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Abstract

Learning effective representations of sen-

tences is one of the core missions of natu-

ral language understanding. Existing models

either train on a vast amount of text, or re-

quire costly, manually curated sentence rela-

tion datasets. We show that with dependency

parsing and rule-based rubrics, we can curate

a high quality sentence relation task by lever-

aging explicit discourse relations. We show

that our curated dataset provides an excellent

signal for learning vector representations of

sentence meaning, representing relations that

can only be determined when the meanings

of two sentences are combined. We demon-

strate that the automatically curated corpus al-

lows a bidirectional LSTM sentence encoder

to yield high quality sentence embeddings and

can serve as a supervised fine-tuning dataset

for larger models such as BERT. Our fixed sen-

tence embeddings achieve high performance

on a variety of transfer tasks, including Sen-

tEval, and we achieve state-of-the-art results

on Penn Discourse Treebank’s implicit rela-

tion prediction task.

1 Introduction

Developing general models to represent the mean-

ing of a sentence is a key task in natural language

understanding. The applications of such general-

purpose representations of sentence meaning are

many — paraphrase detection, summarization,

knowledge-base population, question-answering,

automatic message forwarding, and metaphoric

language, to name a few.

We propose to leverage a high-level relationship

between sentences that is both frequently and sys-

tematically marked in natural language: the dis-

course relations between sentences. Human writ-

ers naturally use a small set of very common tran-

sition words between sentences (or sentence-like

∗ equal contribution

phrases) to identify the relations between adjacent

ideas. These words, such as because, but, and,

which mark the conceptual relationship between

two sentences, have been widely studied in lin-

guistics, both formally and computationally, and

have many different names. We use the name “dis-

course markers”.

Learning flexible meaning representations re-

quires a sufficiently demanding, yet tractable,

training task. Discourse markers annotate deep

conceptual relations between sentences. Learning

to predict them may thus represent a strong train-

ing task for sentence meanings. This task is an in-

teresting intermediary between two recent trends.

On the one hand, models like InferSent (Conneau

et al., 2017) are trained to predict entailment—a

strong conceptual relation that must be hand an-

notated. On the other hand, models like BERT

(Devlin et al., 2018) are trained to predict random

missing words in very large corpora (see Table 1

for the data requirements of the models we com-

pare). Discourse marker prediction may permit

learning from relatively little data, like entailment,

but can rely on naturally occurring data rather than

hand annotation, like word-prediction.

We thus propose the DisSent task, which uses

the Discourse Prediction Task to train sentence

embeddings. Using a data preprocessing proce-

dure based on dependency parsing, we are able to

automatically curate a sizable training set of sen-

tence pairs. We then train a sentence encoding

model to learn embeddings for each sentence in a

pair such that a classifier can identify, based on the

embeddings, which discourse marker was used to

link the sentences. We also use the DisSent task to

fine-tune larger pre-trained models such as BERT.

We evaluate our sentence embedding model’s

performance on the standard fixed embedding

evaluation framework developed by Conneau et al.

(2017), where during evaluation, the sentence em-
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bedding model’s weights are not updated. We

further evaluate both the DisSent model and a

BERT model fine-tuned on DisSent on two clas-

sification tasks from the Penn Discourse Treebank

(PDTB) (Rashmi et al., 2008).

We demonstrate that the resulting DisSent em-

beddings achieve comparable results to InferSent

on some evaluation tasks, and superior on others.

The BERT model fine-tuned on the DisSent tasks

achieved state-of-the-art on PDTB classification

tasks compared to other fine-tuning strategies.

2 Discourse Prediction Task

Hobbs (1985) argues that discourse relations are

always present, that they fall under a small set of

categories, and that they compose into parsable

structures. We draw inspiration from Rhetori-

cal Structure Theory (RST) (Mann and Thomp-

son, 1988), which deals with the general task of

segmenting natural text into elementary discourse

units (EDUs) (Carlson and Marcu, 2001) and pars-

ing into complex discourse structures (e.g. Lin

et al. 2019). However, for our task, we narrow

our scope to a small subset of especially straight-

forward discourse relations. First, we restrict our

interest to only a subset of EDUs (sentence-like

text fragments) that can be interpreted as gram-

matically complete sentences in isolation. This in-

cludes EDUs that appear as full sentences in the

original text, as well as subordinate clauses with

overt subjects and finite verb phrases. Second,

we focus here on explicit discourse markers be-

tween adjacent sentences (or EDUs), rather than

implicit relations between a sentence (or EDU)

and the related discourse. This is a significant sim-

plification from related work in discourse theory,

e.g. describing the wealth of complex structures a

discourse can take (Webber et al., 2003) or com-

piling a comprehensive set of discourse relations

(Rashmi et al., 2008; Hobbs, 1979, 1985; Jasin-

skaja and Karagjosova, 2015; Knott, 1996). We

are able to make this simplification because our

goal is not to annotate natural text, but to curate

a set of sentence pairs for a particular set of dis-

course relations.

With this focus in mind, we propose a new

task for natural language understanding: discourse

marker prediction. Given two sentences in our cu-

rated corpus (which may have been full sentences

in the original text or may have been subclauses),

the model must predict which discourse marker

Task # of examples # of tokens

SNLI + MNLI 0.9M 16.3M
DisSent Books 5 3.2M 63.5M

SkipThought — 800M
BERT MLM/NSP — 3300M

Table 1: Training data size (in millions) in each pre-

training task. DisSent Books 5 only uses 5 discourse

markers instead of all.

