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Abstract

Self-attention networks (SAN) have attracted a
lot of interests due to their high parallelization
and strong performance on a variety of NLP
tasks, e.g. machine translation. Due to the
lack of recurrence structure such as recurrent
neural networks (RNN), SAN is ascribed to
be weak at learning positional information of
words for sequence modeling. However, nei-
ther this speculation has been empirically con-
firmed, nor explanations for their strong per-
formances on machine translation tasks when
“lacking positional information” have been ex-
plored. To this end, we propose a novel word
reordering detection task to quantify how well
the word order information learned by SAN
and RNN. Specifically, we randomly move
one word to another position, and examine
whether a trained model can detect both the
original and inserted positions. Experimental
results reveal that: 1) SAN trained on word re-
ordering detection indeed has difficulty learn-
ing the positional information even with the
position embedding; and 2) SAN trained on
machine translation learns better positional in-
formation than its RNN counterpart, in which
position embedding plays a critical role. Al-
though recurrence structure make the model
more universally-effective on learning word
order, learning objectives matter more in the
downstream tasks such as machine translation.

1 Introduction

Self-attention networks (SAN, Parikh et al., 2016;
Lin et al., 2017) have shown promising empirical
results in a variety of natural language processing
(NLP) tasks, such as machine translation (Vaswani
et al., 2017), semantic role labelling (Strubell
et al., 2018), and language representations (De-
vlin et al., 2019). The popularity of SAN lies in

∗ Zhaopeng Tu is the corresponding author of the paper.
This work was conducted when Baosong Yang was interning
at Tencent AI Lab.

its high parallelization in computation, and flexi-
bility in modeling dependencies regardless of dis-
tance by explicitly attending to all the signals. Po-
sition embedding (Gehring et al., 2017) is gener-
ally deployed to capture sequential information for
SAN (Vaswani et al., 2017; Shaw et al., 2018).

Recent studies claimed that SAN with position
embedding is still weak at learning word order
information, due to the lack of recurrence struc-
ture that is essential for sequence modeling (Shen
et al., 2018a; Chen et al., 2018; Hao et al., 2019).
However, such claims are mainly based on a theo-
retical argument, which have not been empirically
validated. In addition, this can not explain well
why SAN-based models outperform their RNN
counterpart in machine translation – a benchmark
sequence modeling task (Vaswani et al., 2017).

Our goal in this work is to empirically assess the
ability of SAN to learn word order. We focus on
asking the following research questions:

Q1: Is recurrence structure obligate for learning
word order, and does the conclusion hold in
different scenarios (e.g., translation)?

Q2: Is the model architecture the critical factor for
learning word order in the downstream tasks
such as machine translation?

Q3: Is position embedding powerful enough to
capture word order information for SAN?

We approach these questions with a novel prob-
ing task – word reordering detection (WRD),
which aims to detect the positions of randomly
reordered words in the input sentence. We com-
pare SAN with RNN, as well as directional SAN
(DiSAN, Shen et al., 2018a) that augments SAN
with recurrence modeling. In this study, we focus
on the encoders implemented with different archi-
tectures, so as to investigate their abilities to learn
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Figure 1: Illustration of (a) the position detector, where (b) the output layer is build upon a randomly initialized or
pre-trained encoder. In this example, the word “hold” is moved to another place. The goal of this task is to predict
the inserted position “I” and the original position “O” of “hold”.

word order information of the input sequence. The
encoders are trained on objectives like detection
accuracy and machine translation, to study the in-
fluences of learning objectives.

Our experimental results reveal that: (Q1) SAN
indeed underperforms the architectures with re-
currence modeling (i.e. RNN and DiSAN) on
the WRD task, while this conclusion does not
hold in machine translation: SAN trained with
the translation objective outperforms both RNN
and DiSAN on detection accuracy; (Q2) Learn-
ing objectives matter more than model architec-
tures in downstream tasks such as machine trans-
lation; and (Q3) Position encoding is good enough
for SAN in machine translation, while DiSAN is
a more universally-effective mechanism to learn
word order information for SAN.

Contributions The key contributions are:

• We design a novel probing task along with
the corresponding benchmark model, which
can assess the abilities of different architec-
tures to learn word order information.1

• Our study dispels the doubt on the inability of
SAN to learn word order information in ma-
chine translation, indicating that the learning
objective can greatly influence the suitability
of an architecture for downstream tasks.

2 Word Reordering Detection Task

In order to investigate the ability of self-attention
networks to extract word order information, in this

1The data and codes are released at: https://
github.com/baosongyang/WRD.

section, we design an artificial task to evaluate the
abilities of the examined models to detect the er-
roneous word orders in a given sequence.

