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Abstract

End-to-end training with Deep Neural Net-
works (DNN) is a currently popular method
for metaphor identification. However, stan-
dard sequence tagging models do not ex-
plicitly take advantage of linguistic theories
of metaphor identification. We experiment
with two DNN models which are inspired
by two human metaphor identification proce-
dures. By testing on three public datasets, we
find that our models achieve state-of-the-art
performance in end-to-end metaphor identifi-
cation.

1 Introduction

Metaphoric expressions are common in everyday
language, attracting attention from both linguists
and psycho-linguists (Wilks, 1975; Glucksberg,
2003; Group, 2007; Holyoak and Stamenković,
2018). Computationally, metaphor identification
is a task that detects metaphors in texts. Tradi-
tional approaches, such as phrase-level metaphor
identification, detect metaphors with word pairs
(Tsvetkov et al., 2014; Shutova et al., 2016;
Rei et al., 2017), where a target word whose
metaphoricity is to be identified is given in ad-
vance. However, such target words are not high-
lighted in real world text data; a newer approach
is sequential metaphor identification, where the
metaphoricity of a target word is identified with-
out knowing its position in a sentence. Therefore,
it is more readily applied to support Natural Lan-
guage Processing tasks.

The most recent approaches (Wu et al., 2018;
Gao et al., 2018) treat this as a sequence tagging
task: the classified labels are only conditioned on
BiLSTM (Graves and Schmidhuber, 2005) hidden
states of target words. This approach is not tailor-
made for metaphors; it is the same procedure to
that used in other sequence tagging tasks, such as

Part-of-Speech (PoS) tagging (Plank et al., 2016)
and Named Entity Recognition (NER) (Lample
et al., 2016). However, we have available linguis-
tic theories of metaphor identification, which have
not yet been exploited with Deep Neural Network
(DNN) models. We hypothesise that by exploiting
linguistic theories of metaphor identification in the
design of a DNN architecture, the model perfor-
mance can be further improved.

Linguistic theories suggest that a metaphor is
identified by noticing a semantic contrast between
a target word and its context. This is the basis
of Selectional Preference Violation (SPV) (Wilks,
1975, 1978). E.g., in the sentence my car drinks
gasoline (Wilks, 1978), ‘drinks’ is identified as
metaphoric, because ‘drinks’ is unusual in the con-
text of ‘car’ and ‘gasoline’; a car cannot drink,
nor is gasoline drinkable. Formally, a label is pre-
dicted, conditioned on a target word and its con-
text. An alternative approach by Group (2007)
and Steen et al. (2010) is the Metaphor Identifi-
cation Procedure (MIP): a metaphor is identified
if the literal meaning of a word contrasts with the
meaning that word takes in this context. E.g., in
my car drinks gasoline, the contextual meaning of
‘drink’ is ‘consuming too much’, which contrasts
with its literal meaning of ‘taking a liquid into the
mouth’1. Formally, a label is predicted, condi-
tioned on literal and contextual meanings. Funda-
mentally, the two models are similar, as both MIP
and SPV analyse the relations between metaphors
and their contexts, but with different procedures.

We propose two end-to-end metaphor identi-
fication models2, detecting metaphors based on
MIP and SPV, respectively. The experimental re-

1https://en.oxforddictionaries.com/
definition/drink

2Our code is available at:
https://github.com/RuiMao1988/
Sequential-Metaphor-Identification

https://en.oxforddictionaries.com/definition/drink
https://en.oxforddictionaries.com/definition/drink
https://github.com/RuiMao1988/Sequential-Metaphor-Identification
https://github.com/RuiMao1988/Sequential-Metaphor-Identification
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sults show that both of our models perform better
than the state-of-the-art baseline (Gao et al., 2018)
across three benchmark datasets. In particular, our
MIP based model with a simple DNN architecture,
outperforms the baseline with an average of 2.2%
improvement in F1 score, whereas the SPV based
model with a novel multi-head contextual atten-
tion mechanism achieves an even higher gain of
2.5% against the baseline.

The contribution of our work can be summa-
rized as follows: (1) To the best of our knowl-
edge, we are the first to explore using linguistic
theories (MIP and SPV) to directly inform the de-
sign of Deep Neural Networks (DNN) for end-
to-end sequential metaphor identification; (2) Our
first DNN model is based on MIP, which encapsu-
lates the idea that a metaphor is classified by the
contrast between its contextual and literal mean-
ings. The second model is inspired by SPV, in
which we propose a novel window-based contex-
tual attentive method, allowing the model to at-
tend to important fragments of BiLSTM hidden
states and hence better capture the context of text;
(3) We conducted extensive experiments on three
public datasets for end-to-end metaphor identifi-
cation, where both of our models outperform the
state-of-the-art DNN models.

