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Abstract

Learning representations such that the source
and target distributions appear as similar as
possible has benefited transfer learning tasks
across several applications. Generally it re-
quires labeled data from the source and only
unlabeled data from the target to learn such
representations. While these representations
act like a bridge to transfer knowledge learned
in the source to the target; they may lead
to negative transfer when the source specific
characteristics detract their ability to represent
the target data. We present a novel neural
network architecture to simultaneously learn
a two-part representation which is based on
the principle of segregating source specific
representation from the common representa-
tion. The first part captures the source specific
characteristics while the second part captures
the truly common representation. Our archi-
tecture optimizes an objective function which
acts adversarial for the source specific part if
it contributes towards the cross-domain learn-
ing. We empirically show that two parts of the
representation, in different arrangements, out-
performs existing learning algorithms on the
source learning as well as cross-domain tasks
on multiple datasets.

1 Introduction

Unsupervised domain adaptation is a sub field of
machine learning where one learns from annotated
data in a source domain with the aim of perform-
ing well on non-annotated data in a target domain.
This attractive feature wherein the data, distribu-
tions and tasks may vary across domains has led
to the widespread use of domain adaptation algo-
rithms in several real world applications. A typical
domain adaptation algorithm is provided with an-
notated source data and non-annotated target data

∗ Research done while working for Xerox Research Cen-
tre India.

Figure 1: Illustrates the fundamental idea of learn-
ing transferable feature representations behind the pro-
posed technique.

and it learns a ‘common representation’ where the
source and target data distributions look similar.
In this common representation, a model trained on
the source data is expected to perform well on the
target data as well.

While learning a common representation is use-
ful for transferring knowledge from the source to
the target domain, this may often lead to ‘nega-
tive transfer’ if we do not account for the funda-
mental question “what to transfer”. It is observed
that each domain has specific features that are
highly discriminating only within a domain and
contribute negatively if transferred across domains
in a brute force manner (Pan and Yang, 2010),
as shown in Figure 1. Traditional domain adap-
tation algorithms, being oblivious to such source
specific characteristics, learn common representa-
tions which suffer from transfer loss as the source
specific characteristics restrict their transferability.
Moreover, it is also observed that the representa-
tion learned for domain adaptation optimizes for
the performance in the target domain, often at the
cost of source classification performance. While
this can be justified for domain adaptation where
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the primary objective is maximizing the target per-
formance, a technique that simultaneously sus-
tains the source performance will always be pre-
ferred.

Our primary contribution is a novel neural net-
work learning algorithm based on the principle of
two-part hidden representation where individual
parts can be disentangled or combined for learn-
ing tasks in different domains. We highlight some
of the salient features of our algorithm:

• A novel technique for learning a two-part rep-
resentation between domains. One compris-
ing source specific and the other comprising
common characteristics.

• The two-part representation behaves differ-
ently for different learning objectives:

1. For the cross-domain task, explicitly
learning the source specific representa-
tion and keeping them separate from
common representation enhances the
performance in the target domain.

2. For the source learning task, the source
specific and common units come to-
gether to sustain the source performance
where the performance of most domain
adaptation algorithms is compromised.

The proposed neural network architecture
achieves this through an objective function which
acts adversarial for a part of representation (source
specific part) if it contributes to the cross-domain
learning. Moreover, the proposed two-part repre-
sentation learning approach also mitigates the pos-
sible effects of “negative transfer”, as learning sep-
arate source specific and common representations
evades the influence of source specific character-
istics on the common representation.

2 Related Work

The problem of domain adaptation has gained a
lot of attention due to its huge practical implica-
tions. Pan et al. (2010) focuses on learning a com-
mon representation minimizing the divergence be-
tween the source and target domains. Many body
of work exists in literature including learning non-
linear mappings (Daumé III, 2009; Pan et al.,
2011; Blitzer et al., 2007; Pan et al., 2010; Barnes
et al., 2018), mappings to mitigate domain diver-
gence (Pan et al., 2010), common features (Dai
et al., 2007; Dhillon et al., 2003), ensemble based

approaches (Bhatt et al., 2015), subspace based
methods (Gopalan et al., 2011; Gong et al., 2012;
Harel and Mannor, 2010; Fernando et al., 2013)
and neural networks based methods (Glorot et al.,
2011; Chopra et al., 2013; Long and Wang, 2015;
Tzeng et al., 2014).