Marker Extracted Pairs Percent (%)

but 1,028,995 21.86
and 1,020,316 21.68
as 748,886 15.91

when 527,031 11.20
if 472,852 10.05

before 218,305 4.64
because 167,358 3.56
while 161,818 3.44

though 104,218 2.21
after 95,847 2.04
so 76,940 1.63

although 37,511 0.80
then 16,429 0.35
also 16,365 0.35
still 13,421 0.29

Total 4,706,292 100.0

Table 2: Number of pairs of sentences extracted from

BookCorpus for each discourse marker and percent of

each marker in the resulting dataset.

was used by the author to link the two ideas. For

example, “She’s late to class she missed

the bus” would likely be completed with because,

but “She’s sick at home she missed the

class” would likely be completed with so, and

“She’s good at soccer she missed the goal”

would likely be completed with but. These pairs

have similar syntactic structures and many words

in common, but the meanings of the component

sentences lead to strong intuitions about which

discourse marker makes the most sense. With-

out a semantic understanding of the sentences, we

would not be able to guess the correct relation.

We argue that success at choosing the correct dis-

course marker requires a representation that re-

flects the full meaning of a sentence.

We note that perfect performance at this task is

impossible for humans (Malmi et al., 2018), be-

cause different discourse markers can easily ap-

pear in the same context. For example, in some

cases, markers are (at least close to) synonymous

with one another (Knott, 1996). Other times, it

is possible for multiple discourse markers to link

the same pair of sentences and change the inter-
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pretation. (In the sentence “Bob saw Alice was at

the party, (then|so|but) he went home,” changing

the discourse marker drastically changes our inter-

pretation of Bob’s goals and feeling towards Al-

ice.) Despite this ceiling on absolute performance,

a discourse marker can frequently be inferred from

the meanings of the sentences it connects, making

this a useful training task.

3 Model

3.1 Sentence Encoder Model

We adapt the best architecture from Conneau et

al. (2017) as our sentence encoder. This architec-

ture uses a standard bidirectional LSTM (Graves

et al., 2013), followed by temporal max-pooling to

create sentence vectors. We parameterize the BiL-

STM with the different weights θ1 and θ2 to reflect

the asymmetry of sentence processing. We then

concatenate the forward and backward encodings.

We apply global max pooling to construct the

encoding for each sentence. That is, we apply an

element-wise max operation over the temporal di-

mension of the hidden states. Global max pool-

ing builds a sentence representation from all time

steps in the processing of a sentence (Collobert

and Weston, 2008; Conneau et al., 2017), provid-

ing regularization and shorter back-propagation

paths.

−→
ht = LSTMt(w1, ..., wt|θ1)
←−
ht = LSTMt(wT , ..., wt|θ2)

ht = [
−→
ht ;
←−
ht ]

si = MaxPool(h1, ..., hT )

(1)

Our objective is to predict the discourse rela-

tions between two sentences from their vectors,

si where i ∈ {1, 2}. Because we want generally

useful sentence vectors after training, the learned

computation should happen before the sentences

are combined to make a prediction. However,

some non-linear interactions between the sentence

vectors are likely to be needed. To achieve this, we

include a fixed set of common pair-wise vector op-

erations: subtraction, multiplication, and average.

savg =
1

2
(s1 + s2)

ssub = s1 − s2

smul = s1 ∗ s2

S = [s1,s2, savg, ssub, smul]

(2)

Finally we use an affine fully-connected layer

to project the concatenated vector S down to a

lower dimensional representation, and then project

it down to a vector of label size (the number of dis-

course markers). We use softmax to compute the

probability distribution over discourse relations.

3.2 Fine-tuning Model

Sentence relations datasets can be used to pro-

vide high-level training signals to fine-tune other

sentence embedding models. In this work, we

fine-tune BERT (Devlin et al., 2018) on the Dis-

Sent task and evaluate its performance on the

PDTB implicit relation prediction task. We use

the BERT-base model which has a 12-layer Trans-

former encoder. We directly use the [CLS] to-

ken’s position as the embedding for the entire sen-

tence pair.

After training BERT-base model on the DisSent

task, we continue to fine-tune BERT-base model

on other evaluation tasks to see if training on Dis-

Sent tasks provides additional performance im-

provement and learning signal for the BERT-base

model.

4 Data Collection

We present an automatic way to collect a large

dataset of sentence pairs and the relations between

them from natural text corpora using a set of ex-

plicit discourse markers and universal dependency

parsing (Schuster and Manning, 2016).

4.1 Corpus and Discourse Marker Set

For training and evaluation datasets, we col-

lect sentence pairs from BookCorpus (Zhu et al.,

2015), text from unpublished novels (Romance,

Fantasy, Science fiction, and Teen genres), which

was used by Kiros et al. (2015) to train their

SkipThought model. We identified common dis-

course markers, choosing those with a frequency

greater than 1% in PDTB. Our final set of dis-

course markers is shown in Table 2 and we ex-

periment with three subsets of discourse markers

(ALL, 5, and 8), shown in Table 4.