2 Related Work

Metaphor identification is a linguistic metaphor
processing task that identifies metaphors in textual
data, which is different from conceptual metaphor
processing that maps concepts between source and
target domains (Shutova, 2016), based on Concep-
tual Metaphor Theory (Lakoff and Johnson, 1980).
In linguistic metaphor processing a metaphor is
identified when the contextual meaning of a word
contrasts with its literal meaning (summarised as
MIP by Group (2007) and Steen et al. (2010)).
Many metaphor dataset annotations were guided
by MIP, e.g., VU Amsterdam Metaphor Corpus
(Steen et al., 2010), and a verbal metaphor dataset,
formed by Mohammad et al. (2016). Another
hypothesis for linguistic metaphor identification,
SPV, was proposed by Wilks (1975, 1978) who ar-
gued that a metaphoric word could violate selec-
tional preferences of an agent. E.g., ‘drinks’ vio-
lates selectional preferences of the agent of ‘car’
in the sentence, my car drinks gasoline. Ortony
(1979) further claimed that metaphoric words,
phrases and sentences are contextually anomalous.

There are also other relevant theories, e.g., se-
mantic constraints (Katz, 1964) and expectations
(Schank, 1975). However, Wilks and Fass (1992)
found that these theories are mostly very similar.

In terms of computational metaphor identifi-
cation, feature-engineering has been widely dis-
cussed (Leong et al., 2018). Unigrams, image-
ability, concreteness, abstractness, word embed-
ding and semantic classes are features, commonly
employed by supervised machine learning (Tur-
ney et al., 2011; Assaf et al., 2013; Tsvetkov
et al., 2014; Klebanov et al., 2016), deep learning
(Rei et al., 2017; Gutierrez et al., 2017; Bizzoni
and Ghanimifard, 2018) and unsupervised lean-
ing (Shutova et al., 2016; Mao et al., 2018) ap-
proaches.

Recently, metaphor identification has been
treated as a sequence tagging task. Wu et al.
(2018) proposed a model based on word2vec
(Mikolov et al., 2013), PoS tags and word clus-
ters, which were encoded by a Convolutional Neu-
ral Network (CNN) and BiLSTM. The encoded
information was directly fed into a softmax clas-
sifier. This model performed best on the NAACL-
2018 Metaphor Shared Task (Leong et al., 2018)
with an ensemble learning strategy. Gao et al.
(2018) proposed a model that concatenated GloVe
(Pennington et al., 2014) and ELMo (Peters et al.,
2018) representations which were then encoded
by BiLSTM. Hidden states of the BiLSTM were
classified by a softmax classifier. These sequen-
tial metaphor identification models classify labels,
conditioned on encoder hidden states. However,
we expect that explicit modelling of interactions
between either contextual and literal meanings
(MIP) or target words and their contexts (SPV)
may further boost performance.

3 Methodology

Here we detail our two models, inspired by MIP
and SPV respectively, and systematically compare
the differences between them.

3.1 MIP based model

Our first model (Figure 1) is built upon MIP: a
metaphor is classified by the contrast between a
word’s contextual and literal meanings. To facil-
itate the classifier in making this comparison we
concatenate the contextual meaning representation
with the literal meaning representation.
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Figure 1: RNN HG model framework based on MIP.⊕
denotes concatenating tensors along the last dimension.

RNN HG (Recurrent Neural Network Hidden-
GloVe) Humans infer the contextual meanings of
a word conditioned on its context. We use BiL-
STM hidden states as our contextual meaning rep-
resentations, where the hidden state of a word
is encoded by its forward and backward contexts
and itself (Graves and Schmidhuber, 2005). Pre-
trained GloVe (Pennington et al., 2014) is con-
sidered as our literal meaning representation, as
words have been embedded with their most com-
mon senses (trained on Web crawled data3). The
most common senses are likely literal, as liter-
als occur more than metaphors in typical corpora
(Cameron, 2003; Martin, 2006; Steen et al., 2010;
Shutova, 2016). The comparison of literal and
contextual can be seen at the top of Figure 1, com-
parison stage; the GloVe embedding (literal) from
below joins the hidden state from the BiLSTM
(contextual). The probability of a label prediction
(ŷ) for a target word at position t is conditioned on
contextual and literal meaning representations of
the target word

p(ŷt|ht, gt) = σ(w>[ht; gt] + b) (1)

where σ is softmax function. h is a BiLSTM hid-
den state. g is GloVe embedding. w is trained
parameters. b is bias. [; ] denotes concatenating
tensors along the last dimension. Similar to Gao
et al. (2018), we use GloVe and ELMo (Embed-
dings from Language Models) as input features
for the BiLSTM. The recommended way of using

3Note that our results are likely to improve if the pre-
trained GloVe is trained on a cleaner set of purely literal data.
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Figure 2: (a) RNN MHCA model framework based on
SPV. Attt±n denotes attention mechanisms on a win-
dow of n context words. The blue and orange nodes and
lines denote examples of computing −→c 3

3 by a query of
−→
h 3 and its context v30 (padding zero vectors),

−→
h 1,
−→
h 2,

and computing ←−c 3
3 by a query of

←−
h 3 and its context

←−
h 4,
←−
h 5, and v10 , respectively. (b) Attentive context

representations with a window size of 3. Solid lines
are queries. Dashed lines are their contexts (keys and
values).

