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Abstract

There exist few text-specific methods for un-
supervised anomaly detection, and for those
that do exist, none utilize pre-trained models
for distributed vector representations of words.
In this paper we introduce a new anomaly
detection method—Context Vector Data De-
scription (CVDD)—which builds upon word
embedding models to learn multiple sentence
representations that capture multiple seman-
tic contexts via the self-attention mechanism.
Modeling multiple contexts enables us to per-
form contextual anomaly detection of sen-
tences and phrases with respect to the mul-
tiple themes and concepts present in an un-
labeled text corpus. These contexts in com-
bination with the self-attention weights make
our method highly interpretable. We demon-
strate the effectiveness of CVDD quantita-
tively as well as qualitatively on the well-
known Reuters, 20 Newsgroups, and IMDB
Movie Reviews datasets.

1 Introduction

Anomaly Detection (AD) (Chandola et al., 2009;
Pimentel et al., 2014; Aggarwal, 2017) is the
task of discerning rare or unusual samples in a
corpus of unlabeled data. A common approach
to AD is one-class classification (Moya et al.,
1993), where the objective is to learn a model
that compactly describes “normality”—usually as-
suming that most of the unlabeled training data is
“normal,” i.e. non-anomalous. Deviations from
this description are then deemed to be anoma-
lous. Examples of one-class classification meth-
ods are the well-known One-Class SVM (OC-
SVM) (Schölkopf et al., 2001) and Support Vector
Data Description (SVDD) (Tax and Duin, 2004).

Applying AD to text is useful for many appli-
cations including discerning anomalous web con-
tent (e.g. posts, reviews, or product descriptions),

automated content management, spam detection,
and characterizing news articles so as to identify
similar or dissimilar novel topics. Recent work
has found that proper text representation is criti-
cal for designing well-performing machine learn-
ing algorithms. Given the exceptional impact that
universal vector embeddings of words (Bengio
et al., 2003) such as word2vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014), and Fast-
Text (Bojanowski et al., 2017; Joulin et al., 2017)
or dynamic vector embeddings of text by language
models such as ELMo (Peters et al., 2018) and
BERT (Devlin et al., 2018) have had on NLP, it is
somewhat surprising that there has been no work
on adapting AD techniques to use such unsuper-
vised pre-trained models. Existing AD methods
for text still typically rely on bag-of-words (BoW)
text representations (Manevitz and Yousef, 2001,
2007; Mahapatra et al., 2012; Kannan et al., 2017).

In this work, we introduce a novel one-class
classification method that takes advantage of pre-
trained word embedding models for performing
AD on text. Starting with pre-trained word embed-
dings, our method—Context Vector Data Descrip-
tion (CVDD)—finds a collection of transforms to
map variable-length sequences of word embed-
dings to a collection of fixed-length text repre-
sentations via a multi-head self-attention mecha-
nism. These representations are trained along with
a collection of context vectors such that the con-
text vectors and representations are similar while
keeping the context vectors diverse. Training these
representations and context vectors jointly allows
our algorithm to capture multiple modes of nor-
malcy which may, for example, correspond to
a collection of distinct yet non-anomalous top-
ics. Disentangling such modes allows for contex-
tual anomaly detection with sample-based expla-
nations and enhanced model interpretability.
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(a) Overall most anomalous reviews in IMDB test set according to CVDD.

c1 c2 c3
great excellent awful downright plot characters
good superb stupid inept story storyline
well wonderful pathetic irritating scenes narrative
nice best annoying inane subplots twists
terrific beautiful unfunny horrible tale interesting

(b) Top words per context by self-attention weights from the most similar sentences per CVDD context.

(c) Most normal reviews in IMDB test set for CVDD contexts c1, c2, and c3 with highlighted self-attention weights.