A variant of unsupervised models namely
marginalized stacked denoising autoencoders
(mSDA) (Chen et al., 2012a) learn robust repre-
sentation to input corruption noise, which is stable
across changes in domains, allowing cross-domain
transfer. Existing literature exploits the princi-
ple of representations generalizing across domains
for classification, without labelled data from tar-
get ((Sarma et al., 2018), (Bhatt et al., 2016))
and with labelled data from target ((Zhang et al.,
2018)). Our work emphasizes on domain dis-
crimination by incorporating domain divergence
and source risk minimization into the objective for
learning better transferable representation without
any labelled data from target domain. Another line
of work aims to achieve distribution consistency
between the source and target domains with lin-
ear data reconstruction such as co-regularization
based augmented space (Kumar et al., 2010), cou-
pled learning to link target-specific features to
source features (Blitzer et al., 2011) and transfer
of the source examples to the target and vice-versa
(Zhou et al., 2016).

Domain adversarial neural networks (DANN)
(Ajakan et al., 2014; Ganin et al., 2016), closely
similar in philosophy to our work, learns a single
representation by using an adversarial (Liu et al.,
2017) gradient reversal component for domain di-
vergence. In DANN, the entire hidden layer con-
tributes unanimously towards the source classifi-
cation and domain divergence objective. Unlike
DANN, our approach segregates the hidden layer
where the two components of hidden layer are
treated differently for different objectives. Both
the source specific and common parts contribute
positively to the source classification objective.
However, for the domain divergence objective, the
common part contributes positively (i.e., tries to
minimize divergence by maximizing the domain
regressor’s loss); whereas, the source specific part
contributes negatively (i.e., tries to maximize di-
vergence by minimizing domain regressor’s loss)

Generative adversarial networks (GAN) (Good-
fellow et al., 2014) build generative models to syn-
thesize samples and falls closely in the same cat-
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egory due to the similar method of measuring and
minimizing the discrepancy between the feature
distributions. The GAN model learns the repre-
sentation in generative mode while our work is
based on discriminative learning.

Domain separation networks (DSN) (Bousmalis
et al., 2016) inspired from shared-space compo-
nent analysis, explicitly and jointly models the
domain-specific (private) and shared component
domain representation. DSN is based on CNN
and ours is a feed-forward network based on dis-
criminating adversarial framework. The objective
function of DSN has separate losses for difference,
similarity, reconstruction and task-specific, while
our approach follows min-max optimization crite-
rion minimizing domain specific component loss
and maximizing shared component loss.

Jiang & Zhai (2007) also proposed a two-stage
approach for domain generalization and adapta-
tion where first stage finds the generalizable fea-
ture representation across domains and its appro-
priate weights. The second stage picks up features
useful for the target domain using semi-supervised
learning. Their approach is a semi-supervised ap-
proach which uses labelled data from source and
target domains along with linear classifiers. How-
ever, our framework is unsupervised (no labeled
data from target) and leverages non-linear neural
network classifier.

3 Problem Formulation

Let us consider a binary classification task where
X ⊆ Rn is the input space and Y = {0, 1} is the
label space. We have two different distributions
over X × Y , called the source domain Ds and the
target domain Dt. We have labeled samples from
source S drawn i.i.d from Ds and unlabeled sam-
ples from the target T drawn i.i.d. from Dt.

S = {(xsi , ysi )}mi=1 ∼ (Ds)
m;

T = {xti}m
′

i=1 ∼ (Dt)
m′

where m and m′ are the number of labeled source
and unlabeled target samples. Let h(·) be the
D-dimensional hidden representation of the net-
work which is further represented as h(·) =
hss(·)

⊕
hc(·), where hss(·), hc(·),

⊕
represent

source specific, common representations and con-
catenation respectively. The neural network is
parametrized by {W,V, b.c}. Our objective is to
learn two parts of the hidden layer such that the

source specific characteristics hss(·) do not detract
the ability of common representation hc(·) to gen-
eralize to the target task. Let W be the weight
matrix between input and hidden units. W ′ &
W ′′ be the weight matrix between the input units
to the common and source specific units respec-
tively. Let o(·) & o′(·) be the domain regressor for
the common and source specific representations
parametrized by {u, d} & {u′, d′} respectively.