ELMo is to concatenate ELMo (e) with GloVe (g),
e.g., [gt; et] (Peters et al., 2018). Thus, the BiL-
STM hidden state ht is

ht = fBiLSTM ([gt; et],
−→
h t−1,

←−
h t+1). (2)

3.2 SPV based model

The intuition behind SPV is that metaphoricity is
identified by detecting the incongruity between a
target word and its context.
RNN MHCA (Recurrent Neural Network
Multi-Head Contextual Attention) Our second
model (Figure 2) compares a target word represen-
tation ht with its context ct. This is achieved by
concatenating these two representations (see top
of Figure 2). Target word representation ht is a
BiLSTM hidden state. Context is composed of
left-side (−→c n

t ) and right-side (←−c n
t ) attentive con-

text representations, where n is a window size of
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context words. We adopt a multi-head contextual
attention (MHCA) mechanism to compute cnt . The
BiLSTM hidden state matrix (H , where h ∈ H) is
split into equivalent pieces

H = [H1;H2; ...;HM; ...;HN] (3)

−−→
headM

t−n =
n∑

i=1

σ(
−→
h M

t
>−→h M

t−i)
−→
h M

t−i (4)

−→
c n
t = [

−−→
headM

t−n|M = 1, 2, ...,N] (5)

←−−
headM

t+n =
n∑

i=1

σ(
←−
h M

t
>←−h M

t+i)
←−
h M

t+i (6)

←−
c n
t = [

←−−
headM

t+n|M = 1, 2, ...,N] (7)

cnt = [
−→
c n
t ;
←−
c n
t ] (8)

where N is the number of heads. Irrelevant con-
text hidden states, hj /∈ [ht±1, ht±n], are masked
out. We apply a window size of n context words,
as hj only encodes words that are out of the win-
dow. In computing a context representation, hj
may bring in noise, and it may miss important
context information, provided by the close context
words, while the distant context information could
be memorized by hi ∈ [ht±1, ht±n].

Noticeably, MHCA is similar to dot-product at-
tention (Luong et al., 2015), if N = 1. Using
N > 1 heads would attend to different parts of
hidden states of context words and recall previous
important context information that is forgotten at
the current point. Unlike multi-head self-attention
(Vaswani et al., 2017) that encodes a target word
by its context, MHCA computes the context repre-
sentation by attending to a target word. The query
of MHCA is a hidden state of a target word, while
the key and value are hidden states of its context.
We do not employ training parameters, non-linear
operations or positional encoding in MHCA, be-
cause performance is better (compared with MHA
in Figure 4) when we model context (via attention)
and the target word (via BiLSTM) in the same
space (see § 3.3). Besides, extra position encod-
ing is unnecessary in our model, as input sentences
have been encoded along with a time sequence
by BiLSTM. The probability of a label prediction,
given by RNN MHCA is

p(ŷt|ht, cnt ) = σ(w>[ht; c
n
t ] + b) (9)

where a label prediction is conditioned on a hidden
state of a target word (ht) and its attentive context
representation (cnt ). The input feature of word t is
also [gt; et]. So, ht is given by Equation 2.
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Figure 3: A comparison between RNN HG and
RNN MHCA. C is car. D is drinks. G is gasoline. A is
animal. W is water. emb is GloVe embedding. enc is
BiLSTM encoding. att is an attention mechanism. In
embedding space, the lighter part of a node is ELMo
embedding, while the darker part is GloVe embedding.

3.3 Model comparison

Figure 3 gives an overview of the two models and
how they process the example of ‘drinks’ in the
sequence car drinks gasoline. We use different
coloured nodes to indicate that words are distant
from each other in vector space. E.g., red ‘drinks’
(D) is distant from blue ‘car’ (C) and ‘gasoline’
(G), because they are from non-literally related
domains (Shutova et al., 2016; Mao et al., 2018).
Note that there is no external knowledge base for
domain knowledge. ‘Drinks’ (D) is distant be-
cause of the statistics of the corpus; it occurs in
contexts relating to humans and other animals con-
suming liquids such as water.

Our MIP based RNN HG model is on the left.
In the leftmost part of the figure, we have the lit-
eral embedding of ‘drinks’ (D), which is embed-
ded by words in the domains of ‘animal’ (A) and
‘water’ (W). To the right of this, the green ‘drinks’
(
←→
D ) captures the meaning of ‘drinks’ in context

via BiLSTM encoding; it is encoded by ‘car’ (C),
‘gasoline’ (G) and itself (D). These two different
vectors for ‘drinks’ are concatenated. Classifier 1
(RNN HG) learns to recognise if the two vectors
represent similar meanings (indicating literal) or
different meanings (indicating metaphor), which
is p(ŷt|ht, gt) in Equation 1. In the case illustrated,
the meaning of ‘drinks’ (green

←→
D ) from the en-

coding is very different from its word embedding
meaning (red D).

The right part of Figure 3 is our SPV based
RNN MHCA model. Blue ‘car’ (C) and ‘gasoline’
(G) are encoded by themselves from left to right
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and right to left, respectively. Purple ‘car’ (
−→
C )

and ‘gasoline’ (
←−
G ) are still closer to each other

than green ‘drinks’ (
←→
D ) in encoding space, be-

cause the green ‘drinks’ (
←→
D ) has a component of

literal meaning from red ‘drinks’ (D). Our atten-
tion mechanism does not employ non-linear trans-
formations. Thus, the attentive context ([

−→
C ;
←−
G ])

does not significantly change its colour from the
context word encoding (

−→
C and

←−
G ). Classifier 2

(RNN MHCA) learns to recognise the contrast be-
tween green ‘drinks’ (

←→
D ) and its purple context

([
−→
C ;
←−
G ]), which is p(ŷt|ht, cnt ) in Equation 9.

