in
previous work, document representation are also

1We use the sine-cosine embedding because it works well
and do not introduce additional trainable parameters.

5062

learned with hierarchical models, but each hier-
archy is a Recurrent Neural Network (Nallapati
et al., 2017; Zhou et al., 2018) or Convolutional
Neural Network (Cheng and Lapata, 2016). We
choose the Transformer because it outperforms
CNN and RNN in machine translation (Vaswani
et al., 2017), semantic role labeling (Strubell et al.,
2018) and other NLP tasks (Devlin et al., 2018).
In the next section we will introduce how we train
HIBERT with an unsupervised training objective.

3.2 Pre-training

Most recent encoding neural models used in NLP
(e.g., RNNs, CNNs or Transformers) can be pre-
trained by predicting a word in a sentence (or a
text span) using other words within the same sen-
tence (or span). For example, ELMo (Peters et al.,
2018) and OpenAI-GPT (Radford et al., 2018)
predict a word using all words on its left (or right);
while word2vec (Mikolov et al., 2013) predicts
one word with its surrounding words in a fixed
window and BERT (Devlin et al., 2018) predicts
(masked) missing words in a sentence given all the
other words.

All the models above learn the representation
of a sentence, where its basic units are words.
HIBERT aims to learn the representation of a doc-
ument, where its basic units are sentences. There-
fore, a natural way of pre-training a document
level model (e.g., HIBERT) is to predict a sentence
(or sentences) instead of a word (or words). We
could predict a sentence in a document with all the
sentences on its left (or right) as in a (document
level) language model. However, in summariza-
tion, context on both directions are available. We
therefore opt to predict a sentence using all sen-
tences on both its left and right.

Document Masking Specifically, suppose D =
(S1, S2, . . . , S|D|) is a document, where Si =
(wi

1, w
i
2, . . . , w

i
|Si|) is a sentence in it. We ran-

domly select 15% of the sentences in D and mask
them. Then, we predict these masked sentences.
The prediction task here is similar with the Cloze
task (Taylor, 1953; Devlin et al., 2018), but the
missing part is a sentence. However, during test
time the input document is not masked, to make
our model can adapt to documents without masks,
we do not always mask the selected sentences.
Once a sentence is selected (as one of the 15%
selected masked sentences), we transform it with
one of three methods below. We will use an ex-

ample to demonstrate the transformation. For in-
stance, we have the following document and the
second sentence is selected2:
William Shakespeare is a poet .
He died in 1616 . He is regarded
as the greatest writer .

In 80% of the cases, we mask the selected
sentence (i.e., we replace each word in the sen-
tence with a mask token [MASK]). The document
above becomes William Shakespeare is
a poet . [MASK] [MASK] [MASK]
[MASK] [MASK] He is regarded as
the greatest writer . (where “He
died in 1616 . ” is masked).

In 10% of the cases, we keep the selected sen-
tence as it is. This strategy is to simulate the input
document during test time (with no masked sen-
tences).

In the rest 10% cases, we replace the selected
sentence with a random sentence. In this case,
the document after transformation is William
Shakespeare is a poet . Birds
can fly . He is regarded as the
greatest writer . The second sentence
is replaced with “Birds can fly .” This
strategy intends to add some noise during training
and make the model more robust.

Sentence Prediction After the application of
the above procedures to a document D =
(S1, S2, . . . , S|D|), we obtain the masked docu-
ment D̃ = (S̃1, S̃2, . . . , ˜S|D|). Let K denote the
set of indicies of selected sentences in D. Now
we are ready to predict the masked sentences
M = {Sk|k ∈ K} using D̃. We first apply
the hierarchical encoder HIBERT in Section 3.1 to
D̃ and obtain its context sensitive sentence rep-
resentations (d̃1, d̃2, . . . , ˜d|D|). We will demon-
strate how we predict the masked sentence Sk =
(wk

0 , w
k
1 , w

k
2 , . . . , w

k
|Sk|) one word per step (wk

0 is
an artificially added BOS token). At the jth step,
we predict wk

j given wk
0 , . . . , w

k
j−1 and D̃. d̃k al-

ready encodes the information of D̃ with a focus
around its kth sentence S̃k. As shown in Figure 1,
we employ a Transformer decoder (Vaswani et al.,
2017) to predict wk

j with d̃k as its additional input.
The transformer decoder we used here is slightly
different from the original one. The original de-
coder employs two multi-head attention layers to

2There might be multiple sentences selected in a docu-
ment, but in this example there is only one.