Figure 1: Illustration of CVDD trained on the IMDB Movie Reviews. The five most anomalous movie reviews are
shown in (a). Table (b) shows the most important words from three of the CVDD contexts. Our model successfully
disentangles positive and negative sentiments as well as cinematic language in an unsupervised manner. (c) shows
the most normal examples w.r.t. those contexts with explanations given by the highlighted self-attention weights.

2 Context Vector Data Description

In this section we introduce Context Vector
Data Description (CVDD), a self-attentive, multi-
context one-class classification method for unsu-
pervised AD on text. We first describe the CVDD
model and objective, followed by a description
of its optimization procedure. Finally we present
some analysis of CVDD.

2.1 Multi-Head Self-Attention

Here we describe the problem setting and multi-
head self-attention mechanism which lies at the
core of our method. Let S = (w1, . . . , w`) ∈
Rd×` be a sentence or, more generally, a sequence
of ` ∈ N words (e.g. phrase or document), where
each word is represented via some d-dimensional
vector. Given some pre-trained word embedding,
let H = (h1, . . . , h`) ∈ Rp×` be the correspond-
ing p-dimensional vector embeddings of the words
in S. The vector embeddingH might be some uni-
versal word embedding (e.g. GloVe, FastText) or
the hidden vector activations of sentence S given
by some language model (e.g. ELMo, BERT).

The aim of multi-head self-attention (Lin et al.,

2017) is to define a transformation that ac-
cepts sentences S(1), . . . , S(n) of varying lengths
`(1), . . . , `(n) and returns a vector of fixed length,
thereby allowing us to apply more standard AD
techniques. The idea here is to find a fixed-length
vector representation of size p via a convex combi-
nation of the word vectors in H . The coefficients
of this convex combination are adaptive weights
which are learned during training.

We describe the model now in more detail.
Given the word embeddings H ∈ Rp×` of a sen-
tence S, the first step of the self-attention mech-
anism is to compute the attention matrix A ∈
(0, 1)`×r by

A = softmax
(
tanh(H>W1)W2

)
, (1)

where W1 ∈ Rp×da and W2 ∈ Rda×r. The
tanh-activation is applied element-wise and the
softmax column-wise, thus making each vector
ak of the attention matrix A = (a1, . . . , ar) a
positive vector that sums to one, i.e. a weight-
ing vector. The r vectors a1 . . . , ar are called
attention heads with each head giving a weight-
ing over the words in the sentence. Dimension
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da is the internal dimensionality and thus sets the
complexity of the self-attention module. We now
obtain a fixed-length sentence embedding matrix
M = (m1, . . . ,mr) ∈ Rp×r from the word em-
beddings H by applying the self-attention weights
A as

M = HA. (2)

Thus, each column mk ∈ Rp is a weighted
linear combination of the vector embeddings
h1, . . . , h` ∈ Rp with weights ak ∈ R` given by
the respective attention head k, i.e. mk = Hak.
Often, a regularization term P such as

P =
1

n

n∑
i=1

∥∥(A(i)>A(i) − I)
∥∥2
F

(3)

is added to the learning objective to promote the
attention heads to be nearly orthogonal and thus
capture distinct views that focus on different se-
mantics and concepts of the data. Here, I denotes
the r × r identity matrix, ‖ · ‖F is the Frobenius
norm, and A(i) , A(H(i);W1,W2) is the atten-
tion matrix corresponding to sample S(i).

2.2 The CVDD Objective
In this section, we introduce an unsupervised AD
method for text. It aims to capture multiple dis-
tinct contexts that may appear in normal text. To
do so, it leverages the multi-head self-attention
mechanism (described in the previous section),
with the heads focusing on distinct contexts (one
head per context).