4.2 Dependency Parsing

Many discourse markers in English occur almost

exclusively between the two statements they con-

nect, but for other discourse markers, their posi-

tion relative to their connected statements can vary

(e.g. Figure 1). For this reason, we use the Stan-

ford CoreNLP dependency parser (Schuster and
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S1 marker S2

Her eyes flew up to his face. and Suddenly she realized why he looked so different.
The concept is simple. but The execution will be incredibly dangerous.
You used to feel pride. because You defended innocent people.
Ill tell you about it. if You give me your number.
Belter was still hard at work. when Drade and barney strolled in.

We plugged bulky headsets into the dashboard. so
We could hear each other when we spoke into the
microphones.

It was mere minutes or hours. before He finally fell into unconsciousness.
And then the cloudy darkness lifted. though The lifeboat did not slow down.

Table 3: Example pairs from our Books 8 dataset.

S1 because S2

[I wore a jacket]S1 because [it was cold outside]S2.

advcl

mark

S1because S2

Because [it was cold outside]S2, [I wore a jacket]S1.

advclmark

Figure 1: Dependency patters for extraction: While

the relative order of a discourse marker (e.g. because)

and its connected sentences is flexible, the dependency

relations between these components within the overall

sentence remains constant. See Appendix A.1 for de-

pendency patterns for other discourse markers.

Manning, 2016) to extract the appropriate pairs of

sentences (or sentence-like EDUs) for a discourse

marker, in the appropriate conceptual order. Each

discourse marker, when it is used to link two state-

ments, is parsed by the dependency parser in a

systematic way, though different discourse mark-

ers may have different corresponding dependency

patterns linking them to their statement pairs.1

Within the dependency parse, we search for the

governor phrase (which we call “S2”) of the dis-

course marker and check for the appropriate de-

pendency relation. If we find no such phrase,

we reject the example entirely (thus filtering out

polysemous usages, like “that’s so cool!” for

the discourse marker so). If we find such an

S2, we search for “S1” within the same sentence

(SS). Searching for this relation allows us to cap-

ture pairs where the discourse marker starts the

sentence and connects the following two clauses

(e.g. “Because [it was cold outside]S2, [I wore a

jacket]S1.”). If a sentence in the corpus contains

only a discourse marker and S2, we assume the

1 See Appendix A.1 for more details on dependency-based
extraction.

discourse marker links to the immediately previ-

ous sentence (IPS), which we label S1.

For some markers, we further filter based on the

order of the sentences in the original text. For ex-

ample, the discourse marker then always appears

in the order ”S1, then S2”, unlike because, which

can also appear in the order ”Because S2, S1”. Ex-

cluding proposed extractions in an incorrect order

makes our method more robust to incorrect depen-

dency parses.

4.3 Training Dataset

Using these methods, we curated a dataset

of 4,706,292 pairs of sentences for 15 dis-

course markers. Examples are shown in Ta-

ble 3. We randomly divide the dataset into

train/validation/test set with 0.9, 0.05, 0.05 split.

The dataset is inherently unbalanced, but the

model is still able to learn rarer classes quite

well (see Appendix A.4 for more details on

the effects of class frequencies). Our data are

publicly available at https://github.com/

windweller/DisExtract.

5 Related Work

Current state of the art models either rely on

completely supervised learning through high-level

classification tasks or unsupervised learning.

Supervised learning has been shown to yield

general-purpose representations of meaning, train-

ing on semantic relation tasks like Stanford Nat-

ural Language Inference (SNLI) and MultiNLI

(Bowman et al., 2015; Williams et al., 2018; Con-

neau et al., 2017). Large scale joint supervised

training has also been explored by Subramanian

et al. (2018), who trained a sentence encoding

model on five language-related tasks. These super-

vised learning tasks often require human annota-

tions on a large amount of data which are costly to

obtain. Our discourse prediction approach extends

https://github.com/windweller/DisExtract
https://github.com/windweller/DisExtract
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these results in that we train on semantic relations,

but we use dependency patterns to automatically

curate a sizable dataset.

In an unsupervised learning setting,

SkipThought (Kiros et al., 2015) learns a

conditional joint probability distribution for the

next sentence. ELMo (Peters et al., 2018) uses a

BiLSTM to predict the missing word using the

masked language modeling (MLM) objective.

OpenAI-GPT2 (Radford et al., 2019) directly

predicts the next word. BERT (Devlin et al.,

2018) uses MLM as well as predicting whether

the next sequence comes from the same document

or not. Despite the overwhelming success of these

models, Phang et al. (2018) shows that fine-tuning

these models on supervised learning datasets can

yield improved performance over difficult natural

language understanding tasks.

Jernite et al. (2017) have proposed a model that

also leverages discourse relations. They manually

categorize discourse markers based on human in-

terpretations of discourse marker similarity, and

the model predicts the category instead of the in-

dividual discourse marker. Their model also trains

on auxiliary tasks, such as sentence ordering and

ranking of the following sentence and must com-

pensate for data imbalance across tasks. Their

data collection methods only allow them to look

at paragraphs longer than 8 sentences, and sen-

tence pairs with sentence-initial discourse mark-

ers, resulting in only 1.4M sentence pairs from a

much larger corpus. Our proposed model extracts

a wider variety of sentence pairs, can be applied to

corpora with shorter paragraphs, and includes no

auxiliary tasks.