5063

include both the context in encoder and decoder,
while we only need one to learn the decoder con-
text, since the context in encoder is a vector (i.e.,
d̃k). Specifically, after applying the word and po-
sitional embeddings to (wk

0 , . . . , w
k
j−1), we obtain

Ẽk
1:j−1 = (ẽk0, . . . ,

˜ekj−1) (also see Equation 1).
Then we apply multi-head attention sub-layer to
Ẽk

1:j−1:

˜hj−1 = MultiHead(qj−1,Kj−1,Vj−1)

qj−1 = WQ ˜ekj−1

Kj−1 = WK Ẽk
1:j−1

Kj−1 = WV Ẽk
1:j−1

(3)

where qj−1, Kj−1, Vj−1 are the input query,
key and value matrices of the multi-head attention
function (Vaswani et al., 2017) MultiHead(·, ·, ·),
respectively. WQ ∈ Rd×d, WK ∈ Rd×d and
WV ∈ Rd×d are weight matrices.

Then we include the information of D̃ by addi-
tion:

˜xj−1 = ˜hj−1 + d̃k (4)

We also follow a feedforward sub-layer (one hid-
den layer with ReLU (Glorot et al., 2011) acti-
vation function) after ˜xj−1 as in Vaswani et al.
(2017):

˜gj−1 = Wff
2 max(0,Wff

1 ˜xj−1 + b1) + b2 (5)

Note that the transformer decoder can have multi-
ple layers by applying Equation (3) to (5) multiple
times and we only show the computation of one
layer for simplicity.

The probability of wk
j given wk

0 , . . . , w
k
j−1 and

D̃ is:

p(wk
j |wk

0:j−1, D̃) = softmax(WO ˜gj−1) (6)

Finally the probability of all masked sentencesM
given D̃ is

p(M|D̃) =
∏
k∈K

|Sk|∏
j=1

p(wk
j |wk

0:j−1, D̃) (7)

The model above can be trained by minimizing the
negative log-likelihood of all masked sentences
given their paired documents. We can in the-
ory have unlimited amount of training data for
HIBERT, since they can be generated automati-
cally from (unlabeled) documents. Therefore, we
can first train HIBERT on large amount of data and
then apply it to downstream tasks. In the next sec-
tion, we will introduce its application to document
summarization.

Figure 2: The architecture of our extractive summa-
rization model. The sentence and document level trans-
formers can be pretrained.

3.3 Extractive Summarization
Extractive summarization selects the most impor-
tant sentences in a document as its summary. In
this section, summarization is modeled as a se-
quence labeling problem. Specifically, a docu-
ment is viewed as a sequence of sentences and
a summarization model is expected to assign a
True or False label for each sentence, where
True means this sentence should be included in
the summary. In the following, we will intro-
duce the details of our summarization model based
HIBERT.

Let D = (S1, S2, . . . , S|D|) denote a docu-
ment and Y = (y1, y2, . . . , y|D|) its sentence
labels (methods for obtaining these labels are
in Section 4.1). As shown in Figure 2, we
first apply the hierarchical bidirectional trans-
former encoder HIBERT to D and yields the con-
text dependent representations for all sentences
(d1,d2, . . . ,d|D|). The probability of the label of
Si can be estimated using an additional linear pro-
jection and a softmax:

p(yi|D) = softmax(WS di) (8)

where WS ∈ R2×d. The summarization model
can be trained by minimizing the negative log-
likelihood of all sentence labels given their paired
documents.

4 Experiments

In this section we assess the performance of our
model on the document summarization task. We

5064

first introduce the dataset we used for pre-training
and the summarization task and give implementa-
tion details of our model. We also compare our
model against multiple previous models.