We first define a notion of similarity. Let
sim(u, v) be the cosine similarity between two
vectors u and v, i.e.

sim(u, v) =
〈u, v〉
‖u‖ ‖v‖

∈ [−1, 1] (4)

and denote by d(u, v) the cosine distance between
u and v, i.e.

d(u, v) =
1

2
(1− sim(u, v)) ∈ [0, 1]. (5)

As before, let r be the number of attention
heads. We now define the context matrix C =
(c1, . . . , cr) ∈ Rp×r to be a matrix whose
columns c1, . . . , cr are vectors in the word em-
bedding space Rp. Given an unlabeled training
corpus S(1), . . . , S(n) of sentences (or phrases,
documents, etc.), which may vary in length `(i),
and their corresponding word vector embeddings

H(1), . . . ,H(n), we formulate the Context Vector
Data Description (CVDD) objective as follows:

min
C,W1,W2

1

n

n∑
i=1

r∑
k=1

σk(H
(i)) d(ck,m

(i)
k )︸ ︷︷ ︸

=:Jn(C,W1,W2)

. (6)

σ1(H), . . . , σr(H) are input-dependent weights,
i.e.

∑
k σk(H) = 1, which we specify further

below in detail. That is, CVDD finds a set of
vectors c1, . . . , cr ∈ Rp with small cosine dis-
tance to the attention-weighted data representa-
tions m(i)

1 , . . . ,m
(i)
r ∈ Rp. Note that each concept

vector ck is paired with the data representation
m

(i)
k of the kth head. This causes the network to

learn attention weights that extract the most com-
mon concepts and themes from the data. We call
the vectors c1, . . . , cr ∈ Rp context vectors be-
cause they represent a compact description of the
different contexts that are present in the data. For a
given text sample S(i), the corresponding embed-
ding m

(i)
k provides a sample representation with

respect to the kth context.

Multi-context regularization To promote the
context vectors c1, . . . , cr to capture diverse
themes and concepts, we regularize them towards
orthogonality:

P (C) = ‖C>C − I‖2F . (7)

We can now state the overall CVDD objective as

min
C,W1,W2

Jn(C,W1,W2) + λP (C), (8)

where Jn(C,W1,W2) is the objective function
from Eq. (6) and λ > 0. Because CVDD mini-
mizes the cosine distance

d(ck,mk) =
1

2

(
1−

〈
ck
‖ck‖

,
Hak
‖Hak‖

〉)
, (9)

regularizing the context vectors c1, . . . , ck to be
orthogonal implicitly regularizes the attention
weight vectors a1, . . . , ar to be orthogonal as well,
a phenomenon which we also observed empiri-
cally. Despite this, we found that regularizing the
context vectors as in (7) allows for faster, more
stable optimization in comparison to regularizing
the attention weights as in (3). We suspect this
is because in (3) P = Pn(W1,W2) depends non-
linearly on the attention network weights W1 and
W2 as well as on the data batches. In compari-
son, the gradients of P (C) in (7) can be directly
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computed. Empirically we found that selecting
λ ∈ {1, 10} gives reliable results with the desired
effect that CVDD learns multiple distinct contexts.

Optimization of CVDD We optimize the
CVDD objective jointly over the self-attention
network weights {W1,W2} and the context vec-
tors c1, . . . , cr using stochastic gradient descent
(SGD) and its variants (e.g. Adam (Kingma and
Ba, 2014)). Thus, CVDD training scales linearly
in the number of training batches. Training is car-
ried out until convergence. Since the self-attention
module is just a two-layer feed-forward network,
the computational complexity of training CVDD
is very low. However, evaluating a pre-trained
model for obtaining word embeddings may add
to the computational cost (e.g. in case of large
pre-trained language models) in which case par-
allelization strategies (e.g. by using GPUs) should
be exploited. We initialize the context vectors with
the centroids from running k-means++ (Arthur
and Vassilvitskii, 2007) on the sentence represen-
tations obtained from averaging the word embed-
dings. We empirically found that this initializa-
tion strategy improves optimization speed as well
as performance.

