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Abstract

Direct comparison on point estimation of the
precision (P), recall (R), and F1 measure of t-
wo natural language processing (NLP) models
on a common test corpus is unreasonable and
results in less replicable conclusions due to a
lack of a statistical test. However, the exist-
ing t-tests in cross-validation (CV) for model
comparison are inappropriate because the dis-
tributions of P, R, F1 are skewed and an inter-
val estimation of P, R, and F1 based on a t-test
may exceed [0,1]. In this study, we propose to
use a block-regularized 3× 2 CV (3× 2 BCV)
in model comparison because it could regular-
ize the difference in certain frequency distri-
butions over linguistic units between training
and validation sets and yield stable estimators
of P, R, and F1. On the basis of the 3 × 2
BCV, we calibrate the posterior distributions
of P, R, and F1 and derive an accurate inter-
val estimation of P, R, and F1. Furthermore,
we formulate the comparison into a hypothe-
sis testing problem and propose a novel Bayes
test. The test could directly compute the prob-
abilities of the hypotheses on the basis of the
posterior distributions and provide more infor-
mative decisions than the existing significance
t-tests. Three experiments with regard to NLP
chunking tasks are conducted, and the results
illustrate the validity of the Bayes test.

1 Introduction

The comparison of two models is a key step in
natural language processing (NLP) with the preci-
sion (P), recall (R), and F1 measures. The com-
parison could be described as follows: For two
NLP models on a given text corpus, which model
produces a higher performance system with a rel-
atively high probability? The direct comparison
with a point estimation of P, R, and F1 on a test
corpus is unscientific from a statistical perspective
and usually leads to less replicable results (Dror

et al., 2017). In reality, the comparison generally
could be formalized with a statistical hypothesis
testing, and many prominent tests, such as K-fold
cross-validated (CV) t-test (Daelemans and Hoste,
2002), 5×2 CV t-test and F -test (Dietterich, 1998;
Alpaydin, 1999), and block-regularized 3 × 2 CV
(3× 2 BCV) t-test (Wang et al., 2014), have been
conducted. However, the distributions of P, R, and
F1 are skewed (Wang et al., 2015) and take values
in [0, 1], but an interval estimation of P, R, and F1

based on a t-test may exceed [0,1].
In this study, we introduce a Bayes test that is

more informative than the previous prominent nul-
l hypothesis significance testing (NHST) methods
in NLP (Dror et al., 2018). The test consists of
three main components: (1) a 3×2 BCV (Li et al.,
2009; Wang et al., 2014) that provides an optimal
partition of corpus and three repetitions of two-
fold CV; (2) calibrated posterior distributions and
accurate credible intervals (CIs) of P, R, and F1 in-
stead of a normal approximation; and (3) a Bayes
test of P, R, and F1 that provides the probability of
which model outperforms the other.

When partitioning the corpus, certain frequen-
cy distributions over linguistic units of the training
set should be consistent with that of the validation
set. Therefore, partitioning a corpus into two equal
parts and conducting a two-fold CV are reasonable
for model comparison. In fact, a 3 × 2 BCV is a
specific version of an m × 2 BCV (Wang et al.,
2017a) that possesses three repetitions of two-fold
CV. The three repetitions are regularized with cer-
tain conditions, such as the frequency distribution
of the named entity types in a named entity recog-
nition (NER) task, to reduce the unintentional in-
troduced difference in the frequency distributions
between the training and validation sets due to the
random partitioning of a corpus and to make the
comparison more reliable. Particularly, the m× 2
BCV estimator of certain evaluation metrics pos-



4136

sesses a minimum variance, which ensures that the
tests on the 3 × 2 BCV have higher powers and
replicabilities (Wang et al., 2014, 2017b).

Actually, a t distribution is inappropriate for P,
R, and F1 (Yeh, 2000). Wang et al. (2015) have
obtained a posterior distribution and a CI of F1 in
a 3 × 2 BCV, but the distribution did not consider
the correlations in the 3×2 BCV estimators, which
makes the distribution inaccurate and improper in
the comparison.

In this study, accurate posterior distributions
and CIs of P, R, and F1 on the 3 × 2 BCV are
obtained, and a Bayes test is introduced to com-
pare two NLP models. The Bayes test provides the
probabilities of the hypotheses in the comparison,
which is more informative and reasonable than the
conventional NHST. Finally, three experiments in
NLP chunking tasks are used to show the validity
of the Bayes test.

2 3× 2 BCV Posterior Distributions of P,
R, and F1 of an NLP Model

Assume Dn is a text corpus, where n is the count
of labeled instances in Dn. For example, n is the
count of sentences in an NER corpus.