In RNN MHCA, we use the BiLSTM green
‘drinks’ (

←→
D ) as the target word representation,

rather than the word embedding red ‘drinks’ (D).
This is necessary because it will be concatenated
with the purple attentive context representation, in
encoding space; we found that performance is bet-
ter when both meanings are in the encoding space.
On the other hand, the RNN HG does concatenate
vectors from two different spaces; this works be-
cause they are representations of the same word,
rather than word versus context.

In Figure 3, it appears that both models use
the same BiLSTM encoded green ‘drinks’ (

←→
D ),

however the two models have different objective
functions (Equation 1 and 9), therefore the two
classifiers backpropagate different errors to the
BiLSTM during training. The result is that the
two models are actually receiving different hidden
states (different green ‘drinks’ (

←→
D ) vectors).

4 Experiment

4.1 Dataset

We adopt three widely used metaphor datasets.
Relevant statistics can be viewed in Table 1.
VUA4 (Steen et al., 2010) VU Amsterdam
Metaphor Corpus (VUA) is the largest publicly
available metaphor dataset. Every word in the cor-
pus is labeled, guided by MIP. Each sequence con-
tains several metaphors, ranging from 0 to 28. The
corpus was used by the NAACL-2018 Metaphor
Shared Task. Similar to the task that has all PoS
and verb tracks, we also examine our methods on
VUA ALL POS and VUA VERB tracks.
MOH-X5 (Mohammad et al., 2016) Its sam-

4http://ota.ahds.ac.uk/headers/2541.
xml

5http://saifmohammad.com/WebPages/
metaphor.html

Dataset # Tgt
token

%
M # Seq Avg #

seq len
Avg #
M/S

VUA all 205,425 11.6 10,567 19.4 3.4
VUA trn 116,622 11.2 6,323 18.4 3.3
VUA dev 38,628 11.6 1,550 24.9 4.0
VUA tst 50,175 12.4 2,694 18.6 3.4
VERB tst 5,873 30.0 2,694 18.6 1.5
MOH-X 647 48.7 647 8.0 1.0
TroFi 3,737 43.5 3,737 28.3 1.0

Table 1: Dataset statistics. NB: # Tgt token is the
number of target tokens whose metaphoricity is to be
identified. % M is the percentage of metaphoric tokens
among target tokens. # Seq is the number of sequences.
Avg # seq len is the average of the number of sequence
lengths. Avg # M/S is the average number of metaphors
per metaphorical sentence.

ple sentences are from WordNet (Fellbaum, 1998).
Only a single target verb in each sentence is anno-
tated. The average length of sentences is the short-
est of our three datasets.
TroFi6 (Birke and Sarkar, 2006) The dataset
consists of sentences from the 1987-89 Wall Street
Journal Corpus Release 1 (Charniak et al., 2000).
The average length of sentences is the longest of
our datasets. Each sentence has a single annotated
target verb.

4.2 Baselines

CNN+RNNensmb (Wu et al., 2018) This is the
best model at the NAACL-2018 Metaphor Shared
Task, which encodes three concatenated input fea-
tures (word2vec, PoS tags, and word2vec clus-
ters) with CNN and BiLSTM. The label prediction
is conditioned on BiLSTM hidden states p(ŷt|ht)
with a weighted softmax classifier. The perfor-
mance is further boosted by ensemble learning.
RNN ELMo (Gao et al., 2018) This is a model
that uses GloVe and ELMo as features for sequen-
tial metaphor identification. GloVe and ELMo are
concatenated and encoded by BiLSTM, classified
by a softmax classifier, which is also conditioned
on BiLSTM hidden states p(ŷt|ht). RNN ELMo
is the strongest baseline to our knowledge.
RNN BERT (Devlin et al., 2018) We introduce
feature-based BERT (cased, large) as a baseline, as
it has shown strong performance on the NER task,
which is also a sequence tagging task. We use
the same framework as RNN ELMo. The inputs
are the concatenation of the hidden states of the
last four BERT layers, which was recommended

6http://natlang.cs.sfu.ca/software/
trofi.html

http://ota.ahds.ac.uk/headers/2541.xml
http://ota.ahds.ac.uk/headers/2541.xml
http://saifmohammad.com/WebPages/metaphor.html
http://saifmohammad.com/WebPages/metaphor.html
http://natlang.cs.sfu.ca/software/trofi.html
http://natlang.cs.sfu.ca/software/trofi.html
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Model VUA ALL POS VUA VERB MOH-X (10-fold) TroFi (10-fold)
P R F1 Acc P R F1 Acc P R F1 Acc P R F1 Acc