4.1 Datasets
We conducted our summarization experiments
on the non-anonymous version CNN/Dailymail
(CNNDM) dataset (Hermann et al., 2015; See
et al., 2017), and the New York Times dataset
(Durrett et al., 2016; Xu and Durrett, 2019). For
the CNNDM dataset, we preprocessed the dataset
using the scripts from the authors of See et al.
(2017)3. The resulting dataset contains 287,226
documents with summaries for training, 13,368
for validation and 11,490 for test. Following (Xu
and Durrett, 2019; Durrett et al., 2016), we cre-
ated the NYT50 dataset by removing the docu-
ments whose summaries are shorter than 50 words
from New York Times dataset. We used the same
training/validation/test splits as in Xu and Dur-
rett (2019), which contain 137,778 documents for
training, 17,222 for validation and 17,223 for test.
To create sentence level labels for extractive sum-
marization, we used a strategy similar to Nallapati
et al. (2017). We label the subset of sentences in
a document that maximizes ROUGE (Lin, 2004)
(against the human summary) as True and all
other sentences as False.

To unsupervisedly pre-train our document
model HIBERT (see Section 3.2 for details), we
created the GIGA-CM dataset (totally 6,626,842
documents and 2,854 million words), which in-
cludes 6,339,616 documents sampled from the En-
glish Gigaword4 dataset and the training split of
the CNNDM dataset. We used the validation set
of CNNDM as the validation set of GIGA-CM
as well. As in See et al. (2017), documents and
summaries in CNNDM, NYT50 and GIGA-CM
are all segmented and tokenized using Stanford
CoreNLP toolkit (Manning et al., 2014). To re-
duce the vocabulary size, we applied byte pair en-
coding (BPE; Sennrich et al. 2016) to all of our
datasets. To limit the memory consumption dur-
ing training, we limit the length of each sentence
to be 50 words (51th word and onwards are re-
moved) and split documents with more than 30
sentences into smaller documents with each con-
taining at most 30 sentences.

3Scripts publicly available at https://github.com/
abisee/cnn-dailymail

4https://catalog.ldc.upenn.edu/LDC2012T21

4.2 Implementation Details

Our model is trained in three stages, which in-
cludes two pre-training stages and one finetuning
stage. The first stage is the open-domain pre-
training and in this stage we train HIBERT with the
pre-training objective (Section 3.2) on GIGA-CM
dataset. In the second stage, we perform the in-
domain pre-training on the CNNDM (or NYT50)
dataset still with the same pre-training objective.
In the final stage, we finetune HIBERT in the sum-
marization model (Section 3.3) to predict extrac-
tive sentence labels on CNNDM (or NYT50).

The sizes of the sentence and document level
Transformers as well as the Transformer decoder
in HIBERT are the same. Let L denote the num-
ber of layers in Transformer, H the hidden size
and A the number of attention heads. As in
(Vaswani et al., 2017; Devlin et al., 2018), the hid-
den size of the feedforward sublayer is 4H . We
mainly trained two model sizes: HIBERTS (L = 6,
H = 512 and A = 8) and HIBERTM (L = 6,
H = 768 and A = 12). We trained both HIBERTS

and HIBERTM on a single machine with 8 Nvidia
Tesla V100 GPUs with a batch size of 256 doc-
uments. We optimized our models using Adam
with learning rate of 1e-4, β1 = 0.9, β2 = 0.999,
L2 norm of 0.01, learning rate warmup 10,000
steps and learning rate decay afterwards using the
strategies in Vaswani et al. (2017). The dropout
rate in all layers are 0.1. In pre-training stages,
we trained our models until validation perplexities
do not decrease significantly (around 45 epochs on
GIGA-CM dataset and 100 to 200 epochs on CN-
NDM and NYT50). Training HIBERTM for one
epoch on GIGA-CM dataset takes approximately
20 hours.

Our models during fine-tuning stage can be
trained on a single GPU. The hyper-parameters are
almost identical to these in the pre-training stages
except that the learning rate is 5e-5, the batch size
is 32, the warmup steps are 4,000 and we train our
models for 5 epochs. During inference, we rank
sentences using p(yi|D) (Equation (8)) and choose
the topK sentences as summary, whereK is tuned
on the validation set.