When computing the P, R, and F1 of an NLP
model, Dn is usually divided into two parts with
a partition (S, T ) in a hold-out (HO) validation,
containing a training set S, a validation set T , and
Dn = S ∪ T . Assume their sizes are |S| =
|T | = n/2. The confusion matrix on T is M =
(TP,FP,FN,TN), where TP, FP, FN, and TN s-
tand for true positive, false positive, false negative,
and true negative, respectively. From these counts,
one can compute the P, R and F1:

P =
TP

TP + FP
,R =

TP
TP + FN

,F1 =
2PR

P + R
. (1)

Goutte and Gaussier (2005) provided the natu-
ral probabilistic interpretations of P and R. Specif-
ically, M follows a multinomial distribution with
parameters π = (πTP , πFP , πFN , πTN ) such that
πTP + πFP + πFN + πTN = 1. Then, P and R
estimate the following probabilities:

p = P (l = +|z = +), r = P (z = +|l = +), (2)

where l and z represent the true and predicted la-
bels and + indicates a positive label. Correspond-
ingly, F1 estimates f1 = 2pr/(p+ r).

Let n+ denote the count of positive observation-
s in Dn. Let (S, T ) be a partition in 3×2 BCV, and

the count of positive observations in T satisfies

TP + FN = n+/2. (3)

2.1 Posterior Distributions of P, R, and F1 in
an HO Validation

Property 2 in (Goutte and Gaussier, 2005) shows
that TP|TP + FN follows a binomial distribution
with parameters of n+/2 and r. Then,

Var[R] = Var
[

2

n+
TP

]
=

2r(1− r)

n+
, (4)

where Var[·] is obtained over Dn. The proof of Eq.
(4) is given in the supplemental material.

Assume r follows a beta prior distribution, that
is, r ∼ Be(λ, λ), and the posterior distribution
of r is r|M ∼ Be(TP + λ,FN + λ) (Goutte and
Gaussier, 2005). When λ = 1, P (r|M) has a
mode:

mode[r|M] = R. (5)

Similarly, assume p ∼ Be(λ, λ), and p|M ∼
Be(TP + λ, FP + λ), and its mode is

mode[p|M] = P. (6)

On the basis of the posterior distributions of P
and R, Wang et al. (2015) proved that the posterior
distribution of F1 is

P (f1 = t|M) =
2a(1− t)a−1(2− t)−a−btb−1

B(a, b)
,

(7)
where B(·, ·) is a beta function with parameters
a = FP + FN + 2λ and b = TP + λ.

2.2 3× 2 BCV

Let P = {(Sj , Tj)}3j=1 denote a partition set of
a 3 × 2 BCV with regularization conditions of
|Sj | = |Tj | and |Sj ∩ Sj′ | ≈ n/4 for j ̸= j′. Each
partition (Sj , Tj) corresponds to a two-fold CV. P
can be constructed with two steps: (a) Divide a
text corpus Dn into four equal-sized sub-blocks,
denoted as Bi, i = 1, 2, 3, 4. (b) Take two sub-
blocks as a training set in turn and the other two as
a validation set. Table 1 shows the partition set P.

2.3 3× 2 BCV Posterior Distributions of P,
R, and F1

Let M = {M(j)}3j=1 = {(M(j)
1 ,M(j)

2 )}3j=1

be a collection of confusion matrices in a 3 × 2
BCV, where confusion matrix M(j)

1 employs the
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Index P Sj Tj

1 (S1, T1) B1,B2 B3,B4

2 (S2, T2) B1,B3 B2,B4

3 (S3, T3) B2,B3 B1,B4

Table 1: Partition set of 3× 2 BCV.

training set Sj and the validation set Tj in the j-
th two-fold CV, and M(j)

2 uses Tj as the train-
ing set and Sj as the validation set. Let M(j)

k =

(TP(j)
k ,FP(j)

k ,FN(j)
k ,TN(j)

k ).
Here, we aim to infer the posterior distributions

P (p|M), P (r|M), and P (f1|M).
Conditioned on M, the micro-averaged values

of P, R, and F1 are

P3×2 =
1
3

∑3
j=1

1
2

∑2
k=1 TP(j)

k

1
3

∑3
j=1

1
2

∑2
k=1(TP(j)

k + FP(j)
k )

,(8)

R3×2 =
1
3

∑3
j=1

1
2

∑2
k=1 TP(j)

k

1
3

∑3
j=1

1
2

∑2
k=1(TP(j)

k + FN(j)
k )

,(9)

F1,3×2 =
2P3×2R3×2

P3×2 + R3×2
. (10)