4 Proposed Neural Network Architecture

The proposed neural network is a fully connected
architecture, as shown in Figure 2. The empha-
sis of our work, in contrast to most of the pre-
vious work, is not only on modeling the similar-
ity between the domains but also on modeling the
differences i.e., the domain specific information.
We propose to achieve this by learning a two part
hidden layer comprising the source specific part
and the common part. The network tries to opti-
mize two objectives - a classification objective and
a domain divergence objective. The classification
objective tries to minimize the mis-classifications
in the labeled source data while the domain diver-
gence objective attempts to learn a representation
where both the source and target domain data ap-
pears close to each other. In our network, both
the source specific part and the common part con-
tribute positively to the source classification ob-
jective (i.e., minimize the mis-classification loss).
However, for the domain divergence objective,
the common part contributes positively (i.e., tries
to minimize divergence) whereas the source spe-
cific part contributes negatively (i.e., tries to max-
imize divergence). Thus, the common representa-
tion acquires domain independence and generaliz-
able classification abilities while the source spe-
cific representation remains domain-specific and
highly discriminating for the in-domain classifica-
tion task.

4.1 Learning in Source Domain

A neural network architecture with one hidden
layer learns the function, h : X → RD, to map
the input to a D-dimensional representation:

h(x) = sigm(Wx+ b),

where h(x) = hss(x)
⊕
hc(x) and

sigm(a)
[

1
1+exp(−ai)

]|a|
i=1

is parametrized by

a matrix-vector pair (W, b) ∈ RD×n × RD.
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Figure 2: Illustrates the architecture to simultaneously learn the common and source specific representations.

For source classification, our network follows a
standard neural network architecture where the
output function f : RD → [0, 1]L is given as:

f(x) = softmax(Vh(x) + c)

Given source examples S = {(xsi , ysi )}mi=1 and the
classification loss as the negative log-probability
of the correct label:

`(f(x), y) = log
1

fy(x)

Objective function for the source classification
task becomes:

min
W,V,b,c

[
1

m

m∑
i=1

`(f(xsi ), y
s
i )

]
(1)

4.2 Domain Divergence
Theoretical results in transfer learning literature
(Ben-David et al., 2010) show that adapting to a
target domain from a source domain depends on
a measure of similarity between the two. A for-
mal measure used in this context is known as H-
divergence. Intuitively, it is based on the capacity
of a hypothesis classH to distinguish between ex-
amples generated by a pair of source-target tasks.
Definition 1 Given feature distributions of two
domains, Ds & Dt and a hypothesis class H, the
H-divergence between Ds and Dt is defined as:

dH(Ds,Dt) = 2 sup
η∈H

∣∣∣∣ Pr
xs∼Ds

[η(xs) = 1]

− Pr
xt∼Dt

[
η(xt) = 1

]

We employ a result due to Ben-David et al. (2010)
where they proved that for a symmetric hypothesis
class H, one can compute an approximate empiri-
cal H-divergence by running a learning algorithm
on the problem of discriminating between source
and target examples. For this, we construct a new
dataset as:

{(xsi , 1)}mi=1 ∪ {(xtj , 0)}m
′

j=1.

where the target and source samples are labeled
as 0 and 1 respectively. Then, the error (ε) of the
classifier trained on the above dataset can be used
as an approximation of H-divergence termed as
proxy −A distance (PAD) and is given as:

d̂A = 2(1− 2ε)

Let the common representation for the
source and target samples be hc(S){hc(xsi )}mi=1

and hc(T ){hc(xti)}m
′

i=1 respectively. Let
d̂cH(hc(S), hc(T )) be the empirical H-divergence
on the common representation, given as:

d̂cH(hc(S), hc(T )) =

2

(
1−min

η∈H

[
1

m

m∑
i=1

I[η(hc(x
s
i )) = 1]

1

m′

m′∑
i=1

I[η(hc(x
t
i)) = 0]

])
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Algorithm 1 Learning Two-Part Hidden Representation for Neural Network

