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Abstract

Text infilling is defined as a task for filling
in the missing part of a sentence or para-
graph, which is suitable for many real-world
natural language generation scenarios. How-
ever, given a well-trained sequential genera-
tive model, generating missing symbols condi-
tioned on the context is challenging for exist-
ing greedy approximate inference algorithms.
In this paper, we propose an iterative inference
algorithm based on gradient search, which
is the first inference algorithm that can be
broadly applied to any neural sequence gener-
ative models for text infilling tasks. We com-
pare the proposed method with strong base-
lines on three text infilling tasks with various
mask ratios and different mask strategies. The
results show that our proposed method is ef-
fective and efficient for fill-in-the-blank tasks,
consistently outperforming all baselines.1

1 Introduction

Text infilling aims at filling in the missing part
of a sentence or paragraph by making use of
the past and future information around the miss-
ing part, which can be used in many real-world
natural language generation scenarios, for exam-
ple, fill-in-the-blank image captioning (Sun et al.,
2017), lexically constrained sentence generation
(Liu et al., 2018b), missing value reconstruc-
tion (e.g. for damaged or historical documents)
(Berglund et al., 2015), acrostic poetry generation
(Liu et al., 2018a), and text representation learning
(Devlin et al., 2018).

Text infilling is an under-explored challeng-
ing task in the field of text generation. Re-
cently, sequence generative models like sequence-
to-sequence (seq2seq) models (Sutskever et al.,

∗ Correspondence to Jiancheng Lv.
1Our code and data are available at

https://github.com/dayihengliu/
Text-Infilling-Gradient-Search

Input:			Hey,	how	about	going	for	a	few	beers	after	dinner	?	

Ground	Truth
You	know	that	is tempting but is really not good for	our	fitness	.

Seq2seq	+	Left-to-Right	Beam	Search
You	know	that	I like it very much , let’s for	our	fitness	.

Seq2seq	(backward)	 +	Right-to-Left	Beam	Search
You	know	that not going , it is really bad for	our	fitness	.

Figure 1: Our key observation on text infilling for Di-
alogue task. The inability of unidirectional BS to con-
sider both the future and past contexts leads models to
fill the blank with words that clash abruptly with the
context around the blanks (see red circles).

2014; Bahdanau et al., 2014; Gehring et al., 2017;
Vaswani et al., 2017) are widely used in text gen-
eration tasks, including neural machine translation
(Wu et al., 2016; Vaswani et al., 2017), image cap-
tioning (Anderson et al., 2017), abstractive sum-
marization (See et al., 2017), and dialogue gen-
eration (Mei et al., 2017). Unfortunately, given
a well-trained2 neural seq2seq model or uncon-
ditional neural language model (Mikolov et al.,
2010), it is a daunting task to directly apply it to
text infilling task. As shown in Figure 1, we ob-
serve that the infilled words should be conditioned
on past and future information around the miss-
ing part, which is contrary to the popular learning
paradigm, namely, each output symbol is condi-
tioned on all previous outputs during inference by
using unidirectional Beam Search (BS) (Och and
Ney, 2004).

To solve the issues above, one family of meth-
ods for text infilling is “trained to fill in blanks”
(Berglund et al., 2015; Fedus et al., 2018; Zhu
et al., 2019), which requires large amounts of data
in fill-in-the-blank format to train a new model
that takes the output template as a conditional in-

2Here “well-trained” means that ones focus on popular
model settings and data sets, and follow standard training pro-
tocols.

https://github.com/dayihengliu/Text-Infilling-Gradient-Search
https://github.com/dayihengliu/Text-Infilling-Gradient-Search
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put. Such methods are only used for uncondi-
tional text infilling tasks, whereas many text in-
filling tasks are conditional, e.g., conversation re-
ply with templates. Another kind of promising ap-
proach (Berglund et al., 2015; Wang et al., 2016;
Sun et al., 2017) is an inference algorithm that
can be directly applied to other generative models.
These inference algorithms are applied to Bidi-
rectional RNNs (BiRNNs) (Schuster and Paliwal,
1997; Baldi et al., 1999) which can model both
forward and backward dependencies. The latest
work is Bidirectional Beam Search (BiBS) (Sun
et al., 2017) which proposes an approximate infer-
ence algorithm in BiRNN for image caption infill-
ing. However, this method is based on some un-
realistic assumptions, such as that given a token,
its future sequence of words is independent of its
past sequence of words. We experimentally find
that these assumptions often generate non-smooth
or unreal complete sentences. Moreover, these in-
ference algorithms can be only used to decoders
with bidirectional structures, whereas almost all
sequence generative models use a unidirectional
decoder. As a result, it is highly expected to de-
velop an inference algorithm that could be applied
to the unidirectional decoder.

In this paper, we study the general inference al-
gorithm for text infilling to answer the question:

• Given a well-trained neural sequence gener-
ative model, is there any inference algorithm
that can effectively fill in the blanks in the
output sequence?

To investigate such a possibility, we propose a
dramatically different inference approach called
Text Infilling with Gradient Search (TIGS), in
which we search for infilled words based on gradi-
ent information to fill in the blanks. To the best of
our knowledge, this could be the first inference
algorithm that does not require any modification
or training of the model and can be broadly used
in any sequence generative model to solve the fill-
in-the-blank tasks as verified in our experiments.