We first investigate the posterior distribution of
R, P (r|M). Considering that TP(j)

k + FN(j)
k =

n+/2 is a constant (Eq. (3)) unrelated to j and k,
R3×2 is rewritten as

R3×2 =
1

3

3∑
j=1

R(j) =
1

6

3∑
j=1

2∑
k=1

R(j)
k , (11)

where

R(j)
k =

TP(j)
k

TP(j)
k + FN(j)

k

, (12)

R(j) =
1
2

∑2
k=1 TP(j)

k

1
2

∑2
k=1(TP(j)

k + FN(j)
k )

. (13)

Thus, the variance of R3×2 is

Var [R3×2] =
1 + ρ1 + 4ρ2

3n+
r(1− r). (14)

The proof of Eq. (14) is given in Appendix A. ρ1
and ρ2 are two correlation coefficients between the
point HO estimators in R3×2. The definitions of ρ1
and ρ2 are as follows:

• Define σ = Var
[
R(j)
k

]
. According to Eq. (4),

we obtain σ = 2r(1− r)/n+.

• ρ1 = Cov
[
R(j)
1 ,R(j)

2

]
/σ is the correlation of

two HO estimators in R(j) in a two-fold CV.

• ρ2 = Cov
[
R(j)
k ,R(j′)

k′

]
/σ is the correlation

of two HO estimators of R in different two-
fold CVs, where j ̸= j′ and k, k′ = 1, 2.

However, the six confusion matrices in M are
correlated because the three partitions are per-
formed on a single text corpus and the training sets
contain overlapping samples. Therefore, the like-
lihood p(M|r) ̸=

∏3
j=1

∏2
k=1 p(M

(j)
k |r). The

correlation prevents us to derive a closed form of
p(r|M), which is the main challenge in this study.

To overcome the challenge, an effective confu-
sion matrix Me = (TPe,FPe,FNe,TNe) is intro-
duced to measure how many independent obser-
vations M is equivalent to. Furthermore, we have
r|Me ∼ Be(TPe + λ,FNe + λ), and the variance
of R3×2 can be rewritten as

Var[R3×2] =
r(1− r)

TPe + FNe
. (15)

Comparing Eqs. (14) and (15), we obtain

TPe + FNe =
3n+

1 + ρ1 + 4ρ2

=

∑3
j=1

∑2
k=1

(
TP(j)

k + FN(j)
k

)
1 + ρ1 + 4ρ2

.(16)

According to Eq. (5), we obtain

mode[r|M] =
TPe

TPe + FNe
= R3×2. (17)

On the basis of Eqs. (9), (16), and (17), TPe and
FNe are expressed as

TPe =
1

1 + ρ1 + 4ρ2

3∑
j=1

2∑
k=1

TP(j)
k , (18)

FNe =
1

1 + ρ1 + 4ρ2

3∑
j=1

2∑
k=1

FN(j)
k . (19)

According to Eq. (6), we obtain

mode[p|M] =
TPe

TPe + FPe
= P3×2. (20)

On the basis of Eqs. (8), (18) and (20), FPe is

FPe =
1

1 + ρ1 + 4ρ2

3∑
j=1

2∑
k=1

FP(j)
k . (21)

Obviously, TPe, FPe, and FNe contain unknown
ρ1 and ρ2, and their relationships are
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• When ρ1 = ρ2 = 0, TPe =∑3
j=1

∑2
k=1 TP(j)

k . FNe and FPe have sim-
ilar forms. These forms indicate that the pos-
terior distribution of r|M is equivalent to
that on six independent text corpora.

• When ρ1 = ρ2 = 1, TPe, FPe, and FNe are
equal to the average values of all TPs, FPs,
and FNs in M, respectively. In reality, this
situation indicates that the posterior distribu-
tions based on 3× 2 BCV are similar to the
posterior distributions on an HO validation.
Repetitions have no evident contribution to
the posteriors.

In fact, R could be considered as a variant of
the generalization error that takes the expectation
of zero-one loss on merely positive observation-
s. Correlations ρ1 and ρ2 in 3 × 2 BCV estimator
of the generalization error have been investigated
(Wang et al., 2014, 2017a). The works empirical-
ly indicate 0 ≤ ρ1 ≤ 1/2 and 1/4 ≤ ρ2 ≤ 1/2,
which are also applicable for the correlations in
R3×2. To eliminate unknown ρ1 and ρ2 in TPe,
FNe, and FPe, we take their averages over the
range of 0 ≤ ρ1 ≤ 1/2 and 1/4 ≤ ρ2 ≤ 1/2
regardless of the model used. Hence,