6 Experiments

For all our models, we tuned hyperparameters on

the validation set, and report results from the test

set. We use stochastic gradient descent with ini-

tial learning rate 0.1, and anneal by the factor of

5 each time validation accuracy is lower than in

the previous epoch. We train our fixed sentence

encoder model for 20 epochs, and use early stop-

ping to prevent overfitting. We also clip the gra-

dient norm to 5.0. We did not use dropout in the

fully connected layer in the final results because

our initial experiments with dropout showed lower

performance when generalizing to SentEval. We

experimented with both global mean pooling and

global max pooling and found the later to perform

Label Discourse Markers

Books 5 and, but, because, if, when
Books 8 and, but, because, if, when, before,

though, so
Books ALL and, but, because, if, when, before,

though, so, as, while, after, still, also,
then, although

Table 4: Discourse marker sets used in our exper-

iments. Books ALL contains 4.7M sentence pairs,

Books 8 contains 3.6M, and Books 5 contains 3.2M.

much better at generalization tasks. All models we

report used a 4096 hidden state size. We are able

to fit our model on a single Nvidia Titan X GPU.

Fine-tuning We fine-tune the BERT-base model

on the DisSent tasks with 2e-5 learning rate for 1

epoch because all DisSent tasks corpora are quite

large and fine-tuning for longer epochs did not

yield improvement. We fine-tune BERT on other

supervised learning datasets for multiple epochs

and select the epoch that provides the best perfor-

mance on the evaluation task. We find that fine-

tuning on MNLI is better than on SNLI or both

combined. This phenomenon is also discussed in

Phang et al. (2018).

Discourse Marker Set We experimented with

three subsets of discourse markers, shown in Ta-

ble 4. We first trained over all of the discourse

markers in our ALL marker set. The model

achieved 67.5% test accuracy on this classification

task. Overall we found that markers with simi-

lar meanings tended to be confusable with one an-

other. A more detailed analysis of the model’s per-

formance on this classification task is presented in

Appendix A.4.

Because there appears to be intrinsic concep-

tual overlap in the set of ALL markers, we exper-

imented on different subsets of discourse markers.

We choose sets of 5 and 8 discourse markers that

were both non-overlapping and frequent. The set

of sentence pairs for each smaller dataset is a strict

subset of those in any larger dataset. Our chosen

sets are shown in Table 4.

Marked vs Unmarked Prediction Task Adja-

cent sentences will always have a relationship, but

some are marked with discourse markers while

others are not. Humans have been shown to per-

form well above chance at guessing whether a dis-

course marker is marked vs. unmarked (Patterson

and Kehler, 2013; Yung et al., 2017), indicating a
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systematicity to this decision.

We predict that high quality sentence embed-

dings will contain useful information to determine

whether a discourse relation is explicitly marked.

Furthermore, success at this task could help natu-

ral language generation models to generate more

human-like long sequences.

To test this prediction, we create an additional

set of tasks based on Penn Discourse Treebank

(Rashmi et al., 2008). This hand-annotated dataset

contains expert discourse relation annotations be-

tween sentences. We collected 34,512 sentences

from PDTB2 (see Appendix), where 16,224 sen-

tences are marked with implicit relation type, and

18,459 are marked with explicit relation type.

Implicit Relation Prediction Task Sporleder

and Lascarides (2008) have argued that sentence

pairs with explicitly marked relations are qualita-

tively different from those where the relation is

left implicit. However, despite such differences,

Qin et al. (2017) were able to use an adversar-

ial network to leverage explicit discourse data as

additional training to increase the performance on

the implicit discourse relation prediction task. We

use the same dataset split scheme for this task as

for the implicit vs explicit task discussed above.

Following Ji and Eisenstein (2015) and Qin et al.

(2017), we predict the 11 most frequent relations.

There are 13,445 pairs for training, and 1,188 pairs

for evaluation.

SentEval Tasks We evaluate the performance

of generated sentence embeddings from our fixed

sentence encoder model on a series of natural

language understanding benchmark tests provided

by Conneau et al. (2017). The tasks we chose

include sentiment analysis (MR, SST), question-

type (TREC), product reviews (CR), subjectivity-

objectivity (SUBJ), opinion polarity (MPQA), en-

tailment (SICK-E), relatedness (SICK-R), and

paraphrase detection (MRPC). These are all clas-

sification tasks with 2-6 classes, except for relat-

edness, for which the model predicts human simi-

larity judgments.

6.1 Results

Training Task On the discourse marker predic-

tion task used for training, we achieve high lev-

els of test performance for all discourse markers.

(Though it is interesting that because, perhaps the

2 https://github.com/cgpotts/pdtb2

All Books 8 Books 5
Model F1 Acc F1 Acc F1 Acc

GloVe-bow 17.1 41.8 27.6 47.3 41.7 52.5
Ngram-bow 28.1 51.8 44.0 58.1 54.1 63.3

BiLSTM 47.2 67.5 64.4 73.5 72.1 77.3
BERT 60.1 77.5 76.2 82.9 82.6 86.1

Table 5: Discourse classification task performance:

Unweighted average F1 across discourse markers on

the test set, and overall accuracy. Ngram-bow is a bag-

of-words model built on mixture of ngram features.