Weighting contexts in the CVDD objective
There is a natural motivation to consider multi-
ple vectors for representation because sentences or
documents may have multiple contexts, e.g. cin-
ematic language, movie theme, or sentiment in
movie reviews. This raises the question of how
these context representations should be weighted
in a learning objective. For this, we propose to
use a parameterized softmax over the r cosine dis-
tances of a sample S with embedding H in our
CVDD objective:

σk(H) =
exp(−α d(ck,mk(H)))∑r
j=1 exp(−α d(cj ,mj(H)))

, (10)

for k = 1, . . . , r with α ∈ [0,+∞). The
α parameter allows us to balance the weighting
between two extreme cases: (i) α = 0 which
results in all contexts being equally weighted,
i.e. σk(H) = 1/r for all k, and (ii) α → ∞ in
which case the softmax approximates the argmin-
function, i.e. only the closest context kmin =
argmink d(ck,mk) has weight σkmin = 1 whereas
σk = 0 for k 6= kmin otherwise.

Traditional clustering methods typically only
consider the argmin, i.e. the closest representa-

tives (e.g. nearest centroid in k-means). For learn-
ing multiple sentence representations as well as
contexts from data, however, this might be inef-
fective and result in poor representations. This
is due to the optimization getting “trapped” by
the closest context vectors which strongly depend
on the initialization. Not penalizing the distances
to other context vectors also does not foster the
extraction of multiple contexts per sample. For
this reason, we initially set α = 0 in training
and then gradually increase the α parameter using
some annealing strategy. Thus, learning initially
focuses on extracting multiple contexts from the
data before sample representations then gradually
get fine-tuned w.r.t their closest contexts.

2.3 Contextual Anomaly Detection
Our CVDD learning objective and the introduction
of context vectors allows us to score the “anoma-
lousness” in relation to these various contexts,
i.e. to determine anomalies contextually. We natu-
rally define the anomaly score w.r.t. context k for
some sample S with embedding H as

sk(H) = d(ck,mk(H)), (11)

the cosine distance of the contextual embedding
mk(H) to the respective context vector ck. A
greater the distance ofmk(H) to ck implies a more
anomalous sample w.r.t. context k. A straightfor-
ward choice for an overall anomaly score then is
to take the average over the contextual anomaly
scores:

s(H) =
1

r

r∑
k=1

sk(H). (12)

One might, however, select different weights for
different contexts as particular contexts might be
more or less relevant in certain scenarios. Using
word lists created from the most similar attention-
weighted sentences to a context vector provides an
interpretation of the particular context.

2.4 Avoiding Manifold Collapse
Neural approaches to AD (Ruff et al., 2018) and
clustering (Fard et al., 2018) are prone to con-
verge to degenerate solutions where the data is
transformed to a small manifold or a single point.
CVDD potentially may also suffer from this man-
ifold collapse phenomenon. Indeed, there exists
a theoretical optimal solution (C∗,W ∗1 ,W

∗
2 ) for

which the (nonnegative) CVDD objective (6) be-
comes zero due to trivial representations. This is
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the case for (C∗,W ∗1 ,W
∗
2 ) where

mk(H
(i);W ∗1 ,W

∗
2 ) = c∗k ∀i = 1, . . . , n, (13)

holds, i.e. if the contextual representation
mk(· ;W ∗1 ,W ∗2 ) is a constant mapping. In this
case, all contextual data representations have
collapsed to the respective context vectors and are
independent of the input sentence S with embed-
ding H . Because the pre-trained embeddings H
are fixed, and the self-attention embedding must
be a convex combination of the columns in H , it
is difficult for the network to overfit to a constant
function. A degenerate solution may only occur
if there exists a word which occurs in the same
location in all training samples. This property of
CVDD, however, might be used “as a feature” to
uncover such simple common structure amongst
the data such that appropriate pre-processing
steps can be carried out to rule out such “Clever
Hans” behavior (Lapuschkin et al., 2019). Finally,
since we normalize the contextual representations
mk as well as the context vectors ck with cosine
similarity, a trivial collapse to the origin (mk = 0
or ck = 0) is also avoided.

3 Related Work

Our method is related to works from unsupervised
representation learning for NLP, methods for AD
on text, as well as representation learning for AD.