TPe ≈ 8

∫0.5
0.25

∫0.5
0

∑3
j=1

∑2
k=1 TP(j)

k

1 + ρ1 + 4ρ2
dρ1dρ2

≈ 0.3688

3∑
j=1

2∑
k=1

TP(j)
k . (22)

Similarly, we obtain

FNe ≈ 0.3688

3∑
j=1

2∑
k=1

FN(j)
k , (23)

FPe ≈ 0.3688

3∑
j=1

2∑
k=1

FP(j)
k . (24)

In sum, 3 × 2 BCV posterior distributions of P,
R and F1 are

P (p = t|M) =
tTPe+λ(1− t)FPe+λ

B(TPe + λ,FPe + λ)
, (25)

P (r = t|M) =
tTPe+λ(1− t)FNe+λ

B(TPe + λ,FNe + λ)
, (26)

P (f1 = t|M) =
2ā(1− t)ā−1(2− t)−ā−b̄tb̄−1

B(ā, b̄)
,

(27)

where B(·, ·) is a beta function with parameters of
ā = FPe + FNe + 2λ and b̄ = TPe + λ. In this
study, λ = 1 is used.

2.4 CIs of P, R, and F1 Based on 3× 2 BCV
On the basis of the 3 × 2 BCV posterior distribu-
tions of P, R, and F1, their corresponding CIs could
be derived. The CI of P with a probability 1−α is

CIp = [ Beα
2
(TPe + λ,FPe + λ),

Be1−α
2
(TPe + λ,FPe + λ)]. (28)

The CI of R is

CIr = [ Beα
2
(TPe + λ,FNe + λ),

Be1−α
2
(TPe + λ, FNe + λ)]. (29)

The CI of F1 is

CIf1 =

[
2

2 +Be′1−α
2

,
2

2 +Be′α
2

]
, (30)

where Be′α is the α quantile of a beta-prime dis-
tribution with parameters of FPe + FNe + 2λ and
TPe + λ.

The above CIs are more accurate than the previ-
ously proposed CIs (Wang et al., 2015; Wang and
Li, 2016) because the parameters in the posterior
distributions are corrected via the correlations in
the 3 × 2 BCV estimator. Take F1 as an example.
A different CI of F1 based on 3× 2 BCV is given
in (Wang et al., 2015), which employs the aver-
aged values of FPs, FNs, and TPs in M. Their CI
is a special case of Eq. (30) with ρ1 = ρ2 = 1.
Their CI is more conservative, that is, the actual
degree of credibility (DOC) is larger than the nom-
inal probability (1 − α). Nevertheless, our CI is
more accurate because it could relieve the conser-
vativity, which is shown in the following example.

Example: Consider a similar simulation in
(Wang et al., 2015), which uses a classification da-
ta set with two classes. A sample is Z = (X,Y )
where P (Y = 1) = P (Y = 0) = 1

2 , and X|Y =
0 ∼ N(µ0,Σ0), X|Y = 1 ∼ N(µ1,Σ1). Take
µ0 = (0, 0), µ1 = (0.5, 0.5), and Σ0 = Σ1 = I2.
The data set size is n = 600 and α = 0.05. With
a logistic regression algorithm, the DOC and in-
terval length (IL) of their CI are 99.6% and 0.117.
However, the DOC and IL of our CI are 94.5%
and 0.0854. Obviously, our CI has a DOC closer
to 1− α and a shorter IL, indicating that our CI is
more accurate.
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3 Bayes Test for Comparison of Two
NLP Models

For an NLP task, assume A is a state-of-the-art
model using Dn. When a model B is crafted out, it
is indispensable to compare it with A to document
whether B performs significantly better than A by
employing the following hypotheses:

H0 : νB − νA ≤ 0 v.s. H1 : νB − νA > 0, (31)

where νA and νB are the evaluation metrics of
models A and B. In this study, P, R and F1 are
considered.

We address Problem (31) with a Bayes test
(Casella and Berger, 2002), which is different to
previous NHST studies (Dietterich, 1998; Alpay-
din, 1999; Yildiz, 2013). A Bayes test could avoid
many shortcomings of NHST reasoning, such as
the egregious logic error in p-value. Moreover, a
Bayes test could directly compute the probabili-
ties of the hypotheses, which help users to make
a more reasonable decision. Thus, a Bayes test is
increasingly preferred and recommended recently
as an advanced tool to analyze the experimental
results (Benavoli et al., 2016).

In this study, we propose a Bayes test that uses
the 3× 2 BCV posterior distributions of P, R, and
F1 to calculate the probabilities of hypotheses, de-
noted as P (H0) and P (H1). Then, the test infers
a decision with the heuristic rules: Accept H0 iff
P (H0) ≥ P (H1); otherwise accept H1.