Task Description Given a sentence X =
{x1, ..., xi, ..., xN}, we randomly pop a word xi
and insert it into another position j (1 ≤ i, j ≤ N
and i 6= j). The objective of this task is to de-
tect both the position the word is popped out (la-
beled as “O”), as well as the position the word is
inserted (labeled as “I”). As seen the example in
Figure 1 (a), the word “hold” is moved from the
2nd slot to the 4th slot. Accordingly, the 2nd and
4th slots are labelled as “O” and “I”, respectively.
To exactly detect word reordering, the examined
models have to learn to recognize both the normal
and abnormal word order in a sentence.

Position Detector Figure 1 (a) depicts the archi-
tecture of the position detector. Let the sequential
representations H = {h1, ...,hN} be the output of
each encoder noted in Section 3, which are fed to
the output layer (Figure 1 (b)). Since only one pair
of “I” and “O” labels should be generated in the
output sequence, we cast the task as a pointer de-
tection problem (Vinyals et al., 2015). To this end,
we turn to an output layer that commonly used in
the reading comprehension task (Wang and Jiang,
2017; Du and Cardie, 2017), which aims to iden-
tify the start and end positions of the answer in
the given text.2 The output layer consists of two
sub-layers, which progressively predicts the prob-

2Contrary to reading comprehension in which the start
and end positions are ordered, “I” and “O” do not have to be
ordered in our tasks, that is, the popped word can be inserted
to either left or right position.

https://github.com/baosongyang/WRD
https://github.com/baosongyang/WRD
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abilities of each position being labelled as “I” and
“O”. The probability distribution of the sequence
being labelled as “I” is calculated as:

PI = SoftMax(U>I tanh(WIH)) ∈ RN (1)

where WI ∈ Rd×d and UI ∈ Rd are trainable
parameters, and d is the dimensionality of H.

The second layer aims to locate the original
position “O”, which conditions on the predicted
popped word at the position “I”.3 To make the
learning process differentiable, we follow Xu et al.
(2017) to use the weighted sum of hidden states
as the approximate embedding E of the popped
word. The embedding subsequently serves as a
query to attend to the sequence H to find which
position is most similar to the original position of
popped word. The probability distribution of the
sequence being labelled as “O” is calculated as:

E = PI(WQH) ∈ Rd (2)

PO = ATT(E,WKH) ∈ RN (3)

where {WQ,WK} ∈ Rd×d are trainable parame-
ters that transform H to query and key spaces re-
spectively. ATT(·) denotes the dot-product atten-
tion (Luong et al., 2015; Vaswani et al., 2017).

Training and Predicting In training process,
the objective is to minimize the cross entropy of
the true inserted and original positions, which is
the sum of the negative log probabilities of the
groundtruth indices by the predicted distributions:

L = Q>I logPI +Q>O logPO (4)

where {QI ,QO} ∈ RN is an one-hot vector to in-
dicate the groundtruth indices for the inserted and
original positions. During prediction, we choose
the positions with highest probabilities from the
distributions PI and PO as “I” and “O”, respec-
tively. Considering the instance in Figure 1 (a),
the 4th position is labelled as inserted position “I”,
and the 2nd position as the original position “O”.

3 Experimental Setup

In this study, we strove to empirically test whether
SAN indeed weak at learning positional informa-
tion and come up with the reason about the strong
performance of SAN on machine translation. In
response to the three research questions in Sec-
tion 1, we give following experimental settings:

3We tried to predict the position of “O” without feeding
the approximate embedding, i.e. predicting “I” and “O” indi-
vidually. It slightly underperforms the current model.

• Q1: We compare SAN with two recurrence
architectures – RNN and DiSAN on the
WRD task, thus to quantify their abilities on
learning word order (Section 3.1).

• Q2: To compare the effects of learning objec-
tives and model architectures, we train each
encoder under two scenarios, i.e. trained on
objectives like WRD accuracy and on ma-
chine translation (Section 3.2).

• Q3: The strength of position encoding is ap-
praised by ablating position encoding and re-
currence modeling for SAN.

3.1 Encoder Setting
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Figure 2: Illustration of (a) RNN; (b) SAN; and (c)
DiSAN. Colored arrows denote parallel operations.

RNN and SAN are commonly used to produce
sentence representations on NLP tasks (Cho et al.,
2014; Lin et al., 2017; Chen et al., 2018). As
shown in Figure 2, we investigate three archi-
tectures in this study. Mathematically, let X =
{x1, . . . ,xN} ∈ Rd×N be the embedding matrix
of the input sentence, and H = {h1, . . . ,hN} ∈
Rd×N be the output sequence of representations.