To be specific, we treat the blanks to be
filled as parameterized vectors during inference.
More concretely, we first randomly or heuristi-
cally project each blank to a valid token and ini-
tialize its parameterized vector with the word em-
bedding of the valid token. The goal is seeking the
words to be infilled by minimizing the negative
log-likelihood (NLL) of the complete sequence.

Then the algorithm alternately performs optimiza-
tion step (O-step) and projection step (P-step) un-
til convergence. In O-step, we fix all other pa-
rameters of the model and only optimize the blank
parameterized vectors by gradients. In P-step,
heuristics like local search and projected gradient
are used to project the blank parameterized vectors
to valid tokens (i.e., discretization).

The contribution and novelty of this work could
be summarized as below:

• We propose an iterative inference algorithm
based on gradient search, which could be the
first inference algorithm that can be broadly
applied to any neural sequence generative
models for text infilling tasks.

• Extensive experimental comparisons show
the effectiveness and efficiency of the pro-
posed method on three different text infill-
ing tasks, compared with five state-of-the-art
methods.

2 Related Works

There are some effective solutions to the text in-
filling task: a) training a model specifically for
text infilling tasks (Berglund et al., 2015; Fedus
et al., 2018; Zhu et al., 2019); b) using standard
sequence generative model with modified infer-
ence algorithm (Berglund et al., 2015; Wang et al.,
2016; Sun et al., 2017).

As one typical work of the first category, NADE
(Berglund et al., 2015) is proposed to train a spe-
cific BiRNNs for filling in blanks, which concate-
nates an auxiliary vector to input vectors for in-
dicating a missing input during training and in-
ference. Fedus et al. (2018) propose MaskGAN
which 1) uses some specific “missing” tokens to
indicate the blanks and takes the whole sequence
with blanks (called template) as the input of en-
coder, and 2) uses an RNN as a decoder to generate
the whole sentence after filling in the blanks. Sim-
ilarly, Zhu et al. (2019) use self-attention model
(Vaswani et al., 2017), which takes the template as
the input for unconditional text infilling task. One
major limitation of these works is that they require
large amounts of data in fill-in-the-blank format
and need to train a specific model. Besides, they
are only used for unconditional text infilling tasks.
Different from them, our new inference algorithm
does not require any modification or training of the
model, which can be broadly applied to any neural
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seq2seq models for both conditional and uncondi-
tional text infilling tasks.

As with the second category, some inference al-
gorithms based on BiRNNs have been proposed
for fill-in-the-blank tasks thanks to their ability
to model both forward and backward dependen-
cies. For example, Berglund et al. (2015) pro-
pose Generative Stochastic Networks (GSN) to
reconstruct the blanks of sequential data. The
idea is to first randomly initialize the symbols in
the blanks and then resample an output yt from
PBiRNN (yt | {yd}d6=t, x) one at a time until con-
vergence. More recently, Sun et al. (2017) propose
the Bidirectional Beam Search (BiBS) inference
algorithm of BiRNNs for fill-in-the-blank image
captioning task. However, this method is based
on some strong assumptions, which may be vio-
lated in practice. As shown in our experiments,
we provide empirical analysis on cases where this
approach fails. Moreover, GSN and BiBS can be
only applied to decoders with bidirectional struc-
tures, while almost all sequence generative models
use a unidirectional decoder. In contrast, our pro-
posed inference method decouples from these as-
sumptions and can be applied to the unidirectional
decoder.

3 Preliminary

Since our method utilizes gradient information, it
could smoothly cooperate with other architectures,
such as models proposed in (Vaswani et al., 2017;
Gehring et al., 2017). Considering the popularity
of RNNs, and the related work is based on RNN
model, we use RNN-based models as a showcase
in this paper.

3.1 RNN-based Seq2Seq Model

We firstly introduce the notations and briefly de-
scribe the standard RNN-based seq2seq model.
Let x = {x1,x2, ...,xn} denotes one-hot vector
representations of the conditional input sequence,
y = {y1, y2, ..., ym} denotes scalar indices of the
corresponding target sequence, and V denotes the
vocabulary. n and m represent the length of the
input sequence and the output sequence, respec-
tively.

The seq2seq model is composed of an encoder
and a decoder. For the encoder part, each xt will
be firstly mapped into its corresponding word em-
bedding xemb

t . Then {xemb
t } are input to a bi-

directional or unidirectional long short-term mem-

ory (LSTM) (Hochreiter and Schmidhuber, 1997)
RNN to get a sequence of hidden states {henc

t }.
For the decoder, at time t, similarly yt is first

mapped to yemb
t . Then a context vector ct is calcu-

lated with attention mechanism (Bahdanau et al.,
2014; Luong et al., 2015) ct =

∑n
i=1 atih

enc
i ,

which contains useful latent information of the in-
put sequence. Here, at is an attention distribu-
tion vector to decide which part to focus on. The
context vector ct and the embedding yemb

t are fed
as input to a unidirectional RNN language model
(LM), which will output a probability distribution
of the next word P (yt+1|y1:t,x), where y1:t refers
to {y1, ..., yt}.