Before elaborating the Bayes test, several nec-
essary denotations are introduced: the M of mod-
el A is MA ; the TPe, FNe, and FPe of model A
are TPe,A , FNe,A , and FPe,A , respectively. The p,
r, and f1 of A are pA , rA , and f1,A , respective-
ly. The denotations of B are defined in a simi-
lar manner. Let ν denote a user-defined metric in
{P,R,F1}. For example, if user assign R to ν, then
rA and rB are compared.

The key point to perform a Bayes test on Prob-
lem (31) is to tackle the distribution of the differ-
ence of νA − νB . However, no explicit form of
the distribution exists. Thus, we estimate it using
the Monte-Carlo simulation. Take R as an exam-
ple. Conditioned on MA and MB , assuming rA
is independent of rB , we wish to evaluate the prob-
ability p(rA − rB ≤ 0

∣∣MA ,MB), that is,∫1
0

∫1
0
I(rA − rB ≤ 0)P (rA |MA)

· P (rB |MB)drAdrB , (32)

where I(·) is the indicator function that has val-
ue one iff the enclosed condition is true and zero
otherwise. Considering that no close form of Eq.
(32) exists, we have to evaluate it using Monte-
Carlo simulation: (a) Sample a large number of
observations from P (rA |MA) and P (rB |MB),
and denote them as {si,A}

L
i=1 and {si,B}

L
i=1; (b)

approximate Eq. (32) with the empirical propor-
tion:

1

L

L∑
i=1

I(si,A − si,B ≤ 0), (33)

where L = 1, 000, 000 is used.

Input: Text corpus, Dn; NLP models, A and B;
Evaluation metric, ν;

Output: Probabilities of the hypotheses and a decision
between “Accept H0” and “Accept H1”;

1 Construct P on Dn according to Table 1;
2 Train and validate models A and B on P, and

summarize the results as MA and MB , respectively;
3 Apply Eqs. (22), (23) and (24) on MA and MB to get
(TPe,A , FNe,A , FPe,A) and (TPe,B , FNe,B , FPe,B );

4 if ν is P then
5 P (νA |MA)← use Eq. (25) on TPe,A and FPe,A ;
6 P (νB |MB )← use Eq. (25) on TPe,B and FPe,B ;
7 end
8 else if ν is R then
9 P (νA |MA)← use Eq. (26) on TPe,A and FNe,A ;

10 P (νB |MB )← use Eq. (26) on TPe,B and FNe,B ;
11 end
12 else if ν is F1 then
13 P (νA |MA)← use Eq. (27) on TPe,A , FPe,A and

FNe,A ;
14 P (νB |MB )← use Eq. (27) on TPe,B , FPe,B and

FNe,B ;
15 end
16 Approximate P (νA − νB ≤ 0

∣∣MA ,MB ) with
Monte-Carlo simulation (refer to Eq. (33));

17 P (H0)← P (νA − νB ≤ 0
∣∣MA ,MB);

18 P (H1)← 1− P (νA − νB ≤ 0
∣∣MA ,MB );

19 if P (H0) ≥ P (H1) then
20 Return (P (H0), P (H1), “Accept H0”);
21 end
22 else
23 Return (P (H0), P (H1), “Accept H1”);
24 end

Algorithm 1: A Bayes test for comparing P, R
and F1 of two NLP models.

On the basis of the above analysis, the sketch
of Bayes test is shown in Algorithm 1. The algo-
rithm performs hypothesis testing procedures for
P, R, and F1 according to the specific value of ν.
When different evaluation metrics are used, the
corresponding hypothesis testing problems (refer
to Problem (31)) are different, and the decisions
might be different but reasonable, even though the
same text corpus is used in these problems. Thus,
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the Bayes test helps users to investigate the differ-
ence of A and B with different perspectives and in
a fine-grained manner.

Bayes test and NHST are two different types of
significant tests from two philosophies: Bayesian
and frequentist inferences. When the distribution
of an evaluation metric is available, the Bayes test
may provide more informative inferences and con-
clusions than the NHST. Until now, no mature and
fair criterion to compare Bayes test and NHST ex-
ists. Therefore, in this study, an objective compar-
ison between them is not provided. Instead, we
show three experiments to illustrate the validity of
the Bayes test.