Vector representations of words (Bengio et al.,
2003; Collobert and Weston, 2008) or word em-
beddings have been the key for many substan-
tial advances in NLP in recent history. Well-
known examples include word2vec (Mikolov
et al., 2013), GloVe (Pennington et al., 2014), or
fastText (Bojanowski et al., 2017; Joulin et al.,
2017). Approaches for learning sentence em-
beddings have also been introduced, including
SkipThought (Kiros et al., 2015), ParagraphVec-
tor (Le and Mikolov, 2014), Conceptual Sentence
Embedding (Wang et al., 2016), Sequential De-
noising Autoencoders (Hill et al., 2016) or Fast-
Sent (Hill et al., 2016). In a comparison of un-
supervised sentence embedding models, Hill et al.
(2016) show that the optimal embedding critically
depends on the targeted downstream task. For
specific applications, more complex deep mod-
els such as recurrent (Chung et al., 2014), recur-
sive (Socher et al., 2013) or convolutional (Kim,
2014) networks that learn task-specific dynamic

sentence embeddings usually perform best. Re-
cently, large language models like ELMo (Peters
et al., 2018) or BERT (Devlin et al., 2018) that
learn dynamic sentence embeddings in an unsu-
pervised manner have proven to be very effective
for transfer learning, beating the state-of-the-art in
many downstream tasks. Such large deep models,
however, are very computationally intensive. Fi-
nally, no method for learning representations of
words or sentences specifically for the AD task
have been proposed yet.

There are only few works addressing AD
on text. Manevitz and Yousef study one-
class classification of documents using the
OC-SVM (Schölkopf et al., 2001; Manevitz
and Yousef, 2001) and a simple autoen-
coder (Manevitz and Yousef, 2007). Liu
et al. (2002) consider learning from positively
labeled as well as unlabeled mixed data of
documents what they call a “partially supervised
classification” problem that is similar to one-class
classification. Kannan et al. (2017) introduce a
non-negative matrix factorization method for AD
on text that is based on block coordinate descent
optimization. Mahapatra et al. (2012) include
external contextual information for detecting
anomalies using LDA clustering. All the above
works, however, only consider document-to-word
co-occurrence text representations. Other ap-
proaches rely on specific handcrafted features for
particular domains or types of anomalies (Guthrie,
2008; Kumaraswamy et al., 2015). None of the
existing methods make use of pre-trained word
models that were trained on huge corpora of text.

Learning representations for AD or Deep
Anomaly Detection (Chalapathy and Chawla,
2019) has seen great interest recently. Such ap-
proaches are motivated by applications on large
and complex datasets and the limited scalability
of classic, shallow AD techniques and their need
for manual feature engineering. Deep approaches
aim to overcome those limitations by automati-
cally learning relevant features from the data and
mini-batch training for improved computational
scaling. Most existing deep AD works are in
the computer vision domain and show promising,
state-of-the-art results for image data (Andrews
et al., 2016; Schlegl et al., 2017; Ruff et al., 2018;
Deecke et al., 2018; Golan and El-Yaniv, 2018;
Hendrycks et al., 2019). Other works examine
deep AD on general high-dimensional point data
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(Sakurada and Yairi, 2014; Xu et al., 2015; Erfani
et al., 2016; Chen et al., 2017). Few deep ap-
proaches examine sequential data, and those that
do exist focus on time series data AD using LSTM
networks (Bontemps et al., 2016; Malhotra et al.,
2015, 2016). As mentioned earlier, there exists no
representation learning approach for AD on text.