4.3 Evaluations

We evaluated the quality of summaries from dif-
ferent systems automatically using ROUGE (Lin,
2004). We reported the full length F1 based
ROUGE-1, ROUGE-2 and ROUGE-L on the

https://github.com/abisee/cnn-dailymail
https://github.com/abisee/cnn-dailymail

5065

Model R-1 R-2 R-L
Pointer+Coverage 39.53 17.28 36.38
Abstract-ML+RL 39.87 15.82 36.90
DCA 41.69 19.47 37.92
SentRewrite 40.88 17.80 38.54
InconsisLoss 40.68 17.97 37.13
Bottom-Up 41.22 18.68 38.34
Lead3 40.34 17.70 36.57
SummaRuNNer 39.60 16.20 35.30
NeuSum 40.11 17.52 36.39
Refresh 40.00 18.20 36.60
NeuSum-MMR 41.59 19.01 37.98
BanditSum 41.50 18.70 37.60
JECS 41.70 18.50 37.90
LatentSum 41.05 18.77 37.54
HierTransformer 41.11 18.69 37.53
BERT 41.82 19.48 38.30
HIBERTS (in-domain) 42.10 19.70 38.53
HIBERTS 42.31 19.87 38.78
HIBERTM 42.37 19.95 38.83

Table 1: Results of various models on the CNNDM test
set using full-length F1 ROUGE-1 (R-1), ROUGE-2 (R-
2), and ROUGE-L (R-L).

CNNDM and NYT50 datasets. We compute
ROUGE scores using the ROUGE-1.5.5.pl
script.

Additionally, we also evaluated the generated
summaries by eliciting human judgments. Fol-
lowing (Cheng and Lapata, 2016; Narayan et al.,
2018), we randomly sampled 20 documents from
the CNNDM test set. Participants were presented
with a document and a list of summaries produced
by different systems. We asked subjects to rank
these summaries (ties allowed) by taking informa-
tiveness (is the summary capture the important in-
formation from the document?) and fluency (is the
summary grammatical?) into account. Each docu-
ment is annotated by three different subjects.

4.4 Results

Our main results on the CNNDM dataset are
shown in Table 1, with abstractive models in
the top block and extractive models in the bot-
tom block. Pointer+Coverage (See et al., 2017),
Abstract-ML+RL (Paulus et al., 2017) and DCA
(Celikyilmaz et al., 2018) are all sequence to se-
quence learning based models with copy and cov-
erage modeling, reinforcement learning and deep
communicating agents extensions. SentRewrite

(Hsu et al., 2018) and InconsisLoss (Chen and
Bansal, 2018) all try to decompose the word by
word summary generation into sentence selection
from document and “sentence” level summariza-
tion (or compression). Bottom-Up (Gehrmann
et al., 2018) generates summaries by combines a
word prediction model with the decoder attention
model. The extractive models are usually based
on hierarchical encoders (SummaRuNNer; Nalla-
pati et al. 2017 and NeuSum; Cheng and Lapata
2016). They have been extended with reinforce-
ment learning (Refresh; Narayan et al. 2018 and
BanditSum; Dong et al. 2018), Maximal Marginal
Relevance (NeuSum-MMR; Zhou et al. 2018), la-
tent variable modeling (LatentSum; Zhang et al.
2018) and syntactic compression (JECS; Xu and
Durrett 2019). Lead3 is a baseline which sim-
ply selects the first three sentences. Our model
HIBERTS (in-domain), which only use one pre-
training stage on the in-domain CNNDM training
set, outperforms all of them and differences be-
tween them are all significant with a 0.95 confi-
dence interval (estimated with the ROUGE script).
Note that pre-training HIBERTS (in-domain) is
very fast and it only takes around 30 minutes
for one epoch on the CNNDM training set. Our
models with two pre-training stages (HIBERTS) or
larger size (HIBERTM) perform even better and
HIBERTM outperforms BERT by 0.5 ROUGE5.
We also implemented two baselines. One is
the hierarchical transformer summarization model
(HeriTransfomer; described in 3.3) without pre-
training. Note the setting for HeriTransfomer is
(L = 4,H = 300 and A = 4) 6. We can see
that the pre-training (details in Section 3.2) leads
to a +1.25 ROUGE improvement. Another base-
line is based on a pre-trained BERT (Devlin et al.,
2018)7 and finetuned on the CNNDM dataset. We
used the BERTbase model because our 16G RAM
V100 GPU cannot fit BERTlarge for the summa-
rization task even with batch size of 1. The posi-
tional embedding of BERT supports input length
up to 512 words, we therefore split documents
with more than 10 sentences into multiple blocks

5The difference is significant according to the ROUGE
script.