During training, the negative log-likelihood
(NLL) of the target sequence is minimized us-
ing standard maximum-likelihood (MLE) training
with stochastic gradient descent (SGD), where the
NLL is calculated as follows:

− logP (y|x) = −
m∑
t=1

logP (yt|y1:t−1,x). (1)

During inference, the decoder needs to find the
most likely output sequence y∗ by giving the input
x:

y∗ = argmax
y

P (y|x). (2)

Since the number of possible sequences grows
as |V|m (|V| is the size of vocabulary), exact infer-
ence is NP-hard and approximate inference algo-
rithms like left-to-right greedy decoding or beam
search (BS) (Och and Ney, 2004) are commonly
used.

3.2 Problem Definition
In this paper, instead of setting some restrictions
such as limiting the number of blanks or restricting
the position of the blanks in previous work (Sun
et al., 2017), we consider a more general case of
text infilling task where the number and location
of blanks are arbitrary.

Let B be a placeholder for a blank, B be the
set that records all the blanks’ position index,
and yB be a target sequence where portions of
text body are missing as indicated by B. For in-
stance, if a target sequence has two blanks at the
position i and j, then B = {i, j} and yB =
{y1, .., yi−1, B, yi+1, ..., yj−1, B, yj+1, ..., ym}.

Given an input sequence x and a target se-
quence yB containing blanks indicated by B, we
aim at filling in the blanks of yB. This procedure
needs to consider the global structure of sentences
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I like cake , It’s sweetI like , It’s sweet𝒚𝔹:

FNN + Softmax

Output

I like the	 , It’s sweet

Decoder

Word
embeddings

ℒ%&&(𝑥, 𝑦∗)

(a)	Initialize 𝑦- and	get	NLL	loss

Word embedding
space

Parameterized
vector

Update	by	
Gradient 𝛻/01234ℒ(𝑥, 𝑦∗)

(b)	O-step

Parameterized
vector

Cake
(one-hot)

Project

(c)	P-step

A	fill-in-the-blank	sample Inference	result

Initialize 𝑦- with	left-to-right	greedy

NLL	Loss

Figure 2: Overall framework.

and provide meaningful details under the condi-
tion x.

4 Methodology

In this section, we present our inference method
in detail. The overall framework is shown in Fig-
ure 2. Given a well-trained seq2seq model and a
pair of text infilling data (x, yB), the method aims
at finding an infilled word set ŷ = {ŷ1, ..., ŷ|B|}
to minimize the NLL of the complete sentence y∗

via:
ŷ = argmin

ŷj∈V
LNLL(x,y

∗), (3)

where y∗ denotes the complete sentence after fill-
ing the blanks of yB with ŷ, |B| denotes the num-
ber of blanks. Since the number of possible in-
filled word set is |V||B|, naı̈vely searching in this
space is NP-hard.

Our key idea is to utilize the gradient infor-
mation to narrow the range of search during in-
ference. This idea is similar to the “white-box”
adversarial attacks (Goodfellow et al., 2014b;
Szegedy et al., 2013; He and Glass, 2018). How-
ever, the adversarial attack aims to slightly modify
the inputs in order to mislead the model to make
wrong predictions, while our goal is to search for
the reasonable words that should be filled into the
blanks.

Unlike the continuous input space (e.g., im-
ages) in other tasks, applying gradient search di-
rectly to the input would make it invalid (i.e., no
longer a one-hot vector) for text infilling tasks.
More specifically, we firstly treat the blanks to be
filled as parameterized word embedding vectors

ŷemb = {ŷemb
1 , ..., ŷemb

|B| }. Then, we fix the pa-
rameters of the well-trained model and only opti-
mize these parameterized vectors in the continu-
ous space, where the gradient information can be
used to minimize the NLL loss LNLL(x,y

∗). Fi-
nally, the ŷemb is discretized into valid words ŷ
by measuring the distance between the ŷemb and
the word embeddings in Wemb. Here Wemb de-
notes the word embedding matrix in the decoder
of the well-trained seq2seq model, and each col-
umn of Wemb represents the word embedding of
one word in the vocabulary.

As every word in the set ŷ is dependent on each
other, the simultaneous discretization of all pa-
rameterized word embeddings in ŷemb into valid
words at the same time usually make the complete
sentence y∗ non-smooth. As a concrete example,
when infilling the two blanks in “Amy likes eat-
ing , so she goes to snack bars very often.”,
the ŷemb may be close to the word embeddings
of {“ice”, “cream”} and {“fried”, “chips”}. How-
ever, if one discretizes the two blanks simultane-
ously, one might get answers like {“ice”, “chips”}
or {“fried”, “cream”}. Therefore, we adopt an it-
erative algorithm which is similar to Gibbs sam-
pling. At each inference step, we focus on one
single infilled word ŷj for j-th blank and update it
while keeping other words in the infilled word set
ŷ fixed. For the unknown blank length tasks (each
blank may contain an arbitrary unknown number
of tokens), we can apply the TIGS as a black box
inference algorithm over a range of blank lengths
and then rank these solutions.

At the beginning, we initialize the infilled word
set ŷ with some valid words randomly or heuris-
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tically (from a left-to-right beam search). Then
we perform optimization step (O-step) and pro-
jection step (P-step) alternately to update each in-
filled word in the infilled word set ŷ until conver-
gence or reach the maximum number of rounds T .