4 Experiments

We evaluate the performance of CVDD quantita-
tively in one-class classification experiments on
the Reuters-215781 and 20 Newsgroups2 datasets
as well as qualitatively in an application on IMDB
Movie Reviews3 to detect anomalous reviews.4

4.1 Experimental Details

Pre-trained Models We employ the pre-trained
GloVe (Pennington et al., 2014) as well as fast-
Text (Bojanowski et al., 2017; Joulin et al., 2017)
word embeddings in our experiments. For GloVe
we consider the 6B tokens vector embeddings of
p = 300 dimensions that have been trained on
the Wikipedia and Gigaword 5 corpora. For fast-
Text we consider the English word vectors that
also have p = 300 dimensions which have been
trained on the Wikipedia and English webcrawl.
We also experimented with dynamic word embed-
dings from the BERT (Devlin et al., 2018) lan-
guage model but did not observe improvements
over GloVe or fastText on the considered datasets
that would justify the added computational cost.

Baselines We consider three baselines for ag-
gregating word vector embeddings to fixed-length
sentence representations: (i) mean, (ii) tf-idf
weighted mean, and (iii) max-pooling. It has been
repeatedly observed that the simple average sen-
tence embedding proves to be a strong baseline
in many tasks (Wieting et al., 2016; Arora et al.,
2017; Rücklé et al., 2018). Max-pooling is com-
monly applied over hidden activations (Lee and
Dernoncourt, 2016). The tf-idf weighted mean is a
natural sentence embedding baseline that includes
document-to-term co-occurrence statistics. For
AD, we then consider the OC-SVM (Schölkopf
et al., 2001) with cosine kernel (which in this case
is equivalent to SVDD (Tax and Duin, 2004)) on
these sentence embeddings where we always train

1daviddlewis.com/resources/testcollections/reuters21578
2qwone.com/ jason/20Newsgroups
3ai.stanford.edu/amaas/data/sentiment
4Code available at: github.com/lukasruff/CVDD-PyTorch

for hyperparameters ν ∈ {0.05, 0.1, 0.2, 0.5} and
report the best result.

CVDD configuration We employ self-attention
with da = 150 for CVDD and present results for
r ∈ {3, 5, 10} number of attention heads. We use
Adam (Kingma and Ba, 2014) with a batch size
of 64 for optimization and first train for 40 epochs
with a learning rate of η = 0.01 after which we
train another 60 epochs with η = 0.001, i.e. we es-
tablish a simple two-phase learning rate schedule.
For weighting contexts, we consider the case of
equal weights (α = 0) as well as a logarithmic an-
nealing strategy α ∈ {0, 10−4, 10−3, 10−2, 10−1}
where we update α every 20 epochs. For multi-
context regularization, we choose λ ∈ {1, 10}.

Data pre-processing On all three datasets, we
always lowercase text and strip punctuation, num-
bers, as well as redundant whitespaces. More-
over, we remove stopwords using the stopwords
list from the nltk library (Bird et al., 2009) and
only consider words with a minimum length of 3
characters.

4.2 One-Class Classification of News Articles

Setup We perform one-class classification ex-
periments on the Reuters-21578 and 20 News-
groups topic classification datasets which allow us
to quantitatively evaluate detection performance
via AUC measure by using the ground truth labels
in testing. Such use of classification datasets is
the typical evaluation approach in the AD litera-
ture (Erfani et al., 2016; Ruff et al., 2018; Golan
and El-Yaniv, 2018). For the multi-label Reuters
dataset, we only consider the subset of samples
that have exactly one label and have selected the
classes such that there are at least 100 training ex-
amples per class. For 20 Newsgroups, we con-
sider the six top-level subject matter groups com-
puter, recreation, science, miscellaneous, politics,
and religion as distinct classes. In every one-class
classification setup, one of the classes is the nor-
mal class and the remaining classes are considered
anomalous. We always train the models only with
the training data from the respective normal class.
We then perform testing on the test samples from
all classes, where samples from the normal class
get label y = 0 (“normal”) and samples from all
the remaining classes get label y = 1 (“anoma-
lous”) for determining the AUC.