CNN+RNNensmb 60.8 70.0 65.1 - 60.0 76.3 67.2 - - - - - - - - -
RNN ELMo 71.6 73.6 72.6 93.1 68.2 71.3 69.7 81.4 79.1 73.5 75.6 77.2 70.7 71.6 71.1 74.6
RNN BERT 71.5 71.9 71.7 92.9 66.7 71.5 69.0 80.7 75.1 81.8 78.2 78.1 70.3 67.1 68.7 73.4

RNN HG ours 71.8 76.3 74.0* 93.6 69.3 72.3 70.8* 82.1 79.7 79.8 79.8* 79.7 67.4 77.8 72.2* 74.9
RNN MHCA ours 73.0 75.7 74.3* 93.8 66.3 75.2 70.5* 81.8 77.5 83.1 80.0* 79.8 68.6 76.8 72.4* 75.2

Table 2: Model performance. * denotes p < 0.01 on a two-tailed t-test, against the best baseline with an underline.

by Devlin et al. (2018). Hyperparameters are fine-
tuned on each dataset.

4.3 Setup
The inputs are 300 dimension pre-trained GloVe7

embeddings, concatenated with 1024 dimension
pre-trained ELMo (Peters et al., 2018). We adopt
a batch size of 2, 2 × 256 dimension hidden state
BiLSTM, SGD optimiser, and weighted cross en-
tropy loss

L = −
∑
i

wyiyi log(ŷi) (10)

where yi is a ground truth label for a word at po-
sition i. ŷi is its prediction. The weight wyi = 1,
if yi is literal, otherwise wyi = 2, which is in line
with Wu et al. (2018). In RNN MHCA, the win-
dow size (n) is 3 on VUA and MOH-X, while n is
5 on TroFi. The number of attention heads (N) is
16, which is in line with Vaswani et al. (2017).

Training, development and testing sets of VUA
ALL POS are built in line with the NAACL-2018
Metaphor Shared Task (see Table 1). Since the
examined models predict labels for all words in a
sentence, the outputs have covered the target verbs
in VUA VERB. So, we simply evaluate on the verb
track without training models separately. As anno-
tations of MOH-X and TroFi datasets only cover
target verbs, we consider the remaining words as
literal for training, but only evaluate on the tar-
get words. We adopt 10-fold cross validation on
MOH-X and TroFi datasets, since the sizes of
these two datasets are small. Our hyperparameters
are tuned on each dataset.

5 Results

F1 score is the main measurement of model per-
formance. Metaphors are positive labels. The ac-
curacy is measured by the number of correct tar-
get token predictions over the total number of tar-
get tokens. For the VUA ALL POS dataset, we

7http://nlp.stanford.edu/data/glove.
840B.300d.zip

consider all tokens as the target tokens. For the
VUA VERB, MOH-X and TroFi, we consider tar-
get verbs as target tokens.

As shown in Table 2, our two proposed mod-
els are consistently the top two for F1 on the
four evaluation tasks, where the improvements
against the third best model (F1 with an underline)
are statistically significant (two-tailed t-test, p <
0.01). RNN MHCA achieves state-of-the-art per-
formance in VUA ALL POS (F1=74.3%), MOH-
X (F1=80.0%) and TroFi (F1=72.4%). RNN HG
performs slightly worse than RNN MHCA. How-
ever, it exceeds RNN MHCA by 0.3% on the
VUA VERB track (F1=70.8%).

Compared with RNN ELMo, the biggest im-
provements of RNN HG and RNN MHCA ap-
pear in MOH-X dataset, gaining 4.2% and
4.4%, respectively. Our models also outperform
RNN BERT by at least 1.6% in MOH-X. In con-
trast with VUA ALL POS that has an average
of 3.4 metaphors (see Table 1) per metaphoric
sentence, each metaphoric sentence in MOH-X
contains a single metaphor. We observed that
in MOH-X most non-target words are literal,
so that a metaphor can be better identified by
RNN MHCA via modelling the contrast between
the metaphor and its context in a single-metaphor
sentence. Furthermore, the average length of
MOH-X sentences is the shortest, therefore the
context of a target word will be cleaner. MOH-
X source sentences are from WordNet sample
sentences, where the language is straightforward
because the writer designed it to illustrate the
meaning of a word, e.g., Don’t abuse the system.
Similarly, the straightforward contexts also help
RNN HG to infer contextual meanings of words.
The anomalies that MIP and SPV are designed to
detect are very clear in MOH-X, so that our mod-
els improve the most against RNN ELMo. VUA
in contrast is more complex (see examples in VUA
Breakdown Analysis and Error Analysis below).

In TroFi the improvements of RNN HG and
RNN MHCA against RNN ELMo are small

http://nlp.stanford.edu/data/glove.840B.300d.zip
http://nlp.stanford.edu/data/glove.840B.300d.zip
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Figure 4: RNN MHCA performance with different
windows and attention mechanisms. MHCA is multi-
head (16 heads) context attention. MHA is multi-head
(16 heads) attention (Vaswani et al., 2017). DPA is dot-
product attention (Luong et al., 2015).

(1.1% and 1.3%). We have observed that many
of the non-target words in TroFi are metaphoric
(but not labeled), as the sample sentences are
from financial news, where word play is common
(e.g., VUA news contains the largest percentage
of metaphors in Table 4). Our system considers
TroFi non-target words as literal without knowing
their ground truth labels during training. Addition-
ally, the average length of sequences of TroFi is
the longest among the datasets, at 28.3 tokens.