In O-step, we aim to optimize the ŷemb
j in con-

tinuous space using gradient information with re-
spect to LNLL(x,y

∗). Firstly, we get the com-
plete sentence y∗ by filling ŷ in the blanks of yB

and obtain the LNLL(x,y
∗) of y∗ after putting x

into the encoder and y∗ into the decoder of the
well-trained seq2seq model. Then we treat the
vector ŷemb

j as parameterized vector, and fix all
other parameters of the seq2seq model and only
optimize the parameterized vector ŷemb

j with gra-
dient information to minimize LNLL(x,y

∗).
However, directly optimizing LNLL(x,y

∗)
may lead to the final ŷemb

j not like a feasible
word embedding in Wemb, and its nearest neigh-
bor word embedding in Wemb could be far away
from it. So we add anL2 penalty to make the ŷemb

j

get close to Wemb:

L(x,y∗) = LNLL(x,y
∗)+λ·

∑
j

∥∥∥ŷemb
j

∥∥∥
2
, (4)

where λ is a hyperparameter. We also tried to
add an additional regularization term that directly
narrow the distance between ŷemb

j and its nearest
word embedding in Wemb, which is used in Cheng
et al. (2018) for seq2seq adversarial attacks, but no
obvious improvement was found.

Given the loss L(x,y∗), ŷemb
j is updated with

∇ŷemb
j
L(x,y∗) by one-step gradient descent:

ŷemb
j = ŷemb

j − α · ∇ŷemb
j
LNLL(x,y

∗). (5)

Instead of updating ŷemb
j by naı̈vely SGD al-

gorithm, we experimentally find that Nesterov
(Sutskever et al., 2013) optimizer performed bet-
ter than other optimizers to update ŷemb

j . As
discussed in Dong et al. (2017b), this momen-
tum based optimizer can stabilize update direc-
tions and escape from poor local maxima during
the iterations for adversarial attack.

In P-step, we aim to project the ŷemb
j into a

valid infilled word ŷj . A naı̈ve way is to find the
word whose word embedding in Wemb is near-
est to ŷemb

j based on the distance metric function
dist(·)3. However, due to its high dimensionality,

3Through experiments we find that using Euclidean dis-
tance as metric function dist(·) perform slightly better than
Cosine distance for our method.

the obtaining word embedding may be far from
satisfactory. Instead, similar to the idea of beam
search, we first obtain a set S containing K can-
didate words whose word embedding is K-nearest
to ŷemb

j :

S = nearest-K
yk∈V

dist(ŷemb
j ,yemb

k ), (6)

and then we select one word with lowest NLL
from these K words in S as ŷj . Our experiments
suggest that just setting the size of K to 1% of the
vocabulary size works well.

The whole algorithm is further summarized in
1. Since our method is designed for the unidirec-
tional decoder, the time complexity is expected to
be slightly higher than that of the inference algo-
rithm designed for the bidirectional decoder. In
brief, our approach requires mKT |B| RNN steps,
while the GSN (Berglund et al., 2015) requires
mT |B| BiRNN steps, and the BiBS (Sun et al.,
2017) requires 2mKT RNN steps. Fortunately,
our inference algorithm can be easily optimized
with GPUs.

Algorithm 1 TIGS algorithm
Input: a trained seq2seq model, a pair of text infilling data
(x, yB), output length m.
Output: a complete output sentence y∗.
Initialize the infilled word set ŷ and initialize y∗ by infill-
ing yB with ŷ.
Initialize ŷemb by looking up the word embedding matrix
Wemb.
for t = 1, 2, . . . , T do

for j = 1, 2, . . . , |B| do
O-step:
Update ŷemb

j with gradient∇ŷemb
j
L(x,y∗)

P-step:
Set S = nearest-K

yk∈V
dist(ŷemb

j ,yemb
k )

Set ŷj = argmin
ŷj∈S

LNLL(x,y
∗)

end for
Update y∗ with ŷj
if convergence then

break
end if

end for
return y∗

5 Experiments

5.1 Datasets
In the experiments, we evaluate the proposed
method on three text infilling tasks with three
widely used publicly available corpora.

The first task is conversation reply with a tem-
plate (denoted as Dialog) which is conducted on
the DailyDialog (Li et al., 2017) dataset. We use
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Input:			What	is	the	weather	like	today	?	

Ground	Truth
It	stops	snowing	,	but	there's	a	bit	wind	.

Mask strategy:	Random Mask	ratio:	75%
__	__	snowing	__	__	__	__	__	wind	.	

Mask strategy:	Random Mask	ratio:	50%
It	__	snowing	__	but	__	__	bit	__	.

Mask strategy:	Middle Mask	ratio:	25%
It	stops	snowing	,	__	__	a	bit	wind	.

Figure 3: Some testing samples of conversation reply
with templates task with different mask strategies and
ratios.

its single-turn data, which contains 82,792 conver-
sation pairs. The query sentence is taken as en-
coder input x, and the reply sentence is taken as
y.

The second task is Chinese acrostic poetry
generation (denoted as Poetry). Here we use a
publicly available Chinese poetry dataset4 which
contains 232,670 Chinese four-line poems. For
each poem, the first two lines are used as encoder
input x, and the last two lines are y.

The third task is infilling product reviews (de-
noted as APRC). The Amazon Product Reviews
Corpus (APRC) (Dong et al., 2017a), which is
built upon Amazon product data (McAuley et al.,
2015) and contains 347,061 reviews, is used in this
task. Unlike the first two tasks, this task is an un-
conditional text infilling task (without conditional
input x). We use each product review in Dong
et al. (2017a) as y.