4 Experiments and Analysis

The experiments concentrate on chunking tasks 1.
Chunking is an important task in NLP, which in-
cludes Chinese word segmentation (CWS) and N-
ER. A chunking task could be formulated into a
sequence labeling problem and addressed by em-
ploying a tag set, such as IOB2 and IOBES (Ku-
do and Matsumoto, 2001; Shen and Sarkar, 2005),
and a widely used algorithm, such as conditional
random fields (CRFs) (Lafferty et al., 2001) and
LSTM (Hochreiter and Schmidhuber, 1997; Lam-
ple et al., 2016).

In this section, we perform the Bayes test on
NLP chunking models with different tag sets to
answer a question: could a fine-grained tag set im-
prove the performance of a chunking model?

A chunking model is usually evaluated in terms
of the metrics of P, R, and F1. When computing
them, TP indicates the count of correctly predict-
ed chunks, FN is the count of golden chunks that
are incorrectly predicted, and FP is the count of
predicted chunks that are not correct.

Three different chunking tasks are considered:
CWS task: Identify a reasonable word se-

quence in a raw sentence. A word is regarded as a
chunk, and every character in the sentence enter-
s into a chunk. Bakeoff-2005 CWS PKU training
corpus is used as Dn.

NER task: Identify the boundaries of all N-
ER chunks without recognizing their types. CoN-
LL 2003 English NER training set is used as
Dn, which contains four types of NER, namely,
“PER”, “LOC”, “ORG”, and “MISC”. Word is

1The code for the experiments in this paper is found on:
https://github.com/RamboWANG/acl2019

used as a tagging unit, and considerable out-of-
chunk words exist.

ORG task: Identify only “ORG” entities. The
corpus is the same to the NER task. The count
of “ORG” chunks is remarkably smaller than the
count of NER chunks in the NER task, and the
out-of-chunk words dominate the corpus.

In the above three tasks, CRFs are used as the
sequence labeling algorithm. Other algorithms
will be studied in future research.

4.1 CWS Task: “BMES” Versus
“BB2B3MES”

The CWS task is formulated into a sequence la-
beling problem at character level. Two different
tag sets of “BMES” and “BB2B3MES” are con-
sidered, which correspond to models A and B, re-
spectively. “BB2B3MES” is a fine-grained set that
introduces two additional tags of “B2” and “B3”
on the basis of “BMES”. Zhao et al. (2006) illus-
trated that model B improves A without investi-
gating the significance, which is performed here.

Task ν Tag set 1 (%) Tag set 2 (%)

CWS

BMES BB2B3MES
P [95.55, 95.62] [95.60, 95.67]
R [95.04,95.11] [95.16,95.23]
F1 [95.30,95.36] [95.39,95.44]

NER

IOB2 IOBES
P [90.59, 91.30] [90.70,91.41]
R [87.69,88.48] [87.78, 88.57]
F1 [89.21,89.77] [89.32,89.87]

ORG

IOB2 IOBES
P [91.37,92.86] [91.85,93.31]
R [64.89,67.11] [64.45,66.68]
F1 [76.06,77.74] [75.93,77.61]

Table 2: CIs of the three tasks (α = 0.05).

ν P (H0) P (H1) Decision

P 0.024 0.976 Accept H1

R 0.001 0.999 Accept H1

F1 0.001 0.999 Accept H1

Table 3: Decisions of the Bayes test in the CWS task.

In the task, the unigram, bigram, and trigram of
characters are used as features, and their windows
are [-2,2]. The 3×2 BCV posterior distributions of

https://github.com/RamboWANG/acl2019
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Figure 1: 3×2 BCV posterior distributions in the CWS
task.

the two CWS models are given in Figure 1, and the
CIs in α = 0.05 are given in Table 2. Each curve
ranges from 0.001 quantile to 0.999 quantile. The
curves in solid lines correspond to Eqs. (25), (26),
and (27), which are recommended in this study.

Two observations are concluded from Figure 1.
First, our proposed posterior distributions, which
yield more accurate CIs, are taller and thinner than
those in (Wang et al., 2015). Second, the posterior
distributions of the R and F1 between models A
and B have smaller overlaps than those of P. The
smaller overlap indicates that the additional tags
of “B2” and “B3” mainly improve the R and F1 of
the CWS model.

The Bayes test is performed on A and B. The
probabilities of the hypotheses and decisions are
given in Table 3. H1 holds in the probability of
0.98 for P, whereas H1 holds in the probabilities of
approximately 1 for R and F1. Table 3 illustrates
that the fine-grained tag set significantly improves
the CWS model, and the improvements in R and
F1 are larger than P.

4.2 NER Task: “IOB2” Versus “IOBES”

In this task, word and POS are used as features.
The unigram, bigram, and trigram of word and
POS are included in the feature template. The
window size of each type of feature is set to [-
2,2]. “IOBES” in model B is a fine-grained tag
set, which adds tags “E” and “S” to “IOB2” in A.