Although RNN MHCA slightly outperforms
RNN HG, the difference is small. This is because
modelling the contrast between contextual and lit-
eral meanings of metaphors in MIP is theoretically
similar to modelling in SPV (see §1).

Variations of RNN HG An alternative way of
encapsulating contextual and literal meanings in
RNN HG is taking the sum of ht and gt (ht + gt)
instead of their concatenations ([ht; gt]) in Equa-
tion 1. Such an idea is inspired by residual con-
nection (He et al., 2016). In this approach, we take
2 × 150 dimension BiLSTM hidden states so that
ht and gt are aligned in dimensionality. However,
such an approach yields 73.7%, 70.0%, 78.9% and
71.8% F1 scores on VUA ALL POS, VUA VERB,
MOH-X and TroFi datasets, which is worse than
the concatenation approach (RNN HG) in Table 2.
This is because the concatenation approach high-
lights the contrast between GloVe and BiLSTM
hidden states of metaphors.
Variations of RNN MHCA We examined the
impact of different window sizes and attention
mechanisms of RNN MHCA. All these baselines
are fine-tuned on each dataset. Given a window
size of 1, bi-directional hidden states of a target

Model Feature P R F1 Acc.
RNN BERT Bl 69.1 72.0 70.5 93.0

RNN HG Bl+G 70.3 74.6 72.4 93.4
E+G 71.0 76.1 73.5 93.7

RNN MHCA Bl+G 70.5 72.3 71.4 93.2
E+G 71.3 75.5 73.4 93.6

Table 3: Model performance on VUA ALL POS devel-
opment set. Bl is BERT large. E is ELMo. G is GloVe.

are concatenated with the left to right hidden state
of its left-side word and right to left hidden state of
its right-side word ([

−→
h t;
←−
h t;
−→
h t−1;

←−
h t+1]). The

context2vec model (Melamud et al., 2016) used−→
h t−1 and

←−
h t+1 as their context representations,

with Multilayer Perceptron tuning.
As shown in Figure 4, setting a window size

of 3 surpasses other sizes on 3 out of 4 datasets.
The attentive context representation with a win-
dow size larger than 1 can better represent a con-
text than the hidden states of adjacent words (win-
dow = 1). The average length of TroFi sequences
is the longest, so that a larger window size, e.g.,
window = 5, performs better. Given a window size
of 3, MHCA outperforms the multi-head attention
(Vaswani et al., 2017) which employs training pa-
rameters and non-linear operations. This shows
that modelling the contrast between a target word
and its context in the same space performs better
than that in different spaces. MHCA exceeds the
dot-prodcut attention (Luong et al., 2015) which
demonstrates the utility of multi-heads that attend
to different fragments of hidden states. We also
examined variations, e.g., an infinite window size
and a different number of heads, but the perfor-
mances did not improve.
Variations of Feature Selection We exam-
ine the concatenation of hidden states of the last
four BERT large model layers (Bl) instead of
ELMo on RNN HG and RNN MHCA. Our mod-
els with the combination of BERT and GloVe
(Bl+G) perform better than the BERT baseline
model (RNN BERT) with Bl on VUA ALL POS
development set by at least 2.9% in terms of F1
score (see Table 3). However, the performance,
given by Bl+G, is not further improved, compared
with the combination of ELMo and GloVe (E+G)
on each of our models.
VUA Breakdown Analysis We report the model
performance on different types of articles and
words based on VUA ALL POS test set. We
analyse all four genres and four types of open
class words (verbs, adjectives, nouns and adverbs),
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Type Train Dev Test All
%T %M %T %M %T %M %T %M

News 21.8 14.9 23.8 15.5 24.6 15.2 22.9 15.1
Acad. 36.4 11.2 37.3 11.6 27.1 17.3 34.3 12.4
Fict. 23.4 10.7 23.5 10.6 21.9 9.2 23.0 10.4
Conv. 18.3 7.4 15.4 7.2 26.4 7.6 19.8 7.4
Verb 17.9 18.1 18.5 18.7 19.7 19.1 18.5 18.5
Noun 17.6 13.6 17.8 13.5 17.1 15.0 17.5 13.9
Adj 8.3 11.5 8.3 10.7 7.9 13.6 8.2 11.9
Adv 6.0 6.0 5.8 6.9 6.8 7.2 6.1 6.5

Table 4: VUA Statistics on genres and POS. % T de-
notes the percentage of the category tokens among the
total VUA tokens. % M denotes the percentage of the
category metaphors among the category tokens.

which is in line with Leong et al. (2018). The ver-
bal statistics in Table 5 are different from VUA
VERB in Table 2, as they are different tracks in
the Metaphor Shared Task. Not all verbs in VUA
ALL POS are included in VUA VERB.