For each task, we take 5,000 samples in the test
set to construct the data with blanks (yB) for test-
ing, we create a variety of test samples by mask-
ing out text y with varying missing ratios and
two mask strategies. More specifically, the first
mask strategy is called middle which is followed
as the setting in Sun et al. (2017), namely, remov-
ing r = 25%, 50%, or 75% of the words from
the middle of y for each data. The second mask
strategy is called random, namely, randomly re-
moving r = 25%, 50%, or 75% of the words in
y for each data. To sum up, we have three test
tasks, and each task has six types of test sets (two
mask strategies and three mask ratios). Each test
set contains 5,000 test samples. We show some
data examples in Figure 3.

4https://github.com/chinese-poetry/
chinese-poetry

5.2 Baselines

We compare our approach TIGS with several
strong baseline approaches:

Seq2Seq-f: it runs beam search (BS) with beam
width K on a well-trained seq2seq model (for-
ward) to fill the blanks from left to right.

Seq2Seq-b: it runs BS with beam width K on a
well-trained seq2seq model (backward) to fill the
blanks from right to left.

Seq2Seq-f+b: it fills the blanks by both
Seq2Seq-f and Seq2Seq-b, and then selects the
output with a maximum of the probabilities as-
signed by the seq2seq models. This method is
used in Wang et al. (2016).

BiRNN-GSN: it runs GSN (Berglund et al.,
2015) on a well-trained seq2seq model with
BiRNN as the decoder to fill the blanks.

BiRNN-BiBS: it runs bidirectional beam search
(BiBS) (Sun et al., 2017) on a well-trained seq2seq
model with BiRNN as the decoder to fill the
blanks. The method has achieve the state-of-the-
art results on fill-in-the-blank image captioning
task in Sun et al. (2017).

Except for BiRNN-GSN and BiRNN-BiBS, all
the above baselines and our method perform in-
ference on the same well-trained seq2seq model.
BiRNN-GSN and BiRNN-BiBS perform infer-
ence on a well-trained seq2seq model in which
the decoder is BiRNN. These models are trained
on the complete sentence dataset with standard
maximum-likelihood. Moreover, the sentences
with blanks are only used in the inference stage.
For fari comparison, BiRNN-BiBS, BiRNN-GSN,
and the proposed method use the same initializa-
tion strategy (left-to-right greedy). The maximum
number of iterations T is set to 50 to ensure that all
the algorithms can achieve their best performance.

In addition to the above inference based ap-
proaches, we also compare two model-based ap-
proaches: Mask-Seq2Seq and Mask-Self-attn
(Fedus et al., 2018; Zhu et al., 2019). These base-
lines take the output template as an additional in-
put and are trained on the data in fill-in-the-blank
format. We use LSTM RNNs for Mask-Seq2Seq,
and use the self-attention model (Vaswani et al.,
2017) for Mask-Self-attn (Zhu et al., 2019) which
is shown to have better performance than GAN-
based models (Goodfellow et al., 2014a) for text
infilling.

https://github.com/chinese-poetry/chinese-poetry
https://github.com/chinese-poetry/chinese-poetry
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Datasets Metrics Methods r=25% r=50% r=75%

Random Middle Random Middle Random Middle

Dialog

NLL

Seq2Seq-f 3.573 3.453 3.653 3.316 3.328 2.975
Seq2Seq-b 3.657 3.558 3.911 3.542 3.713 3.421
Seq2Seq-f+b 3.397 3.321 3.491 3.213 3.233 2.932
BiRNN-BiBS 3.248 3.279 3.268 3.294 3.245 3.217
BiRNN-GSN 3.239 3.270 3.219 3.199 3.086 2.938
Mask-Seq2Seq 3.406 3.368 3.434 3.347 3.279 3.177
Mask-Self-attn 3.567 3.524 3.694 3.466 3.509 3.205
TIGS (ours) 3.143 3.164 3.050 3.030 2.920 2.764

BLEU

Template 0.780 0.823 0.621 0.700 0.552 0.601
Seq2Seq-f 0.834 0.861 0.670 0.737 0.584 0.640
Seq2Seq-b 0.837 0.862 0.675 0.739 0.584 0.627
Seq2Seq-f+b 0.860 0.881 0.692 0.751 0.594 0.643
BiRNN-BiBS 0.828 0.852 0.661 0.725 0.575 0.626
BiRNN-GSN 0.894 0.892 0.726 0.752 0.600 0.643
Mask-Seq2Seq 0.867 0.887 0.719 0.769 0.614 0.662
Mask-Self-attn 0.858 0.864 0.719 0.743 0.623 0.643
TIGS (ours) 0.895 0.894 0.724 0.754 0.596 0.644

Poetry

NLL

Seq2Seq-f 4.107 4.022 3.901 3.642 3.430 3.294
Seq2Seq-b 4.180 4.124 4.051 3.837 3.638 3.511
Seq2Seq-f+b 4.021 3.994 3.825 3.630 3.390 3.275
BiRNN-BiBS 3.939 3.966 3.735 3.701 3.476 3.430
BiRNN-GSN 3.953 3.976 3.739 3.652 3.405 3.296
Mask-Seq2Seq 4.103 4.071 3.996 3.886 3.738 3.637
Mask-Self-attn 4.052 4.028 3.911 3.810 3.666 3.548
TIGS (ours) 3.860 3.912 3.601 3.567 3.268 3.181