Input: Samples S = {(xsi , ysi )}mi=1 and T = {xti}m
′

i=1,
hidden layer size l with ns source specific and nc common
nodes, adaptation parameter λ, learning rate α.
Output: neural network {W,V,b,c}.
Initialization: W, V← random init(l)
b, c, u, d, u′, d′ ← 0
while stopping criteria is not met do

for i from 1 tom do
#Forward Propagation
h(xs

i)← σ(b+Wxs
i)

f(xs
i)← softmax(c+ V h(xs

i))
# where h(xs

i) = hc(x
s
i) + hss(x

s
i)

#Backpropagation
4c ← −(e(ys

i )− f(xs
i))

4V ←4ch(x
s
i)

>

4b ← (V >4c)� h(xs
i)� (1− h(xs

i))
4w ←4b · (xs

i)
>

# where h(xs
i) = hc(x

s
i) + hss(x

s
i)

#Domain adaptation regularizer...
#...from current domain - common representation
o(xs

i)← σ(d+ u>hc(x
s
i))

4d ← λ(1 − o(xs
i)); 4u ← λ(1 −

o(xs
i))hc(x

s
i)

tmp ← λ(1 − o(xs
i))u � hc(x

s
i) � (1 −

hc(x
s
i))

4b ←4b+tmp;4w′ ←4w′+tmp·(xs
i)

>

#...from current domain - source specific repre-
sentation
o′(xs

i)← σ(d′ + u′>hss(x
s
i))

4d′ ← λ(1− o′(xs
i))

4u′ ← λ(1− o′(xs
i))hss(x

s
i)

tmp ← λ(1 − o′(xs
i))u � hss(x

s
i) � (1 −

hss(x
s
i))

4b ← 4b + tmp; 4w′′ ← 4w′′ + tmp ·
(xs

i)
>

#...from other domain - common representation
j ⇐ uniform integer(1, ...,m′)
hc(x

t
j)⇐ σ(b+Wxt

j)

o(xt
j)← σ(d+ u>hc(x

t
j))

4d ← 4d − λo(xt
j);4u ← 4u −

λo(xt
j)hc(x

t
j)

tmp← −λo(xt
j)u�hc(x

t
j)� (1−hc(x

t
j))

4b ←4b+tmp;4w′ ←4w′+tmp·(xt
j)

>

#...from other domain - source specific represen-
tation
j ⇐ uniform integer(1, ...,m′)
hss(x

t
j)⇐ σ(b+Wxt

j)

o′(xt
j)← σ(d′ + u′>hss(x

t
j))

4d′ ←4d′ + λo′(xt
j)

4u′ ←4u′ + λo′(xt
j)hss(x

t
j)

tmp← λo′(xt
j)u

′�hss(x
t
j)�(1−hss(x

t
j))

4b ← 4b + tmp; 4w′′ ← 4w′′ + tmp ·
(xt

j)
>

#Update neural network parameters
W ←W − α4w;V ← V − α4v

W ′ ←W ′ − α4w′ ;W ′′ ←W ′′ − α4w′′

b⇐ b− α4b; c⇐ c− α4c

#Update domain classifier parameters
u← u+ α4u; d← d+ α4d

u′ ← u′ + α4u′ ; d′ ← d′ + α4d′

end for
end while

where I[·] is the indicator function and η(·) is a hy-
pothesis function from H. To estimate the “min”
part of the above equation, we use a logistic re-
gression model that predicts the probability that a
given input (using the common representation) is
from the source domain Dx

S (denoted by z = 1) or
the target domain Dx

T (denoted by z = 0):

p(z = 1|φ) = o(φ)sigm(d+ uTφ)

where φ is either hc(xs) or hc(xt) and o(·) is the
domain (logistic) regressor on the common repre-
sentation with loss function `d(·, ·) defined as:

`d(o(·), z) = −z log(o(·))−
(1− z) log(1− o(·))

(2)

Similarly, the divergence on the source specific
representation d̂ssH(hss(S), hss(T )) is given as:

d̂ssH(hss(S), hss(T )) =

2

(
1−min

η∈H

[
1

m

m∑
i=1

I[η(hss(x
s
i )) = 1]

1

m′

m′∑
i=1

I[η(hss(x
t
i)) = 0]

])

The “min” part of above equation is estimated us-
ing the domain regressor for the source specific
representation, o′(φ′)sigm(d′ + u′Tφ′), where φ′

is either hss(xs) or hss(xt) and `d
′
(·, ·) is its loss,

defined similar to Eq. 2.