Posterior distributions of P, R, and F1 of mod-
els A and B are given in Figure 2. The posterior
distributions of the two models have large over-
laps, which indicate that the improvement in B
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Figure 2: 3×2 BCV posterior distributions in the NER
task.

is not evident. Corresponding CIs are given in
Table 2. The CIs of the two models have also
large overlaps, indicating the insignificant differ-
ences between the two models. Table 4 presents
the decisions of the Bayes test, which are iden-
tical on the three metrics, that is, “Accept H1”.
However, the improvement is not remarkable be-
cause P (H1) are lower than 0.8. Moreover, the
fine-grained tag set, “IOBES,” exerts more effort
to improve P than R because P (H1) = 0.68 for P
is larger than P (H1) = 0.63 for R.

ν P (H0) P (H1) Decision

P 0.321 0.679 Accept H1

R 0.372 0.628 Accept H1

F1 0.300 0.700 Accept H1

Table 4: Decisions of the Bayes test in the NER task.

4.3 ORG Task: “IOB2” Versus “IOBES”

In this task, the settings of features are the same
with the NER task. However, the distributions of
tags become more skewed than those of the NER
task, that is, tag “O” possesses a larger proportion.
Thus, the decisions of the Bayes test are remark-
ably different. Specifically, the posterior distribu-
tions of P, R, and F1 are given in Figure 3, which
indicate that the improvement in B is not evident.
Surprisingly, for R and F1, the posterior distribu-
tion of B shifts to the left of that of A, which illus-
trates the fine-grained tag set, namely, “IOBES,”
deteriorates R and F1. A possible reason is the
fine-grained tag set, namely, “IOBES,” leads to
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ν P (H0) P (H1) Decision

P 0.191 0.809 Accept H1

R 0.706 0.294 Accept H0

F1 0.587 0.413 Accept H0

Table 5: Decisions of the Bayes test in the ORG task.
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Figure 3: 3×2 BCV posterior distributions in the ORG
task.

more skewed proportions of tags than “IOB2.”
The decisions of the Bayes test are given in Ta-

ble 5. The probability of the improvement to P
exceeds 0.8, that is, P (H1) = 0.81. However, the
fine-grained tag set harms R and F1 in a sense of
P (H0) = 0.71 for R and P (H0) = 0.59 for F1.

The above three tasks illustrate the validity of
the Bayes test, which provide accurate CIs of P, R,
and F1 and the estimation of P (H0) and P (H1).
The results are more informative for interpreta-
tions and help to make a reliable decision.

5 Related Work

Over the last few past decades, many studies
have contributed to validate whether the stan-
dard significant tests are adequate for comparing
NLP models (Gillick and Cox, 1989; Yeh, 2000;
Daelemans and Hoste, 2002; Koehn, 2004; Rie-
zler and Maxwell, 2005; Berg-Kirkpatrick et al.,
2012; Søgaard, 2013; Søgaard et al., 2014; Névéol
et al., 2016; Dror et al., 2017, 2018). These stud-
ies observed that standard tests tend to infer invalid
comparison conclusions. Two important questions
arise from the observations: 1) How to correct-
ly perform CV for NLP model comparison? 2)
What are the distributions of the common evalua-

tion metrics in NLP, such as P, R, and F1?
The first question could refer to many stud-

ies in machine learning, which investigated vari-
ous CV methods in algorithm comparison, includ-
ing repeated learning-testing (Nadeau and Ben-
gio, 2003; Wang et al., 2019), K-fold CV (Kohavi
et al., 1995; Rodrı́guez et al., 2010, 2013; Moreno-
Torres et al., 2012), 5 × 2 CV (Dietterich, 1998;
Alpaydin, 1999; Yildiz, 2013), and m × 2 BCV
(Wang et al., 2014, 2015, 2017a,b). In these s-
tudies, m × 2 BCV might be a better option for
comparing NLP models because it leads to stable
estimation of evaluation metrics and the m × 2
BCV tests possesses higher powers and replica-
bilities (Wang et al., 2014, 2017b). Moreover,
on a text corpus, certain frequency distributions
over linguistic units between training and valida-
tion sets in two-fold CV intuitively possess small-
er divergence than those in five-fold or ten-fold
CV. Therefore, m× 2 BCV should be investigated
when comparing NLP models.