BLEU

Template 0.727 0.815 0.581 0.687 0.508 0.559
Seq2Seq-f 0.779 0.842 0.629 0.704 0.536 0.576
Seq2Seq-b 0.774 0.835 0.623 0.702 0.534 0.576
Seq2Seq-f+b 0.789 0.844 0.635 0.705 0.538 0.577
BiRNN-BiBS 0.776 0.836 0.625 0.702 0.533 0.575
BiRNN-GSN 0.802 0.848 0.648 0.707 0.541 0.579
Mask-Seq2Seq 0.785 0.843 0.635 0.705 0.537 0.577
Mask-Self-attn 0.790 0.845 0.640 0.706 0.539 0.579
TIGS (ours) 0.805 0.850 0.650 0.707 0.542 0.579

APRC

NLL

Seq2Seq-f 3.554 3.129 3.687 2.650 3.068 2.122
Seq2Seq-b 3.694 3.215 4.039 2.826 3.494 2.349
Seq2Seq-f+b 3.354 3.002 3.515 2.553 2.962 2.045
BiRNN-BiBS 2.999 3.001 2.943 2.759 2.733 2.456
BiRNN-GSN 2.969 2.967 2.907 2.515 2.628 2.012
Mask-Seq2Seq 3.080 2.983 2.951 2.567 2.472 2.088
Mask-Self-attn 3.002 2.946 2.847 2.551 2.448 2.085
TIGS (ours) 2.831 2.857 2.722 2.394 2.451 1.913

BLEU

Template 0.503 0.692 0.127 0.432 0.009 0.182
Seq2Seq-f 0.781 0.897 0.623 0.881 0.682 0.879
Seq2Seq-b 0.779 0.896 0.616 0.872 0.683 0.864
Seq2Seq-f+b 0.812 0.905 0.658 0.887 0.703 0.884
BiRNN-BiBS 0.867 0.896 0.715 0.869 0.740 0.856
BiRNN-GSN 0.879 0.904 0.751 0.884 0.736 0.882
Mask-Seq2Seq 0.860 0.900 0.750 0.856 0.754 0.835
Mask-Self-attn 0.878 0.914 0.778 0.882 0.778 0.870
TIGS (ours) 0.883 0.911 0.774 0.889 0.769 0.878

Table 1: BLEU and NLL results.

5.3 Metrics

Following Sun et al. (2017), we compare methods
on standard sentence-level metric BLEU scores
(4-gram) (Papineni et al., 2002) which considers
the correspondence between the ground truth and
the complete sentences. However, such a metric
also has some deficiencies in text infilling tasks.
For example, given two complete sentences with
only one word different, the sentence level statis-
tics of them may be quite similar, whereas a hu-
man can clearly tell which one is most natural.
Moreover, given a template, there may be several
reasonable ways to fill in the blanks. For example,
given a template, “i this book, highly recom-

mend it”, it is reasonable to fill the word “love” or
“like” in the blank. However, since there is only
one ground truth, the BLEU scores of these two
complete sentences are quite different. We find
that this issue is more severe for the unconditional
text filling task which has fewer restrictions, lead-
ing to more ways of filling in the blanks.

Therefore, for the unconditional text filling task
(APRC), instead of calculating the BLEU score
with only the ground truth as the reference, we
also follow Yu et al. (2017) and use 10,000 sen-
tences which are randomly sampled from the test
set as references to calculate BLEU scores to eval-
uate the fluency of the complete sentences.
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Besides BLEU scores, we conduct a model-
based evaluation. We train a conditional LM for
each task (unconditional LM for APRC task) and
use its NLL to evaluate the quality of the complete
sentence y∗given the input x.

5.4 Results

The BLEU (the higher the better) and NLL (the
lower the better) results are shown in Table 1.
Generally, we find that bidirectional methods
(BiRNN-BiBS, BiRNN-GSN, and Seq2Seq-f+b)
outperform unidirectional ones (Seq2Seq-f and
Seq2Seq-b) in most cases. The model-based meth-
ods (Mask-Seq2Seq and Mask-Self-attn) perform
well on unconditional text infilling task (APRC),
but slightly poorly on conditional text infilling
tasks (Dialog and Poetry). In line with the evalua-
tion results in Zhu et al. (2019), the Mask-Self-attn
performs consistently better than Mask-Seq2Seq.
It has also achieved the highest BLEU score in
some cases of unconditional text infilling tasks.
However, in most cases of conditional text infilling
tasks, the proposed method performs better than
Mask-Self-attn.

Since the goal of the proposed method TIGS is
to find the complete sentence with minimal NLL
by utilizing gradient information. As expected, it
achieves the lowest NLL in all cases of all tasks.
Also, the BLEU scores of TIGS is highest in
most cases of conditional text infilling tasks, while
BiRNN-GSN and BiRNN-BiBS provide compara-
ble performance. Although TIGS is used in RNN-
based seq2seq model, it still achieves very com-
petitive BLEU results on unconditional text infill-
ing task compare with Mask-Self-attn.