4.3 The Learning Algorithm

Adding domain regressor terms to the objective of
Eq. 1, we get the final objective function as:
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min
W,V,b,c

[
1

m

m∑
i=1

`(f(xsi ), y
s
i )+

λ max
W ′,u,b,d

(
− 1

m

m∑
i=1

`d(o(xsi ), 1)

− 1

m′

m′∑
i=1

`d(o(xti), 0)

)
+

λ min
W ′′,u′,b,d′

(
− 1

m

m∑
i=1

`d
′
(o′(xsi ), 1)

− 1

m′

m′∑
i=1

`d
′
(o′(xti), 0)

)]
where the hyper-parameter λ > 0 is the domain
adaptation regularization term that controls the
trade-off between the source risk and the domain
divergence terms. In other words, it controls how
much weight mass is put on generalizable com-
mon representation v/s the source specific repre-
sentation.

The optimization problem involves minimiza-
tion with respect to some parameters and max-
imization with respect to the others. We use a
stochastic gradient descent (SGD) approach which
samples a pair of source and target example xsi , xti
and updates all the parameters of the neural net-
work. The first term in the objective represents the
source classification loss and updates for its asso-
ciated parameters, i.e. {W,V,b, c}, follow the
negative of the gradient to minimize this loss. The
second term in the objective represents the loss of
o(·) which is the domain regressor on the common
representation. This term is maximized so as to
diminish the ability of domain regressor to detect
whether the sample belongs to the source or the
target domain using the common representation.
This makes both the domains look similar by min-
imizing the divergence. Note, minimizing the do-
main divergence is equivalent to maximizing the
loss of the domain regressor. Therefore, the asso-
ciated parameters, {W′,u,d}, are updated in the
direction of the gradient (since we maximize with
respect to them, instead of minimizing). The last
term in the objective represents the loss of o′(·)
which is the domain regressor on the source spe-
cific representation. We want the source specific
representation to make the two domains appear
largely distinct and hence, minimize the loss of

Table 1: Collections from the OSM dataset.

Target Description # Unlabelled # Labelled
Col1 Mobile support 22645 5650
Col2 Obama Healthcare 36902 11050
Col3 Microsoft kinnect 20907 3258
Col4 X-box 36000 4580

its domain regressor. The updates for its associ-
ated parameters, {W′′,u′,d′}, follows the nega-
tive of the gradient. The algorithm is detailed in
Algorithm 1 where e(y) represents a one-hot vec-
tor, consisting of all 0s except for a 1 at position y
and � represents the element-wise product.

5 Experimental Evaluation

The effectiveness of the proposed technique which
learns source specific and common shared rep-
resentations between domains is evaluated for a
cross-domain sentiment classification task.

5.1 Datasets
The first dataset used in this research is the Ama-
zon review dataset (Blitzer et al., 2007) which
has four domains each comprising user reviews
about Books (B), DVDs (D), Kitchen appliances
(K) and Electronics (E) respectively. Each do-
main has 2000 reviews in-total with equal num-
ber of positive and negative reviews. Each review
is encoded in 5000 dimensional feature vectors
of unigrams/bigrams pre-processed to tf-idf vec-
tors. The performance is compared on 12 different
cross-domain classification tasks on the Amazon
review dataset and is reported as the classification
accuracy for binary classification. For each task,
1400 labeled reviews from one domain constitute
the source and 1400 unlabeled reviews from a dif-
ferent domain constitute the target. Unseen non-
overlapping 200 and 400 reviews from the target
domain are used as the validation and test set.

The second dataset is from Twitter.com com-
prising tweets about the products and services in
different domains and is referred to as online so-
cial media (OSM) dataset. Table 1 lists different
collections where the tweets are collected based
on user-defined keywords captured in a listening
engine which then crawls the social media and
fetches comments matching the keywords. This
dataset being noisy and comprising short-text is
more challenging than the other dataset. We use
labelled comments from the source and unlabelled
comments from the target for learning. While re-
porting the performance on the target, we used the
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Table 2: Comparing the cross-domain performance of different approaches on the Amazon Review dataset. D→B
represents the performance of an algorithm on unlabeled target domain B with D as labeled source domain.