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://qwone.com/~jason/20Newsgroups/
http://ai.stanford.edu/~amaas/data/sentiment/
https://github.com/lukasruff/CVDD-PyTorch/
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GloVe fastText
Normal OC-SVM CVDD OC-SVM CVDD
Class mean tf-idf max r=3 r=5 r=10 c∗ mean tf-idf max r=3 r=5 r=10 c∗

Reuters
earn 91.1 88.6 77.1 94.0 92.8 91.8 97.6 87.8 82.4 74.9 95.3 92.7 93.9 94.5
acq 93.1 77.0 81.4 90.2 88.7 91.5 95.6 91.8 74.1 80.2 91.0 90.3 92.7 92.4
crude 92.4 90.3 91.2 89.6 92.5 95.5 89.4 93.3 90.2 84.7 90.9 94.1 97.3 85.0
trade 99.0 96.8 93.7 98.3 98.2 99.2 97.9 97.6 95.0 92.1 97.9 98.1 99.3 97.7
money-fx 88.6 81.2 73.6 82.5 76.7 82.8 99.7 80.5 82.6 73.8 82.6 79.8 82.5 99.5
interest 97.4 93.5 84.2 92.3 91.7 97.7 98.4 91.6 88.7 82.8 93.3 92.1 95.9 97.4
ship 91.2 93.1 86.5 97.6 96.9 95.6 99.7 90.0 90.6 85.0 96.9 94.7 96.1 99.7
20 News
comp 82.0 81.2 54.5 70.9 66.4 63.3 86.6 77.5 78.0 65.5 74.0 68.2 64.2 88.2
rec 73.2 75.6 56.2 50.8 52.8 53.3 68.9 66.0 70.0 51.9 60.6 58.5 54.1 85.1
sci 60.6 64.1 53.0 56.7 56.8 55.7 61.0 61.0 64.2 57.0 58.2 57.6 55.9 64.4
misc 61.8 63.1 54.1 75.1 70.2 68.6 83.8 62.3 62.1 55.7 75.7 70.3 68.0 83.9
pol 72.5 75.5 64.9 62.9 65.3 65.1 75.4 73.7 76.1 68.1 71.5 66.4 67.1 82.8
rel 78.2 79.2 68.4 76.3 72.9 70.7 87.3 77.8 78.9 73.9 78.1 73.2 69.5 89.3

Table 1: AUCs (in %) of one-class classification experiments on Reuters and 20 Newsgroups.

computer politics religion
c1 c2 (c∗) c3 c1 c2 c3 (c∗) c1 c2 (c∗) c3
get windows use kill think government example god one
help software using killed know peace particular christ first
thanks disk used escape say arab specific christians two
appreciated dos uses away really political certain faith three
got unix possible back thing occupation analysis jesus also
know computer system shoot anyone forces rather christianity later
way hardware need shot guess support therefore bible time
try desktop allow crying something movement consistent scripture last
tried macintosh could killing understand leaders often religion year
take cpu application fight sure parties context worship four

Table 2: Example of top words per context on 20 Newsgroups one-class classification experiments comp, pol, and
rel for CVDD model with r = 3 contexts.

Reuters 20 Newsgroups
earn acq crude trade money-fx interest ship rec sci misc
shr acquire oil trade bank rate port game use sale
dividend buy crude imports market pct shipping team systems offer
profit purchase barrels economic dollar bank ships season modified shipping
qtr acquisition petroleum exports currency rates seamen games method price
net stake prices tariffs exchange discount vessel league system sell
prior acquired refinery goods rates effective canal play types items
cts assets supply export liquidity interest cargo win data sold
dividends transaction exports trading markets lending vessels scoring provide selling
share sell dlr deficit monetary raises sea playoffs devices brand
loss sale gas pact treasury cuts ferry playoff require bought

Table 3: Top words of the best single contexts c∗ for one-class classification experiments of news articles.

Results The results are presented in Table 1.
Overall, we can see that CVDD shows competitive
detection performance. We compute the AUCs
for CVDD from the average anomaly score over
the contextual anomaly scores as defined in (12).
We find CVDD performance to be robust over
λ ∈ {1, 10} and results are similar for weighting
contexts equally (α = 0) or employing the loga-
rithmic annealing strategy. The CVDD results in
Table 1 are averages over those hyperparameters.