GloVe-bow averages word embedding with correction

to frequency (Arora et al., 2017). BiLSTM is the Dis-

Sent sentence encoder model. BERT is finetuned on all

of the DisSent tasks.

conceptually deepest relation, is also systemati-

cally the hardest for our model.) The larger the set

of discourse markers, the more difficult the task

becomes, and we therefore see lower test accu-

racy despite larger dataset size. We conjecture that

as we increase the number of discourse markers,

we also increase the ambiguity between them (se-

mantic overlap in discourse markers’ meanings),

which may further explain the drop in perfor-

mance. The training task performance for each

subset is shown in Table 5. We provide per-

discourse-marker performance in the Appendix.

Discourse Marker Set Varying the set of dis-

course markers doesn’t seem to help or hinder

the model’s performance on generalization tasks.

Top generalization performance on the three sets

of discourse markers is shown in Table 6. Simi-

lar generalization performance was achieved when

training on 5, 8, and all 15 discourse markers.

The similarity in generalization performance

across discourse sets shows that the top markers

capture most relationships in the training data.

Marked vs Unmarked Prediction Task In de-

termining whether a discourse relation is marked

or unmarked, DisSent models outperform In-

ferSent and SkipThought (as well as previous ap-

proaches on this task) by a noticeable margin.

Much to our surprise, fine-tuned BERT models are

not able to perform better than the BiLSTM sen-

tence encoder model. We leave explorations of

this phenomenon to future work. We report the

results in Table 7 under column MVU.

Implicit Discourse Relation Task Not surpris-

ingly, DisSent task provided the much needed dis-

tant supervision to classify the types of implicit
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Model MR CR SUBJ MPQA SST TREC SICK-R SICK-E MRPC

Self-supervised training methods

DisSent Books 5† 80.2 85.4 93.2 90.2 82.8 91.2 0.845 83.5 76.1

DisSent Books 8† 79.8 85.0 93.4 90.5 83.9 93.0 0.854 83.8 76.1

DisSent Books ALL† 80.1 84.9 93.6 90.1 84.1 93.6 0.849 83.7 75.0
Disc BiGRU — — 88.6 — — 81.0 — — 71.6

Unsupervised training methods

FastSent 70.8 78.4 88.7 80.6 — 76.8 — — 72.2
FastSent + AE 71.8 76.7 88.8 81.5 — 80.4 — — 71.2
Skipthought 76.5 80.1 93.6 87.1 82.0 92.2 0.858 82.3 73.0

Skipthought-LN 79.4 83.1 93.7 89.3 82.9 88.4 0.858 79.5 —

Supervised training methods

DictRep (bow) 76.7 78.7 90.7 87.2 — 81.0 — — —
InferSent 81.1 86.3 92.4 90.2 84.6 88.2 0.884 86.1 76.2

Multi-task training methods

LSMTL 82.5 87.7 94.0 90.9 83.2 93.0 0.888 87.8 78.6

Table 6: SentEval Task Results Using Fixed Sentence Encoder. We report the best results for generalization

tasks. † indicates models that we trained. FastSent, FastSent + AE (Hill et al., 2016), SkipThought (Kiros et al.,

2015), SkipThought-LN, DictRep (bow), and InferSent are reported from Conneau et al. (2017). LSMTL is re-

ported from Subramanian et al. (2018). Globally best results are shown in bold, best DisSent results are underlined.

discourse relations much better than InferSent and

SkipThought. DisSent outperforms word vector

models evaluated by Qin et al. (2017), and is only

3.3% lower than the complex state of the art model

that uses adversarial training designed specifically

for this task. When we fine-tune BERT models on

the DisSent corpora, we are able to outperform all

other models and achieve state-of-the-art result on

this task. We report the results in Table 7 under

column IMP.

SentEval Tasks Results of our models, and

comparison to other approaches, are shown in Ta-

ble 6. Despite being a much simpler task than

SkipThought and allowing for much more scalable

data collection than InferSent, DisSent performs

as well or better than these approaches on most

generalization tasks.

DisSent and InferSent do well on different sets

of tasks. In particular, DisSent outperforms In-

ferSent on TREC (question-type classification).

InferSent outperforms DisSent on the tasks most

similar to its training data, SICK-R and SICK-E.

These tasks, like SNLI, were crowdsourced, and

seeded with images from Flickr30k corpus (Young

et al., 2014).

Although DisSent is trained on a dataset derived

from the same corpus as SkipThought, DisSent

almost entirely dominates SkipThought’s perfor-

mance across all tasks. In particular, on the SICK

Model IMP MVU

Sentence Encoder Models

SkipThought (Kiros et al., 2015) 9.3 57.2
InferSent (Conneau et al., 2017) 39.3 84.5

Patterson and Kehler (2013) — 86.6

DisSent Books 5 40.7 86.5
DisSent Books 8 41.4 87.9

DisSent Books ALL 42.9 87.6

Fine-tuned Models

BERT 52.7 80.5
BERT + MNLI 53.7 80.7

BERT + SNLI + MNLI 51.3 79.8
BERT + DisSent Books 5 54.7 81.6
BERT + DisSent Books 8 52.4 80.6