6We tried deeper and larger models, but obtained inferior
results, which may indicates training large or deep models on
this dataset without a good initialization is challenging.

7Our BERT baseline is adapted from this imple-
mentation https://github.com/huggingface/
pytorch-pretrained-BERT

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT

5066

Models R-1 R-2 R-L
Lead 41.80 22.60 35.00
EXTRACTION 44.30 25.50 37.10
JECS 45.50 25.30 38.20
HeriTransformer 47.44 28.08 39.56
BERT 48.38 29.04 40.53
HIBERTS (in-domain) 48.92 29.58 41.10
HIBERTM (in-domain) 49.06 29.70 41.23
HIBERTS 49.25 29.92 41.43
HIBERTM 49.47 30.11 41.63

Table 2: Results of various models on the NYT50
test set using full-length F1 ROUGE. HIBERTS (in-
domain) and HIBERTM (in-domain) only uses one pre-
training stage on the NYT50 training set.

Pretraining Strategies R-1 R-2 R-L
Open-Domain 42.97 20.31 39.51
In-Domain 42.93 20.28 39.46
Open+In-Domain 43.19 20.46 39.72

Table 3: Results of summarization model (HIBERTS

setting) with different pre-training strategies on the
CNNDM validation set using full-length F1 ROUGE.

(each block with 10 sentences8). We feed each
block (the BOS and EOS tokens of each sentence
are replaced with [CLS] and [SEP] tokens) into
BERT and use the representation at [CLS] token
to classify each sentence. Our model HIBERTS

outperforms BERT by 0.4 to 0.5 ROUGE despite
with only half the number of model parameters
(HIBERTS 54.6M v.s. BERT 110M).

Results on the NYT50 dataset show the similar
trends (see Table 2). EXTRACTION is a extrac-
tive model based hierarchical LSTM and we use
the numbers reported by Xu and Durrett (2019).
The improvement of HIBERTM over the baseline
without pre-training (HeriTransformer) becomes
2.0 ROUGE. HIBERTS (in-domain), HIBERTM

(in-domain), HIBERTS and HIBERTM all outper-
form BERT significantly according to the ROUGE
script.

We also conducted human experiment with 20
randomly sampled documents from the CNNDM
test set. We compared our model HIBERTM

against Lead3, DCA, Latent, BERT and the human
reference (Human)9. We asked the subjects to rank

8We use 10 sentences per block, because maximum sen-
tence length 50 × 10 < 512 (maximum BERT supported
length). The last block of a document may have less than 10
sentences.

9We obtained the outputs of DCA via emails.

Models 1st 2nd 3rd 4th 5th 6th MeanR
Lead3 0.03 0.18 0.15 0.30 0.30 0.03 3.75
DCA 0.08 0.15 0.18 0.20 0.15 0.23 3.88
Latent 0.05 0.33 0.28 0.20 0.13 0.00 3.03
BERT 0.13 0.37 0.32 0.15 0.03 0.00 2.58
HIBERTM 0.30 0.35 0.25 0.10 0.00 0.00 2.15
Human 0.58 0.15 0.20 0.00 0.03 0.03 1.85

Table 4: Human evaluation: proportions of rankings
and mean ranks (MeanR; lower is better) of various
models.

the outputs of these systems from best to worst.
As shown in Table 4, the output of HIBERTM is
selected as the best in 30% of cases and we ob-
tained lower mean rank than all systems except for
Human. We also converted the rank numbers into
ratings (rank i to 7 − i) and applied student t-test
on the ratings. HIBERTM is significantly different
from all systems in comparison (p < 0.05), which
indicates our model still lags behind Human, but
is better than all other systems.

Pre-training Strategies As mentioned earlier,
our pre-training includes two stages. The first
stage is the open-domain pre-training stage on
the GIGA-CM dataset and the following stage
is the in-domain pre-training on the CNNDM
(or NYT50) dataset. As shown in Table 3,
we pretrained HIBERTS using only open-domain
stage (Open-Domain), only in-domain stage (In-
Domain) or both stages (Open+In-Domain) and
applied it to the CNNDM summarization task. Re-
sults on the validation set of CNNDM indicate the
two-stage pre-training process is necessary.