We get an intuition of the theme captured by
some CVDD context vector by examining a list of
top words for this context. We create such lists by
counting the top words according to the highest
self-attention weights from the most similar test
sentences per context vector. Table 2 shows an ex-
ample of such context word lists for CVDD three
contexts. Such lists may guide a user in weighting
and selecting relevant contexts in a specific appli-
cation. Following this thought, we also report the
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IMDB Movie Reviews
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
great awful plot two think actions film head william movie
excellent downright characters one anybody development filmmakers back john movies
good stupid story three know efforts filmmaker onto michael porn
superb inept storyline first would establishing movie cut richard sex
well pathetic scenes five say knowledge syberberg bottom davies watch
wonderful irritating narrative four really involvement cinema neck david teen
nice annoying subplots part want policies director floor james best
best inane twists every never individuals acting flat walter dvd
terrific unfunny tale best suppose necessary filmmaking thick robert scenes
beautiful horrible interesting also actually concerning actors front gordon flick

Table 4: Top words per context on IMDB Movie Reviews for CVDD model with r = 10 contexts.

best single context detection performance in AUC
to illustrate the potential of contextual anomaly
detection. Those results are given in the c∗ column
of Table 1 and demonstrate the possible boosts in
performance. We highlighted the respective best
contexts in Table 2 and present word lists of the
best contexts of all the other classes in Table 3.
One can see that those contexts indeed appear to
be typical for what one would expect as a char-
acterization of those classes. Note that the OC-
SVM on the simple mean embeddings establishes
a strong baseline as has been observed on other
tasks. Moreover, the tf-idf weighted embeddings
prove especially beneficial on the larger 20 News-
groups dataset for filtering out “general language
contexts” (similar to stop words) that are less dis-
criminative for the characterization of a text cor-
pus. A major advantage of CVDD is its strong in-
terpretability and the potential for contextual AD
which allows to sort out relevant contexts.

4.3 Detecting Anomalous Movie Reviews

Setup We apply CVDD for detecting anoma-
lous reviews in a qualitative experiment on IMDB
Movie Reviews. For this, we train a CVDD model
with r = 10 context vectors on the full IMDB train
set of 25 000 movie review samples. After train-
ing, we examine the most anomalous and most
normal reviews according to the CVDD anomaly
scores on the IMDB test set which also includes
25 000 reviews. We use GloVe word embeddings
and keep the CVDD model settings and training
details as outlined in Section 4.1.

Results Table 4 shows the top words for each
of the r = 10 CVDD contexts of the trained
model. We can see that the different contexts
of the CVDD model capture the different themes
present in the movie reviews well. Note for ex-
ample that c1 and c2 represent positive and nega-

tive sentiments respectively, c3, c7, and c10 refer
to different aspects of cinematic language, and c9
captures names, for example. Figure 1 in the intro-
duction depicts qualitative examples of this exper-
iment. 1a are the movie reviews having the high-
est anomaly scores. The top anomaly is a review
that repeats the same phrase many times. From ex-
amining the most anomalous reviews, the dataset
seems to be quite clean in general though. Fig-
ure 1c shows the most normal reviews w.r.t. the
first three contexts, i.e. the samples that have
the lowest respective contextual anomaly scores.
Here, the self-attention weights give a sample-
based explanation for why a particular review is
normal in view of the respective context.

5 Conclusion

We presented a new self-attentive, multi-context
one-class classification approach for unsupervised
anomaly detection on text which makes use of pre-
trained word models. Our method, Context Vec-
tor Data Description (CVDD), enables contextual
anomaly detection and has strong interpretability
features. We demonstrated the detection perfor-
mance of CVDD empirically and showed qualita-
tively that CVDD is well capable of learning dis-
tinct, diverse contexts from unlabeled text corpora.
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