In Table 5, metaphor identification achieves bet-
ter performance on academic articles across all the
models and genres, where RNN MHCA yields the
highest F1 (79.8%). Intuitively, metaphor identi-
fication is easier as the style of English is more
formal. E.g., (using underlines for metaphors)
This mixture, heated by recession and high un-
employment, inevitably generates a high level of
crime. (VUA ID: as6-fragment01-30). Identify-
ing metaphors in conversation is the hardest for
our baselines, probably due to its fragmented lan-
guage. E.g., Drawing, oh well! (VUA ID: kbp-
fragment09-4105). However, RNN HG achieves
large improvements against RNN ELMo (3.8%)
and RNN BERT (3.4%) on conversation. The im-
provements of our models against RNN ELMo on
news are larger than in TroFi, although source sen-
tences of both datasets are from news. It supports
our arguments that the noise of treating non-target
words as literals in TroFi negatively impact our
models’ ability to learn the difference between lit-
erals and metaphors. In contrast, all words in VUA
news are annotated, so that the advantages of our
models are more obvious.

In PoS breakdown analysis, verb metaphors are
better identified than others, as verbal metaphors
take the largest part among all PoS. RNN HG
achieves the biggest improvement (4.1%) in ad-
verbs against RNN ELMo, whereas RNN BERT
also presents strong performance. In adjec-
tives, CNN+RNNensmb surpasses the second best
RNN HG by 2.9%. The use of word embedding
clusters, PoS tags and ensemble learning may con-

Model P R F1 Acc

A
ca

d.

CNN+RNNensmb 72.5 74.6 73.5 -
RNN ELMo 78.2 80.2 79.2 92.8
RNN BERT 76.7 76.0 76.4 91.9

RNN HG ours 76.5 83.0 79.6 92.7
RNN MHCA ours 79.6 80.0 79.8 93.0

C
on

v.

CNN+RNNensmb 45.3 71.1 55.3 -
RNN ELMo 64.9 63.1 64.0 94.6
RNN BERT 64.7 64.2 64.4 94.6

RNN HG ours 63.6 72.5 67.8 94.8
RNN MHCA ours 64.0 71.1 67.4 94.8

Fi
ct

.

CNN+RNNensmb 48.3 69.2 56.9 -
RNN ELMo 61.4 69.1 65.1 93.1
RNN BERT 66.5 68.6 67.5 93.9

RNN HG ours 61.8 74.5 67.5 93.4
RNN MHCA ours 64.8 70.9 67.7 93.8

N
ew

s

CNN+RNNensmb 66.4 64.7 65.5 -
RNN ELMo 72.7 71.2 71.9 91.6
RNN BERT 71.2 72.5 71.8 91.4

RNN HG ours 71.6 76.8 74.1 91.9
RNN MHCA ours 74.8 75.3 75.0 92.4

V
E

R
B

CNN+RNNensmb - - 67.4 -
RNN ELMo 68.1 71.9 69.9 -
RNN BERT 67.1 72.1 69.5 87.9

RNN HG ours 66.4 75.5 70.7 88.0
RNN MHCA ours 66.0 76.0 70.7 87.9

A
D

J
CNN+RNNensmb - - 65.1 -

RNN ELMo 56.1 60.6 58.3 -
RNN BERT 58.1 51.6 54.7 88.3

RNN HG ours 59.2 65.6 62.2 89.1
RNN MHCA ours 61.4 61.7 61.6 89.5

N
O

U
N

CNN+RNNensmb - - 62.9 -
RNN ELMo 59.9 60.8 60.4 -
RNN BERT 63.3 56.8 59.9 88.6

RNN HG ours 60.3 66.8 63.4 88.4
RNN MHCA ours 69.1 58.2 63.2 89.8

A
D

V

CNN+RNNensmb - - 58.8 -
RNN ELMo 67.2 53.7 59.7 94.8
RNN BERT 64.8 61.1 62.9 94.8

RNN HG ours 61.0 66.8 63.8 94.5
RNN MHCA ours 66.1 60.7 63.2 94.9

Table 5: Model performance on different types of texts
and words in VUA ALL POS.

tribute to identifying adjective metaphors.

Error Analysis By comparing our two mod-
els, 96.3% of predictions are the same in the
VUA ALL POS testing set. For these same pre-
dictions, precision, recall, F1 and accuracy are
80.2%, 77.2%, 78.7% and 95.3%, respectively,
which is better than each of our models on the full
dataset. False negatives are common in sentences
with multiple metaphors, e.g., Or: ‘When Cupid
shot his dart He shot it at your heart.’ (VUA ID:
a5e-fragment06-187), where 10 out of 12 words
have true labels as metaphor. However, our mod-
els only classify ‘heart’ as metaphoric in this sen-
tence. Ambiguous contexts are also challenging,
e.g., I’m gonna play with that and see what (VUA
ID: kbd-fragment21-8037), where the referent of
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‘that’ is not in the context, so that ‘play with’ are
also false negatives.

For the samples where our models predict dif-
ferent labels, the main errors of RNN HG are false
negatives, while the main errors of RNN MHCA
are false positives. This is likely due to the fact
that some conventional metaphors frequently ap-
pear in typical corpora, so that GloVe embeddings
of metaphors are not distinct from their contextual
meaning encodings. Metaphors may be misclas-
sified as literal by RNN HG. On the other hand,
RNN MHCA may flag the clash between literals
and their contexts, if there are many metaphors in
the contexts, so that literal target words may be
misclassified as metaphoric.