The second question is pioneered in the work
of (Goutte and Gaussier, 2005), which proved the
posterior distributions of P and R in an HO val-
idation. The posterior distributions make an ex-
act comparison possible (Zhang and Su, 2012;
Wang and Li, 2016). However, the distribution of
F1 is difficult to tackle, because it is a complex
function. Zhang et al. (2015a,b, 2016) employed
complicated probabilistic graphic representations
and Bayesian hierarchical models to estimate and
compare F1 measures. Fortunately, Wang et al.
(2015) obtained an exact close-form of posterior
distribution of F1, which is a function with regard
to a beta-prime distribution. These studies pro-
vided a rigorous theoretical guarantee for pursuing
the 3× 2 BCV posterior distributions of P, R, and
F1.

6 Conclusions and Future Work

In this study, we obtained accurate posterior distri-
butions of P, R, and F1 on the basis of a 3×2 BCV,
which is an essential part in conducting the com-
parison of two NLP models. On the basis of the
posterior distributions, a Bayes test is proposed,
which provides the probabilities of the hypotheses
and help users to make a reasonable decision. Fi-
nally, three experiments on chunking tasks are per-
formed to illustrate the validity of the Bayes test.
For NLP practitioners, we recommend here three
guidelines:
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(1) A t-test should be avoided in a comparison of
two NLP models on the basis of the precision,
recall and F1 measure.

(2) The 3× 2 BCV could be preferred to evaluate
the performance of an NLP model in the task
of model comparison.

(3) The Bayes test on the basis of the 3 × 2 BCV
could provide informative and fine-grained
measures of the differences of precisions, re-
calls and F1 measures of two NLP models, and
the measures could help practitioners to make
a reasonable decision.

In the future, we will refine the Bayes test of
P, R, and F1 in an m × 2 BCV and provide accu-
rate interval estimation of other evaluation metrics
on the basis of the confusion matrix. Obtaining
the posterior distribution of an evaluation metric
of a model is still a key problem in this valuable
research area.
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A Proof of Eq. (4)

According to Eqs. (1) and (3), we obtain

R =
TP

TP + FN
=

2TP
n+

. (34)

Because TP|TP + FN follows a binomial distri-
bution with parameters of n+/2 and r and TP +
FN = n+/2 is a constant, we obtain

Var[TP] =
n+

2
r(1− r). (35)

Based on Eq. (34), we know

Var[R] = Var[
2TP
n+

] =
4

n2
+

Var[TP]

=
2r(1− r)

n+
.

�

B Proof of Eq. (14)

According to Eq. (11), Var [R3×2] can be decom-
posed into

Var [R3×2] = Var

1

3

3∑
j=1

R(j)


=

1

9

{
3∑

j=1

Var
[
R(j)

]

+

3∑
j=1

3∑
j′=1

j ̸=j′

Cov
[
R(j),R(j′)

]}
. (36)

Assume Var
[
R(j)

]
doesn’t depend on the par-

ticular realization of Pj , then Var
[
R(j)

]
for all j

are identical. Furthermore, since the number of
overlapping samples between the two training sets
in Pj and Pj′ equals to n/4 with j ̸= j′, we could

reasonably assume Cov
[
R(j),R(j′)

]
for all j ̸= j′

are identical and independent to j and j′. Thus,
we obtain

Var [R3×2] =
1

3

{
Var

[
R(j)

]
+2Cov

[
R(j),R(j′)

]}
. (37)

Since R(j) = (R(j)
1 + R(j)

2 )/2, assume

Var
[
R(j)
1

]
= Var

[
R(j)
2

]
, we have

Var
[
R(j)

]
= Var

[
1

2
(R(j)

1 + R(j)
2 )

]
=

1

2

{
Var

[
R(j)
k

]
+ Cov

[
R(j)
k ,R(j)

k′

]}
,(38)

where k ̸= k′. Furthermore, according to Eq. (4)
and the definition of ρ1, we obtain

Var
[
R(j)
k

]
= 2r(1− r)/n+, (39)

Cov
[
R(j)
k ,R(j)

k′

]
= 2ρ1r(1− r)/n+. (40)

Substituting Eqs. (39) and (40) into Eq. (38),
we obtain

Var
[
R(j)

]
=

1 + ρ1
n+

r(1− r). (41)

Similarly, assume Cov
[
R(j)
k ,R(j′)

k′

]
doesn’t de-

pend on k and k′, then

Cov
[
R(j),R(j′)

]
= Cov

[
R(j)
k ,R(j′)

k′

]
, (42)

where k, k′ = 1, 2. According to the definition of
ρ2, we obtain

Cov
[
R(j),R(j′)

]
=

2ρ2
n+

r(1− r). (43)

Substituting Eqs. (41) and (43) into Eq. (37),
we obtain

Var [R3×2] =
1 + ρ1 + 4ρ2

3n+
r(1− r).
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