5 Conclusions

The core part of a neural extractive summariza-
tion model is the hierarchical document encoder.
We proposed a method to pre-train document level
hierarchical bidirectional transformer encoders on
unlabeled data. When we only pre-train hierar-
chical transformers on the training sets of summa-
rization datasets with our proposed objective, ap-
plication of the pre-trained hierarchical transform-
ers to extractive summarization models already
leads to wide improvement of summarization per-
formance. Adding the large open-domain dataset
to pre-training leads to even better performance.
In the future, we plan to apply models to other
tasks that also require hierarchical document en-
codings (e.g., document question answering). We
are also interested in improving the architectures

5067

of hierarchical document encoders and designing
other objectives to train hierarchical transformers.

Acknowledgments

We would like to thank Nan Yang, Houwen Peng,
Li Dong and the ACL reviewers for their valu-
able feedback. We are grateful to Jiacheng Xu and
Greg Durrett for sharing their splits of the New
York Times dataset with us.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In In Proceedings of
the 3rd International Conference on Learning Rep-
resentations, San Diego, California.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Asli Celikyilmaz, Antoine Bosselut, Xiaodong He, and
Yejin Choi. 2018. Deep communicating agents for
abstractive summarization. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1662–1675, New Orleans, Louisiana.

Xiuying Chen, Shen Gao, Chongyang Tao, Yan Song,
Dongyan Zhao, and Rui Yan. 2018. Iterative docu-
ment representation learning towards summarization
with polishing. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4088–4097. Association for Com-
putational Linguistics.

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-
tive summarization with reinforce-selected sentence
rewriting. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 675–686. Associa-
tion for Computational Linguistics.

Jianpeng Cheng and Mirella Lapata. 2016. Neural
summarization by extracting sentences and words.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 484–494, Berlin, Germany.

John M Conroy and Dianne P O’leary. 2001. Text sum-
marization via hidden markov models. In Proceed-
ings of the 24th annual international ACM SIGIR
conference on Research and development in infor-
mation retrieval, pages 406–407. ACM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. arXiv preprint arXiv:1810.04805.

Yue Dong, Yikang Shen, Eric Crawford, Herke van
Hoof, and Jackie Chi Kit Cheung. 2018. Bandit-
sum: Extractive summarization as a contextual ban-
dit. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 3739–3748. Association for Computational
Linguistics.

Greg Durrett, Taylor Berg-Kirkpatrick, and Dan Klein.
2016. Learning-based single-document summariza-
tion with compression and anaphoricity constraints.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1998–2008. Association for
Computational Linguistics.

Elena Filatova and Vasileios Hatzivassiloglou. 2004a.
Event-based extractive summarization. In Text Sum-
marization Branches Out: Proceedings of the ACL-
04 Workshop, pages 104–111, Barcelona, Spain.

Elena Filatova and Vasileios Hatzivassiloglou. 2004b.
Event-based extractive summarization.

Sebastian Gehrmann, Yuntian Deng, and Alexander
Rush. 2018. Bottom-up abstractive summarization.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4098–4109. Association for Computational Linguis-
tics.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep sparse rectifier neural networks. In Pro-
ceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 315–
323.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1631–1640. Association for Computational
Linguistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems, pages 1693–
1701. Curran Associates, Inc.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

http://aclweb.org/anthology/D18-1442
http://aclweb.org/anthology/D18-1442
http://aclweb.org/anthology/D18-1442
http://aclweb.org/anthology/P18-1063
http://aclweb.org/anthology/P18-1063
http://aclweb.org/anthology/P18-1063
http://aclweb.org/anthology/D18-1409
http://aclweb.org/anthology/D18-1409
http://aclweb.org/anthology/D18-1409
https://doi.org/10.18653/v1/P16-1188
https://doi.org/10.18653/v1/P16-1188
http://aclweb.org/anthology/D18-1443
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1154

5068

Wan-Ting Hsu, Chieh-Kai Lin, Ming-Ying Lee, Kerui
Min, Jing Tang, and Min Sun. 2018. A unified
model for extractive and abstractive summarization
using inconsistency loss. In Proceedings of the 56th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
132–141. Association for Computational Linguis-
tics.