BERT + DisSent Books ALL 53.2 81.8

Previous Single Task Models

Word Vectors (Qin et al., 2017) 36.9 74.8
Lin et al. (2009) + Brown Cluster 40.7 —
Adversarial Net (Qin et al., 2017) 46.2 —

Table 7: Discourse Generalization Tasks using

PDTB: We report test accuracy for sentence embed-

ding and state-of-the-art models.

dataset, DisSent and SkipThought perform simi-

larly on the relatedness task (SICK-R), but Dis-

Sent strongly outperforms SkipThought on the en-

tailment task (SICK-E). This discrepancy high-

lights an important difference between the two

models. Whereas both models are trained to, given

a particular sentence, identify words that appear

near that sentence in the corpus, DisSent focuses



4504

on learning specific kinds of relationships between

sentences – ones that humans tend to explicitly

mark. We find that reducing the model’s task to

only predicting a small set of discourse relations,

rather than trying to recover all words in the fol-

lowing sentence, results in better features for iden-

tifying entailment and contradiction without los-

ing cues to relatedness.

Overall, on the evaluation tasks we present, Dis-

Sent performs on par with previous state-of-the-

art models and offers advantages in data collection

and training speed.

7 Extraction Validation

We evaluate our extraction quality by compar-

ing the manually extracted and annotated sentence

pairs from Penn Discourse Treebank (PDTB) to

our automatic extraction of sentence pairs from the

source corpus Penn Treebank (PTB). On the ma-

jority of discourse markers, we can achieve a rela-

tively high extraction precision.

We apply our extraction pipeline on raw PTB

dataset because we want to see how well our

pipeline converts raw corpus into a dataset. De-

tails of our alignment procedure is described in

Appendix A.2. Overall, even though we cannot

construct the explicit discourse prediction section

of the PDTB dataset perfectly, training with im-

precise extraction has little impact on the sentence

encoder model’s overall performance.

We compute the extraction precision as the per-

centage of PTB extracted pairs that can be success-

fully aligned to PDTB. In Figure 2, we show that

extraction precision varies across discourse mark-

ers. Some markers have higher quality (e.g. be-

cause, so) and some lower quality (e.g. and, still).

We show in Figure 3 that we tend to have low

distances overall for the successfully aligned pairs.

That is, whenever our extraction pipeline yields a

match, the dependency parsing patterns do extract

high quality training pairs.

8 Discussion

Implicit and explicit discourse relations We

focus on explicit discourse relations for training

our embeddings. Another meaningful way to ex-

ploit discourse relations in training is by leverag-

ing implicit discourse signals. For instance, Jer-

nite et al. (2017) showed that predicting sentence

ordering could help to generate meaningful sen-

tence embeddings. But adjacent sentences can be
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Figure 2: Extraction error rates: proportion of un-

alignable extracted pairs per discourse marker.
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Figure 3: Extraction quality for aligned pairs: Dis-

tances from aligned extracted pairs to nearest gold pair.

related to one another in many different, compli-

cated ways. For example, sentences linked by con-

trastive markers, like but or however are likely ex-

pressing different or opposite ideas.

Identifying other features of natural text that

contain informative signals of discourse structure

and combining these with explicit discourse mark-

ers is an appealing direction for future research.

Multilingual generalization In principle, the

DisSent model and extraction methods would ap-

ply equally well to multilingual data with mini-

mal language-specific modifications. Within uni-

versal dependency grammar, discourse markers

across languages should correspond to structurally

similar dependency patterns. Beyond dependency

parsing and minimal marker-specific pattern de-

velopment (see Appendix A.1), our extraction

method is automatic, requiring no annotation of

the original dataset, and so any large dataset of raw

text in a language can be used.
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9 Conclusion

We present a discourse marker prediction task for

training and fine-tuning sentence embedding mod-

els. We train our model on this task and show that

the resulting embeddings lead to high performance

on a number of established tasks for sentence em-

beddings. We fine-tune larger models on this task

and achieve state-of-the-art on the PDTB implicit

discourse relation prediction.

A dataset for this task is easy to collect rela-

tive to other supervised tasks. It provides cheap

and noisy but strong training signals. Compared

to unsupervised methods that train on a full cor-

pus, our method yields more targeted and faster

training. Encouragingly, the model trained on

discourse marker prediction achieves comparable

generalization performance to other state of the art

models.
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Figure 4: Dependency patterns used for extraction for each discourse marker.

Dependency parsing allows us to design our ex-

traction method such that each S1 and S2 is in-

terpretable as a full sentence in isolation, and the

appropriate conceptual relation holds between the

pair. However, occasionally we get ungrammati-

cal sentences or the wrong pair of sentences for a

relation. This incorrect extraction can happen in

several ways. First, we might choose grammati-

cal but incorrect pairs. Rashmi et al. (2008) found

that 61% of discourse markers appear in the same

sentence (SS) with both S1 and S2, and another

30% link S2 to the immediate predecessor (IPS).

For the remaining examples (non-adjacent previ-

ous sentence NAPS - 9%, or following sentence

FS - less than 1%), our method incorrectly extracts

an IPS pair. Second, not all parses are correct (e.g.