Methods Dialog Poetry APRC
BiRNN-BiBS 1.524 1.478 1.558
BiRNN-GSN 2.979 2.675 2.261
Mask-Self-attn 2.270 2.727 3.042
TIGS 3.226 3.120 3.137

Table 2: Human evaluation resutls

5.5 Human Evaluation

We also conduct the human evaluation to further
compare TIGS, BiRNN-BiBS, BiRNN-GSN, and
Mask-Self-attn. Following the setting in Zhu et al.
(2019), we collect generations of each of the four
methods on 50 randomly-selected test instances.
Then we launch a crowd-sourcing online study,
asking 10 evaluators to rank the generations. The

Template really	__	this	__	__	__	believable	 plot	 .
Ground Truth really	enjoyed this	futuristic book . believable	plot	.	

Seq2seq-f really	enjoyed this	book . the believable	plot	.
Seq2seq-b really	with	this	development and a	believable	plot	 .

Mask-Seq2Seq really	enjoyed this	fast paced and believable	plot	
Mask-Self-attn really	enjoyed this	book . very believable	plot	.

BiRNN-BiBS really	enjoyed this	story and a believable	plot	 .
BiRNN-GSN really	enjoyed this	book and a believable	plot	 .

TIGS really	enjoyed this	book . very believable	plot	.

Input (Query) can	you	study	 with	 the	radio	on	?	
Template __	,	__	listen	 __	__	music	.	

Ground Truth no ,	 I listen	to background music	.	
Seq2seq-f i'd ,	I'm listen	to the music	.
Seq2seq-b music ,	can listen	to the music	.

Mask-Seq2Seq yes ,	they listen	to the music	.
Mask-Self-attn yes ,	it's a lot of music	.

BiRNN-BiBS I ,	to listen	to the music	.	
BiRNN-GSN yes ,	I'll listen	to the music	.

TIGS yes ,	 I listen	to classical music	.

Template so	__	better	__	the	__	one	.	__	__	.	__	now	 i __	
<num>	more	__	__	__	__	submit	 .	

Ground Truth so	much better	 than the	last one	.	really good .	and
now	i need <num>	more	words	before	i can	submit	 .	

Seq2seq-f so	far better	 than the	first one	.	ca	n't .	wait now	i
have <num>	more	books	to	read	. submit	.	

Seq2seq-b so	getting better	 for the	next one	.	it	down .	 . now	i
write <num>	more	words	 so	i can	submit	.	

Mask-Seq2Seq so	much better	 than the	first one	.	loved	it	.	and now	
i have <num>	more	words	to	submit	this	submit	 .	

Mask-Self-attn so	much better	 than the	first one	.	loved	it	.	now	
now i need <num>	more	words	to	describe	 and
submit	.

BiRNN-BiBS so	much better	 than the	first one	.	loved	it	.	and now	
i have <num>	more	to	read	.	i submit	.

BiRNN-GSN so	much better	 than the	first one	.	i cried	 .	so now	i
have <num>	more	words	to	go	to	submit	.	

TIGS so	much better	 than the	first one	.	highly	
recommend .	but now	i need <num>	more	words	to	
go	to submit	.

Template love	__	book	and	__	__	club	series

Ground Truth love	this book	and	the	camel	club	series	

Seq2seq-f love	love book	and	ca	n't club	series

Seq2seq-b love	next book	and	's	murder	 club	series

Mask-Seq2Seq love	this book	and	the	murder	 club	series

Mask-Self-attn love	this book	and	the	book	club	series

BiRNN-BiBS love	this book	and	the	book club	series

BiRNN-GSN love	this book	and	all	the	club	series

TIGS love	this book	and	the	motorcycle	 club	series

Figure 4: Example outputs of different methods on
APRC task.

method with the best generation receives a score
of 4, and the other three methods receive scores of
3, 2, and 1 according to the rank, respectively. The
results are shown in Table 2. We can see that TIGS
consistently outperforms all baselines.

5.6 Samples and Analysis
Figure 4 and 5 show some qualitative examples
of APRC and Dialog tasks. Because the inabil-
ity of Seq2Seq-f and Seq2Seq-b to reason about
the past and future simultaneously. We can see
that Seq2Seq-f and Seq2Seq-b usually generate
sentences that do not satisfy grammatical rules
and are not fluent. Seq2Seq-f struggle to reason
about word transitions on the forward side of the
blank, so the words filled in by Seq2Seq-f usu-
ally abruptly clash with existing words behind the
blank. Similarly, the words filled in by Seq2Seq-b
usually abruptly clash with existing words before
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Input (Query) pretty	good	,	thanks	.	i'm going	to	see	my	uncle	.

Template __	__	then	__	and	keep	__	touch	 .	

Ground Truth good	bye	then	 , and	keep	in touch	 .

Seq2seq-f nice	to	then	 . and	keep	your touch	.

Seq2seq-b minutes ,	 then	go and	keep	in touch	 .

Mask-Seq2Seq ok	,	then	go then keep	in touch	 .

Mask-Self-attn then	,	then	keep and	keep	in touch	 .

BiRNN-BiBS you	<UNK>	 then	<UNK>	and	keep	it touch	.

BiRNN-GSN ok	,	then	go and	keep	in touch	 .

TIGS alright	,	then	 . and	keep	in touch	.

Input (Query) don	’	t	do	that	 again	.	you	are	riding	the	tiger	.

Template no	problem	 __	__	can	__	with	 __	__	.	

Ground Truth no	problem	 .	i can	deal with	it	well	.