6 Conclusion

We proposed two metaphor identification mod-
els based on Metaphor Identification Procedure
(Group, 2007; Steen et al., 2010) and Selectional
Preference Violation (Wilks, 1975, 1978). Our
models achieve state-of-the-art performance on
three public datasets. The performances of the
two models are close in terms of F1 score, as their
linguistic fundamentals, MIP and SPV are simi-
lar in principle. The breakdown analysis of VUA
demonstrates that the improvements of our mod-
els derive from the problematic instances for our
baselines, e.g., conversation articles and adverb
metaphors.

In future work, we will explore ensemble learn-
ing. Our error analysis demonstrates that when
the predictions of our two models are the same,
the prediction is more accurate with high preci-
sion, suggesting the idea of combining them. An-
other interesting direction is to explore combining
different semantic similarity measures (Lin et al.,
2015) for our task.
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Metaphor comprehension: A critical review of
theories and evidence. Psychological bulletin,
144(6):641.

Jerrold J Katz. 1964. Analyticity and contradiction in
natural language. In The Structure of Language:
Readings in the Philosophy of Language. Prentice
Hall.

Beata Beigman Klebanov, Chee Wee Leong, E Dario
Gutierrez, Ekaterina Shutova, and Michael Flor.
2016. Semantic classifications for detection of verb
metaphors. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguis-
tics, volume 2, pages 101–106.

George Lakoff and Mark Johnson. 1980. Metaphors
we live by. University of Chicago press.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270.

Chee Wee Ben Leong, Beata Beigman Klebanov, and
Ekaterina Shutova. 2018. A report on the 2018 VUA
metaphor detection shared task. In Proceedings of
the Workshop on Figurative Language Processing,
pages 56–66.

Chenghua Lin, Dong Liu, Wei Pang, and Zhe Wang.
2015. Sherlock: A semi-automatic framework for
quiz generation using a hybrid semantic similarity
measure. Cognitive computation, 7(6):667–679.

Thang Luong, Hieu Pham, and Christopher D Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421.

Rui Mao, Chenghua Lin, and Frank Guerin. 2018.
Word embedding and WordNet based metaphor
identification and interpretation. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics, volume 1, pages 1–10.

James H Martin. 2006. A corpus-based analysis of
context effects on metaphor comprehension. Tech-
nical Report CU-CS-738-94, Boulder: University of
Colorado: Computer Science Department.

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. context2vec: Learning generic context em-
bedding with bidirectional LSTM. In Proceedings
of The 20th SIGNLL Conference on Computational
Natural Language Learning, pages 51–61.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Saif Mohammad, Ekaterina Shutova, and Peter Tur-
ney. 2016. Metaphor as a medium for emotion: An
empirical study. In Proceedings of the Fifth Joint
Conference on Lexical and Computational Seman-
tics, pages 23–33.

Andrew Ortony. 1979. Some psycholinguistic aspects
of metaphor. Center for the Study of Reading Tech-
nical Report; no. 112.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing, pages 1532–1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, volume 1, pages 2227–2237.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with
bidirectional long short-term memory models and
auxiliary loss. In The 54th Annual Meeting of
the Association for Computational Linguistics, page
412.

Marek Rei, Luana Bulat, Douwe Kiela, and Ekate-
rina Shutova. 2017. Grasping the finer point: A
supervised similarity network for metaphor detec-
tion. Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1537–1546.

Roger C Schank. 1975. The structure of episodes
in memory. In Representation and understanding,
pages 237–272. Elsevier.

Ekaterina Shutova. 2016. Design and evaluation of
metaphor processing systems. Computational Lin-
guistics.

Ekaterina Shutova, Douwe Kiela, and Jean Maillard.
2016. Black holes and white rabbits: Metaphor
identification with visual features. Proceedings of
the 15th Annual Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
160–170.

Gerard J Steen, Aletta G Dorst, J Berenike Herrmann,
Anna Kaal, Tina Krennmayr, and Trijntje Pasma.
2010. A method for linguistic metaphor identifica-
tion: From MIP to MIPVU, volume 14. John Ben-
jamins Publishing.

Yulia Tsvetkov, Leonid Boytsov, Anatole Gershman,
Eric Nyberg, and Chris Dyer. 2014. Metaphor de-
tection with cross-lingual model transfer. Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics, pages 248–258.



3898

Peter D Turney, Yair Neuman, Dan Assaf, and Yohai
Cohen. 2011. Literal and metaphorical sense iden-
tification through concrete and abstract context. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, pages 680–
690.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Yorick Wilks. 1975. A preferential, pattern-seeking,
semantics for natural language inference. Artificial
intelligence, 6(1):53–74.

Yorick Wilks. 1978. Making preferences more active.
Artificial intelligence, 11(3):197–223.

Yorick Wilks and Dann Fass. 1992. The preference se-
mantics family. Computers & Mathematics with Ap-
plications, 23(2-5):205–221.

Chuhan Wu, Fangzhao Wu, Yubo Chen, Sixing Wu,
Zhigang Yuan, and Yongfeng Huang. 2018. Neu-
ral metaphor detecting with CNN-LSTM model. In
Proceedings of the Workshop on Figurative Lan-
guage Processing.