“Himself close his eyes.” was extracted due to an

incorrect parse). Finally, even with correct parses,

some extracted sentences are nonsensical or un-

grammatical out of context due to implicit sub-

jects, unresolved pronouns, or marked embedded

clauses. Fortunately these errors were relatively

rare, and many could be avoided simply by enforc-

ing that the extracted sentences each have a main

verb and satisfy a minimum length. Overall this

method extracts high-quality sentence pairs with

appropriately labeled relations.

A.2 Procedures in Extraction Validation

We preprocess the PTB sentences by limiting the

vocabulary size to 10,000 and tokenizing numbers.

Then we run our extraction pipeline on the prepro-

cessed PTB. We apply the same preprocessing to

the PDTB sentences.

We refer to the gold sentence pair from the

PDTB as (G1, G2), and our extracted sentence pair

from the PTB as (S1, S2). We first obtain the min-

imum of S1-G1 distance and S2-G2 distance over

all gold pairs. If this distance is smaller than 0.7,

we consider the corresponding gold pair to be an

alignment for this extracted pair.

Given an aligned pair ((G1, G2), (S1, S2)), we

measure the extraction quality by computing the

average of normalized G1-S1 and G2-S2 distance.

We compute this distance for all pairs and all dis-

course markers.

We analyze our extraction quality in two steps:

align sentence pairs from the two datasets and then

calculate extraction quality on each aligned pair.

In the alignment step, for each extracted pair, we

calculate its distance to all pairs from PDTB using

the normalized Levenshtein distance:

d(s1, s2) =
Levenshtein(s1, s2)

max(len(s1), len(s2))
(3)

A.3 Implicit vs. Explicit Prediction Task

Setup

For each pair of connected sentences, whose re-

lation type has been labeled in PDTB, the dis-

course relation between them may have been ex-

plicitly marked (via a discourse relation word) or

not. We can pose the task of a binary classification

of whether the sentence pair appeared as explic-

itly or implicitly marked, given only the two sen-

tences and no additional information. We evaluate

DisSent and InferSent sentence embedding mod-

els and a word vector baseline on this trask.
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We follow Patterson and Kehler (2013)’s pre-

processing. The dataset contains 25 sections in to-

tal. We use sections 0 and 1 as the development

set, sections 23 and 24 for the test set, and we train

on the remaining sections 2-22.

This task is different from the setting in Pat-

terson and Kehler (2013). We do not allow the

classifier to access the underlying discourse rela-

tion type and we only provide the individual sen-

tence embeddings as input features. In contrast,

Patterson and Kehler (2013) used a variety of dis-

crete features provided by the PDTB dataset for

their classifier, including the hand-annotated rela-

tion types.

A.4 Classification Performance

To investigate the qualitative relations among our

largest set of discourse markers, the ALL marker

set, we build a confusion matrix of the test set clas-

sifications. Figure 5 reflects classification perfor-

mance for the model trained on the full dataset,

that we later show generalization results for. This

model is clearly influenced by frequency, such that

it tends to misclassify infrequent discourse mark-

ers as frequent ones. However, deviations from

the effect of frequency appear to be semantically

meaningful.

Classifications errors are much more common

for semantically similar discourse marker pairs

than would be expected from frequency alone.

The most common confusion is when the syn-

onymous marker although is mistakenly classi-

fied as but. The temporal relation markers before,

after and then, intuitively very similar discourse

markers, are rarely confused for anything but each

other. The fact that they are indeed confusable

may reflect the tendency of authors to mark tem-

poral relation primarily when it is ambiguous.

Figure 6 reflects a model trained on a balanced

subset of our training set. When the model can

no longer rely on base rates of discourse markers

to make judgments, overall accuracy drops from

68% to 47%. However inspecting the matrices

shows very similar confusability, suggesting that

training on unbalanced data does not greatly de-

crease sensitivity to non-frequency predictors.

To more quantitatively represent the connec-

tion between what the two models learn, we com-

pute the correlation between the balanced confu-

sions and the residuals of the unbalanced con-

fusions (when predicted linearly from log fre-

quency). These residuals account for 64% of

the variance in the balanced confusions (R2 =
0.6431, F (1, 223) = 401.8, p < .001). That is,

we come close to predicting the balanced confu-

sions from the unbalanced ones.

Figure 5: Confusion Matrix trained on the ALL

dataset extracted from BookCorpus. Each cell repre-

sents the proportion of instances of the actual discourse

marker misclassified as the classified discourse marker.

This proportion is log-transformed to highlight small

differences. Discourse markers are arranged in order

of frequency from left (least frequent) to right (most

frequent).

Figure 6: Balanced Classifier Confusion Matrix

trained on a balanced subset of the ALL dataset where

discourse markers are capped at 13,421 occurrences

each. Each cell represents the proportion of instances

of the actual discourse marker misclassified as the

classified discourse marker. This proportion is log-

transformed to highlight small differences. Discourse

markers are arranged in order of frequency from left

(least frequent) to right (most frequent).

A.5 Baseline performance on training task

As a reference point for training task performance

we present baseline performance. Note that a

model which simply chose the most common class

would perform with 21.79% accuracy on the ALL

task, 28.35% on the BOOKS 8 task, and 31.87%
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on the BOOKS 5 task. Using either unigram, bi-

gram and trigram bag of words or Arora et al.