Seq2seq-f no	problem	 .	i can	’with	 my	boss .

Seq2seq-b no	problem think	i can	up with	trouble	 <UNK> .

Mask-Seq2Seq no	problem .	you can	stay with me	down .	

Mask-Self-attn no	problem	 .	i can	do it that	. .

BiRNN-BiBS no	problem	 .	i can	just with	the	<UNK> .

BiRNN-GSN no	problem .	i can	help with my	baggage .

TIGS no	problem	 .	i can	deal with	my	bags	.	

Template really	__	this	__	__	__	believable	 plot	 .
Ground Truth really	enjoyed this	futuristic book . believable	plot	.	

Seq2seq-f really	enjoyed this	book . the believable	plot	.
Seq2seq-b really	with	this	development and a	believable	plot	 .

Mask-Seq2Seq really	enjoyed this	fast paced and believable	plot	
Mask-Self-attn really	enjoyed this	book . very believable	plot	.

BiRNN-BiBS really	enjoyed this	story and a believable	plot	 .
BiRNN-GSN really	enjoyed this	book and a believable	plot	 .

TIGS really	enjoyed this	book . very believable	plot	.

Input (Query) can	you	study	 with	 the	radio	on	?	
Template __	,	__	listen	 __	__	music	.	

Ground Truth no ,	 I listen	to background music	.	
Seq2seq-f i'd ,	I'm listen	to the music	.
Seq2seq-b music ,	can listen	to the music	.

Mask-Seq2Seq yes ,	they listen	to the music	.
Mask-Self-attn yes ,	it's a lot of music	.

BiRNN-BiBS I ,	to listen	to the music	.	
BiRNN-GSN yes ,	I'll listen	to the music	.

TIGS yes ,	 I listen	to classical music	.

Figure 5: Example outputs of different methods on
Daily task.

the blank.
BiRNN-BiBS makes assumption that

P (yt|y1:t−1,yt+1:m,x) = P−−→URNN(yt|y1:t−1,x) ·
P←−−URNN(yt|yt+1:m,x). This assumption may
cause some sentences generated by BiRNN-
BiBS are non-smooth or unreal. For example,
in the top instance, the BiRNN-BiBS gener-
ates a non-smooth sentence “i, to listen to the
music”. At the third time-step, because both
P−−→URNN(y3 =“to”|y4:m =“listen to the music”,x)
and P←−−URNN(y3 =“to”|y1:2 =“i,”,x) are relatively
large, resulting in this blank being filled with
an inappropriate word “to” by BiRNN-BiBS.
However, P (y3 =“to”|y1:2 =“i,”, y4:m =“listen
to the music”,x) should be lower. In addition, we
find that BiRNN-BiBS tends to use the unknown
token “<unk>” to fill the blanks compared to
other methods. The reason we analyze may be that
sometimes both P−−→URNN(yt=“<unk>”|y1:t−1,x)
and P←−−URNN(yt=“<unk>”|yt+1:m,x) would be
relatively large.

As for Mask-Seq2Seq and Mask-Self-attn, al-

though they directly take the template yB as an
additional input and are trained with data in fill-
in-the-blank format. We experimentally found
that the generalization ability of these models is
still limited, especially for conditional text infill-
ing tasks. In the Dialog task, 21% and 16% of the
samples generated by Mask-Self-attn and Mask-
Seq2Seq with beam search could not even recon-
struct the template (see Figure 5).5

Because the BiRNN-GSN fills the blank from
the probability PBiRNN(yt|y1:t−1,yt+1:m,x), and
the proposed method filling the blank directly with
the gradient ∇ŷemb

t
L(x,y∗). Both of them have

the ability to reason about the past and future si-
multaneously without any unrealistic assumptions.
We can see that the complete sentences generated
by them are better than all other algorithms. How-
ever, BiRNN-GSN uses the bidirectional structure
as the decoder, which makes it challenging to ap-
ply to most sequence generative models, but the
proposed method is gradient-based, which can be
broadly used in any sequence generative models.

6 Conclusions

In this paper, we propose a general inference algo-
rithm for text infilling. To the best of our knowl-
edge, the method is the first inference algorithm
that does not require any modification or training
of the model and can be broadly used in any se-
quence generative model to solve the fill-in-the-
blank tasks. We compare the proposed method and
several strong baselines on three text infilling tasks
with various mask ratios and different mask strate-
gies. The results show that the proposed method is
an effective and efficient approach for fill-in-the-
blank tasks, consistently outperforming all base-
lines.

Acknowledgment

This work is supported by the National Key
R&D Program of China under contract No.
2017YFB1002201, the National Natural Science
Fund for Distinguished Young Scholar (Grant No.
61625204), and partially supported by the State
Key Program of National Science Foundation of
China (Grant Nos. 61836006 and 61432014).

5For BLEU and NLL evaluation, we force them to recon-
struct the template during inference.



4155

References
Peter Anderson, Basura Fernando, Mark Johnson, and

Stephen Gould. 2017. Guided open vocabulary im-
age captioning with constrained beam search. In
EMNLP.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Pierre Baldi, Søren Brunak, Paolo Frasconi, Giovanni
Soda, and Gianluca Pollastri. 1999. Exploiting the
past and the future in protein secondary structure
prediction. Bioinformatics.

Mathias Berglund, Tapani Raiko, Mikko Honkala, Leo
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Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
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