Method D→ B E→ B K→ B B→ D E→ D K→ D D→ E B→ E K→ E D→ K B→ K E→ K
SS 43.2 47.3 47.0 43.5 47.4 46.7 48.6 47.6 48.4 51.2 51.0 49.6
NN 76.8 71.4 74.2 71.4 72.0 67.3 71.6 72.4 77.6 76.5 77.8 79.6
SVM 77.9 73.2 75.4 73.2 73.5 70.4 73.6 71.5 78.2 77.7 78.8 82.3
SCL 78.7 75.3 76.8 78.2 75.0 73.1 75.3 75.8 84.0 77.1 79.3 85.4
SFA 80.5 75.9 76.6 77.6 75.3 74.2 75.4 77.0 84.2 78.1 80.3 85.8
PJNMF 81.8 77.2 78.8 79.4 76.3 75.8 76.4 77.8 84.4 79.0 81.6 86.4
SDA 81.1 76.6 76.8 78.2 75.4 75.4 75.8 77.4 83.8 78.4 80.8 87.2
mSDA 81.3 77.6 78.5 79.5 76.5 76.4 75.4 77.2 83.6 78.5 81.2 88.2
TLDA 81.5 78.0 80.6 79.8 76.6 76.4 76.2 78.0 84.2 79.4 81.8 87.6
BTDNNs 81.9 78.6 81.2 80.0 77.9 76.2 76.8 78.6 85.2 80.5 82.7 88.3
SS+Common 78.8 76.7 77.3 74.4 77.8 73.6 74.4 76.8 80.4 78.6 80.2 83.5
DANN 79.5 77.4 78.2 76.3 78.4 76.3 75.2 77.2 81.4 78.9 80.6 85.8
DSN 81.5 78.9 79.0 78.3 79.5 77.4 76.0 78.3 83.4 79.5 81.4 87.7
Proposed 83.2 81.8 83.8 81.3 81.8 82.2 82.4 83.2 86.0 86.2 88.4 89.9
Gold-standard 84.6 84.6 84.6 83.4 83.4 83.4 86.7 86.7 86.7 90.2 90.2 90.2

Table 3: Comparing the cross-domain performance of different approaches on the OSM dataset.

Method Col2→1 Col3→1 Col4→1 Col1→2 Col3→2 Col4→2 Col1→3 Col2→3 Col4→3 Col1→4 Col2→4 Col3→4
SS 35.0 39.4 35.6 32.8 40.2 38.6 40.7 41.9 42.5 45.0 44.9 42.4
NN 66.4 65.2 68.3 65.8 66.8 63.8 65.2 67.2 68.2 67.3 67.2 68.1
SVM 67.1 63.2 64.3 62.6 64.3 60.4 62.8 63.2 65.8 68.2 69.3 72.4
SCL 68.2 67.5 67.2 67.1 67.3 64.1 64.5 65.3 72.1 68.8 70.1 73.6
SFA 71.3 67.6 67.8 69.1 70.2 67.8 68.2 68.4 74.2 69.5 72.3 76.3
PJNMF 72.0 67.2 68.3 70.4 70.5 68.4 69.3 69.1 74.8 70.0 72.5 74.8
SDA 71.5 66.3 67.6 68.2 69.3 70.2 67.6 68.3 68.7 72.4 69.3 72.6
mSDA 72.1 67.5 68.2 69.0 70.4 70.8 68.3 69.1 69.2 73.0 70.2 73.1
TLDA 72.4 67.8 68.6 69.7 71.1 71.5 68.8 69.8 70.0 73.8 70.7 73.8
BTDNNs 73.1 68.3 69.0 70.2 71.6 72.1 69.4 70.2 70.6 74.2 71.3 74.2
SS+Common 68.7 67.9 67.7 67.5 67.8 64.9 65.0 65.7 72.6 69.4 70.7 74.2
DANN 69.6 69.5 69.8 70.0 68.7 66.2 66.3 66.6 73.4 70.6 71.4 75.7
DSN 72.9 68.6 69.4 70.5 72.0 72.2 69.5 70.3 70.8 74.3 71.5 74.6
Proposed 77.6 74.5 75.5 76.2 77.8 78.2 75.2 75.7 76.1 80.1 77.9 80.9
Gold-standard 78.2 78.2 78.2 79.1 79.1 79.1 81.0 81.0 81.0 81.4 81.4 81.4