(2017)’s baseline sentence representations as fea-

tures to a logistic regression results in much lower

performance than our DisSent classifier. Table

9 shows the precision and recall for the bag-of-

words model. Table 10 shows the precision and

recall for the Arora et al. (2017) embeddings.

All Books 8 Books 5
Marker Prec Rec Prec Rec Prec Rec

and 71.8 78.2 78.3 78.5 80.6 79.4
but 71.4 73.2 72.3 79.1 75.3 79.9

because 44.9 36.2 50.1 36.9 54.8 37.7
if 79.1 75.0 77.5 79.6 80.7 81.4

when 60.5 61.8 71.2 74.0 76.9 77.2
so 49.3 48.0 55.8 46.1 — —

though 48.0 29.7 61.0 38.8 — —
before 65.0 60.9 76.6 63.5 — —

as 68.0 76.5 — — — —
while 45.6 35.9 — — — —
after 55.5 41.9 — — — —

although 24.4 6.7 — — — —
still 42.0 20.9 — — — —
also 36.1 13.6 — — — —
then 30.9 11.7 — — — —

Avg 66.7 68.0 73.6 73.3 77.5 77.4

Accuracy 67.5 73.5 77.3

Table 8: DisSent model performance: Test recall /

precision for each discourse marker on the classifica-

tion task, weighted average precision and recall across

discourse markers, and overall accuracy.

A.6 Embedding dimensions of models

DisSent uses a BiLSTM encoder with 4096 hid-

den state dimensions. InferSent (Conneau et al.,

2017) uses 4096 embedding dimensions. Disc Bi-

GRU (Jernite et al., 2017) hidden state has 512 di-

mensions. FastSent and FastSent + AE (Hill et al.,

2016) have 500 dimensions. SkipThought (Kiros

et al., 2015) and SkipThought-LN (Conneau et al.,

2017) models trained on 600-dimension word em-

beddings and produced 2400-dimension sentence

embeddings. DictRep (bow) is from Conneau

et al. (2017). LSMTL (Subramanian et al., 2018)

uses 2048-dimension bi-directional GRU as en-

coder, and trained on 512 dimension word embed-

dings.

A.7 Limitations of evaluation

The generalization tasks that we (following Con-

neau et al. (2017)) use to compare models focus

on sentiment, entailment, and similarity. These are

narrow operational definitions of semantic mean-

All Books 8 Books 5
Marker Prec Rec Prec Rec Prec Rec

and 60.1 65.0 65.6 70.1 70.1 71.4
but 49.9 65.3 55.2 69.4 59.7 69.9

because 34.7 10.2 42.1 11.1 42.8 10.6
if 54.6 56.9 58.8 56.4 64.4 60.0

when 43.2 40.1 52.1 52.2 58.4 54.3
so 35.5 11.3 38.5 11.0 — —

though 40.6 20.8 56.2 25.2 — —
before 47.8 29.1 56.6 35.4 — —

as 51.9 63.1 — — — —
while 33.4 11.6 — — — —
after 41.0 17.6 — — — —

although 11.9 0.4 — — — —
still 34.7 2.5 — — — —
also 16.7 0.4 — — — —
then 36.2 2.1 — — — —

Average 40.2 40.3 46.2 44.5 53.3 50.7

Accuracy 51.8 58.1 63.3

Table 9: Ngram Bag-of-words baseline sentence em-

beddings performance on DisSent training task: test

recall / precision for each discourse marker on the clas-

sification task, and overall accuracy. Average metric

reports the weighted average of all classes.

ing. A model that generates meaningful sentence

embeddings should excel at these tasks. However,

success at these tasks does not necessarily imply

that a model has learned a deep semantic under-

standing of a sentence.

Sentiment classification, for example, in many

cases only requires the model to understand lo-

cal structures. Text similarity can be computed

with various textual distances (e.g., Levenshtein or

Jaro distance) on bag-of-words, without a compo-

sitional representation of the sentence. Thus, the

ability of our, and other, models to achieve high

performance on these metrics may reflect a com-

petent representation sentence meaning; but more

rigorous tests are needed to understand whether

these embeddings capture sentence meaning in

general.
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All Books 8 Books 5
Marker Prec Rec Prec Rec Prec Rec

and 46.9 59.4 52.9 63.6 58.0 64.3
but 38.1 57.9 43.5 62.3 48.9 62.4

because 24.1 0.5 20.2 0.3 27.7 0.47
if 41.8 37.1 46.2 37.9 50.5 38.2

when 36.8 25.8 45.6 40.0 58.3 41.3
so 37.0 2.5 39.5 2.9 — —

though 27.2 1.4 29.7 1.3 — —
before 42.0 10.0 48.8 11.8 — —

as 43.4 55.6 — — — —
while 29.1 3.4 — — — —
after 37.1 4.8 — — — —

although 0.0 0.0 — — — —
still 0.0 0.0 — — — —
also 0.0 0.0 — — — —
then 0.0 0.0 — — — —

Avg 50.1 51.1 57.5 56.4 63.0 62.2

Accuracy 41.8 47.3 52.5

Table 10: Corrected GloVe Bag-of-words sentence

embeddings performance on DisSent training task:

test recall / precision for each discourse marker on the

classification task, and overall accuracy. Average met-

ric reports the weighted average of all classes.