Julian Kupiec, Jan Pedersen, and Francine Chen. 1995.
A trainable document summarizer. In Proceedings
of the 18th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 68–73. ACM.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out: Proceedings of the ACL-04 Work-
shop, pages 74–81, Barcelona, Spain.

Inderjeet Mani. 2001. Automatic Summarization. John
Benjamins Pub Co.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In Proceedings of 52nd annual
meeting of the association for computational lin-
guistics: system demonstrations, pages 55–60.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of doc-
uments. In In Proceedings of the 31st AAAI Con-
ference on Artificial Intelligence, pages 3075–3091,
San Francisco, California.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre,
Bing Xiang, et al. 2016. Abstractive text summa-
rization using sequence-to-sequence rnns and be-
yond. arXiv preprint arXiv:1602.06023.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Ranking sentences for extractive summariza-
tion with reinforcement learning. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1747–1759, New Orleans, Louisiana.

Ani Nenkova and Kathleen McKeown. 2011. Auto-
matic summarization. Foundations and Trends in
Information Retrieval, 5(2–3):103–233.

Ani Nenkova, Lucy Vanderwende, and Kathleen McK-
eown. 2006. A compositional context sensitive
multi-document summarizer: exploring the factors
that influence summarization. In Proceedings of
the 29th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 573–580. ACM.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. arXiv preprint arXiv:1705.04304.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237. Association for Computational Linguistics.

Dragomir Radev, Timothy Allison, Sasha Blair-
Goldensohn, John Blitzer, Arda Çelebi, Stanko
Dimitrov, Elliott Drabek, Ali Hakim, Wai Lam,
Danyu Liu, Jahna Otterbacher, Hong Qi, Horacio
Saggion, Simone Teufel, Michael Topper, Adam
Winkel, and Zhu Zhang. 2004. Mead - a plat-
form for multidocument multilingual text summa-
rization. In Proceedings of the Fourth International
Conference on Language Resources and Evaluation
(LREC’04). European Language Resources Associ-
ation (ELRA).

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. URL https://s3-
us-west-2. amazonaws. com/openai-assets/research-
covers/languageunsupervised/language under-
standing paper. pdf.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725. Association for Computational Linguistics.

Emma Strubell, Patrick Verga, Daniel Andor,
David Weiss, and Andrew McCallum. 2018.
Linguistically-informed self-attention for semantic
role labeling. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 5027–5038. Association for
Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

http://aclweb.org/anthology/P18-1013
http://aclweb.org/anthology/P18-1013
http://aclweb.org/anthology/P18-1013
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
http://www.lrec-conf.org/proceedings/lrec2004/pdf/757.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/757.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/757.pdf
http://aclweb.org/anthology/P17-1099
http://aclweb.org/anthology/P17-1099
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
http://aclweb.org/anthology/D18-1548
http://aclweb.org/anthology/D18-1548

5069

Wilson L Taylor. 1953. cloze procedure: A new
tool for measuring readability. Journalism Bulletin,
30(4):415–433.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Kristian Woodsend and Mirella Lapata. 2010. Auto-
matic generation of story highlights. In Proceed-
ings of the 48th Annual Meeting of the Association
for Computational Linguistics, pages 565–574, Up-
psala, Sweden.

Jiacheng Xu and Greg Durrett. 2019. Neural extrac-
tive text summarization with syntactic compression.
arXiv preprint arXiv:1902.00863.

Xingxing Zhang, Mirella Lapata, Furu Wei, and Ming
Zhou. 2018. Neural latent extractive document sum-
marization. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 779–784. Association for Computa-
tional Linguistics.

Qingyu Zhou, Nan Yang, Furu Wei, Shaohan Huang,
Ming Zhou, and Tiejun Zhao. 2018. Neural docu-
ment summarization by jointly learning to score and
select sentences. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 654–663.
Association for Computational Linguistics.

http://aclweb.org/anthology/D18-1088
http://aclweb.org/anthology/D18-1088
http://aclweb.org/anthology/P18-1061
http://aclweb.org/anthology/P18-1061
http://aclweb.org/anthology/P18-1061