comments for which the actual labels are avail-
able; however, label information is used only as
ground truth to report the performance. The com-
ments were pre-processed by converting it to low-
ercase followed by stemming. Further, feature se-
lection was based on document frequency (DF =
5) which reduces the number of features as well as
speed up the learning task.

5.2 Experimental Protocol

Performance of proposed architecture is compared
with standard neural network architecture with
one hidden layer (“NN”) (as described in Eq. 1)
and a support vector machine (“SVM”) (Chih-
Wei Hsu and Lin, 2003) with linear kernel where
the training is performed on labelled source do-
main and performance is reported on the target
domain. “Gold-standard” refers to target domain
supervised performance of the SVM. The perfor-
mance is further compared with popular shared
representation learning approaches for domain
adaptation including Structural Correspondance
Learning (“SCL”) (Blitzer et al., 2006),(Blitzer
et al., 2007), Spectral Feature Alignment (“SFA”)
(Pan et al., 2010) and “PJNMF” (Zhou et al.,

2015).
We also compared the performance with

“DANN” (Ajakan et al., 2014), stacked De-
noising Auto-encoders (“SDA”) (Glorot et al.,
2011), and marginalized SDA (“mSDA”) (Chen
et al., 2012b) and transfer learning with deep
auto-encoders (“TLDA”) (Pan et al., 2008) ,
“BTDNNs” (Zhou et al., 2016) and “DSN” (Bous-
malis et al., 2016) which are some of the popu-
lar approaches in cross-domain sentiment analy-
sis. The performance is also compared with dif-
ferent components of the learned representations
i.e. source specific (“SS”), common (“Proposed”),
and “SS+common” representations. For SDA,
mSDA, TLDA, BTDNNs, SS, SS+common and
the proposed, a standard SVM is trained on the
learned representation and is applied to predict the
sentiment labels for target data.

Training is done using stochastic gradient de-
scent (SGD) with minibatch size of 50. The ini-
tial learning rate was fixed at 0.01 and then em-
pirically varied to find optimal value as 0.0001.
Epochs were fixed at 25, above which gradients
were found to saturate. The hyperparameter λ was
varied in the range [0,1].
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5.3 Results and Analysis

Results in Table 2 show the efficacy of the pro-
posed neural network architecture for learning
common shared representation while limiting the
source specific representation from negatively ef-
fecting their generalizable capabilities in the target
domain. Results suggest that the learned common
representation, referred to as “Proposed”, consis-
tently outperforms other existing algorithms for
all cross-domain sentiment analysis task on the
Amazon review dataset (Blitzer et al., 2007). The
source specific (SS) representation performs con-
sistently poor at the all target tasks as they are
trained to emphasize only on the source task. Re-
sults also suggest that combining source specific
representation with the common representation,
referred to as “SS+Common” leads to a lower per-
formance than the common representation alone.
This validates our assertion that combining source
specific characteristics with common representa-
tion negatively effects the generalization capabil-
ities of the common representation in the target
domain. The proposed method also surpasses
BTDNNs (state-of-the-art) which focuses on the
feasibility of transfer between domains with a
linear data reconstruction for distribution consis-
tency. Contrary to the proposed two-part repre-
sentations, it suggests that enforcing distribution
consistency across all hidden units suppresses the
discriminating information which results in lower
classification performance for BTDNNs. The pro-
posed approach even outperforms deep learning
based methods (SDA, mSDA and TLDA) as these
approaches learn the unified domain-invariable
feature representation by combining the source
domain and target domain data which may not
separate out the domain-specific features from the
commonality of domains. On the contrary, the ob-
jective used in the paper is based on the min-max
optimization criterion that minimizes the domain
specific component loss as well as maximizes the
shared component loss. In other words, the pro-
posed approach not only models the similarity be-
tween domains but also models and mitigates the
source domain specific information, thus leading
to better cross-domain performance.

Results in Table 3 compare the performance of
all algorithms on the OSM dataset. We observe
that the overall performance of all the algorithms
is lower on the OSM dataset, as compared to the
first dataset, as it is more challenging due to short

Figure 3: Compares the proxy − A distances (PAD)
computed on the common representations learned us-
ing the proposed technique v/s the (a) source specific
and (b) representations learned using DANN.

and noisy text. Both Tables 2 & 3 demonstrate
that the domain adaptation methods perform better
than the baselines and “SS” representation which
suggests that transferring knowledge across do-
mains benefits the cross-domain sentiment clas-
sification task. The improvements achieved by
the proposed technique, which reaches closest to
the target domain supervised performance “Gold-
standard”, is consistently better than the existing
algorithms as it explicitly keeps away any source
specific components from the learned common
representation so as to yield the best generaliza-
tion on the target domain.

5.3.1 The Common Representation:

The primary objective of the common represen-
tation is to make the source and target distribu-
tions appear similar. In other words, these repre-
sentation should be such that it becomes arduous
to distinguish between the source and target ex-
amples for a model trained on this representation.
We compute proxy − A distance (PAD) between
two domains, as explained in Eq. 2. Figure 3 il-
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Figure 4: Compares the performance on the source classification task. For example, B→D here represent the
performance of an algorithm on the source domain B when the representations are learned with B as labeled
source and D as unlabeled target domain.

lustrates that the learned common representation
leads to a lower PAD when compared with either
the source specific representation or the represen-
tation learned using DANN. A low PAD between
domains for a given representation signifies that
the divergence between the domains is reduced.

5.3.2 The Source Specific Representation:
We evaluate the performance of different parts of
the learned representation on the source domain.
Optimizing the target domain performance is in-
deed the primary objective for domain adapta-
tion; however, existing domain adaptation algo-
rithms generally exhibit a lower performance on
the source. We empirically demonstrate that the
proposed method for learning source specific and
common parts of the hidden layer sustains a higher
level of performance in the source as well.

Results in Figure 4 compares the performance
of the different representations on the source do-
main. We compare the performance of the source
specific representation and the common represen-
tation learned using the proposed approach with
the representation learned using DANN (Ajakan
et al., 2014) and the skyline source domain perfor-
mance. Results suggest that while the two individ-
ual parts of the learned representation yield lower
source domain performance, the combined source
specific and common representation (“combined”)
outperforms the source domain performance of the
representation learned using DANN. This signi-
fies that the two parts of the learned representation
learn complementary characteristics i.e. source
specific and general.

5.3.3 Source Specific & Common Units:
While learning the two part representation with
our neural network architecture, the number of
source specific and common units in the hidden
layer is an important factor to influence the cross-

domain performance. In our experiments, we ob-
served that when the source and target domains
were similar (as measured by the PAD), hidden
layer with a higher portion of common v/s source
specific units resulted in better cross-domain per-
formance as compared to when the source and
target domains were dissimilar. This intuitively
suggests that for similar domains there are more
commonalities than domain specific characteris-
tics and hence, a higher number of common units
is required to capture this commonality. Similarly,
we observed that for not so similar domains, the
source specific units dominate the number of com-
mon units.

6 Conclusion & Future Work
The paper proposed a novel neural network learn-
ing algorithm based on the principle of learning
a two-part representation where each part opti-
mizes for different objective. One part captures
the source specific characteristics that are discrim-
inating for learning in the source domain. The
other part captures the common representation be-
tween the source and target domain pair which
contributes to both source domain learning as well
as generalizes to the unlabelled target domain task.
The major contribution of this work is to learn
the common shared representation between do-
mains by explicitly disentangling the source spe-
cific characteristics so as not to detract the capa-
bilities of common representation for the cross-
domain task. In the cross-domain task, the com-
mon part of the representation performs best when
it is isolated from the source specific part. On
the contrary, both the source specific and common
parts of the representation come along for efficient
performance in the source domain task. Finally,
we demonstrated the efficacy of the proposed ap-
proach for cross-domain classification on different
datasets.
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