• RNN sequentially produces each state:

hn = f(hn−1,xn), (5)

where f(·) is GRU (Cho et al., 2014) in this
study. RNN is particularly hard to parallelize
due to their inherent dependence on the pre-
vious state hn−1.

• SAN (Lin et al., 2017) produces each hidden
state in a parallel fashion:

hn = ATT(qn,K)V, (6)

where the query qn ∈ Rd and the keys and
values (K,V) ∈ Rd×N are transformed from
X. To imitate the order of the sequence,
Vaswani et al. (2017) deployed position en-
codings (Gehring et al., 2017) into SAN.
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• DiSAN (Shen et al., 2018a) augments SAN
with the ability to encode word order:

hn = ATT(qn,K≤n)V≤n, (7)

where (K≤n,V≤n) indicate leftward ele-
ments, e.g., K≤n = {k1, . . . ,kn}.

To enable a fair comparison of architectures,
we only vary the sub-layer of sequence modeling
(e.g. the SAN sub-layer) in the Transformer en-
coder (Vaswani et al., 2017), and keep the other
components the same for all architectures. We use
bi-directional setting for RNN and DiSAN, and
apply position embedding for SAN and DiSAN.
We follow Vaswani et al. (2017) to set the con-
figurations of the encoders, which consists of 6
stacked layers with the layer size being 512.

3.2 Learning Objectives
In this study, we employ two strategies to train the
encoders, which differ at the learning objectives
and data used to train the associated parameters.
Note that in both strategies, the output layer in
Figure 2 is fine-trained on the WRD data with the
word reordering detection objective.

WRD Encoders We first directly train the en-
coders on the WRD data, to evaluate the abilities
of model architectures. The WRD encoders are
randomly initialized and co-trained with the out-
put layer. Accordingly, the detection accuracy can
be treated as the learning objective of this group
of encoders. Meanwhile, we can investigate the
reliability of the proposed WRD task by check-
ing whether the performances of different archi-
tectures (i.e. RNN, SAN, and DiSAN) are con-
sistent with previous findings on other benchmark
NLP tasks (Shen et al., 2018a; Tang et al., 2018;
Tran et al., 2018; Devlin et al., 2019).

NMT Encoders To quantify how well different
architectures learn word order information with
the learning objective of machine translation, we
first train the NMT models (both encoder and de-
coder) on bilingual corpus using the same configu-
ration reported by Vaswani et al. (2017). Then, we
fix the parameters of the encoder, and only train
the parameter associated with the output layer on
the WRD data. In this way, we can probe the
representations learned by NMT models, on their
abilities to learn word order of input sentences.

To cope with WRD task, all the models were
trained for 600K steps, each of which is allocated a

batch of 500 sentences. The training set is shuffled
after each epoch. We use Adam (Kingma and Ba,
2015) with β1 = 0.9, β2 = 0.98 and ε = 10−9.
The learning rate linearly warms up over the first
4,000 steps, and decreases thereafter proportion-
ally to the inverse square root of the step number.
We use a dropout rate of 0.1 on all layers.

3.3 Data
Machine Translation We pre-train NMT mod-
els on the benchmark WMT14 English⇒German
(En⇒De) data, which consists of 4.5M sentence
pairs. The validation and test sets are new-
stest2013 and newstest2014, respectively. To
demonstrate the universality of the findings in this
study, we also conduct experiments on WAT17
English⇒Japanese (En⇒Ja) data. Specifically,
we follow Morishita et al. (2017) to use the first
two sections of WAT17 dataset as the training data,
which approximately consists of 2.0M sentence
pairs. We use newsdev2017 as the validation set
and newstest2017 as the test set.

Word Reordering Detection We conduct this
task on the English sentences, which are extracted
from the source side of WMT14 En⇒De data with
maximum length to 80. For each sentence in dif-
ferent sets (i.e. training, validation, and test sets),
we construct an instance by randomly moving a
word to another position. Finally we construct
7M, 10K and 10K samples for training, validating
and testing, respectively. Note that a sentence can
be sampled multiple times, thus each dataset in the
WRD data contains more instances than that in the
machine translation data.

All the English and German data are tokenized
using the scripts in Moses. The Japanese sen-
tences are segmented by the word segmentation
toolkit KeTea (Neubig et al., 2011). To reduce the
vocabulary size, all the sentences are processed by
byte-pair encoding (BPE) (Sennrich et al., 2016)
with 32K merge operations for all the data.

4 Experimental Results

We return to the central questions originally posed,
that is, whether SAN is indeed weak at learning
positional information. Using the above experi-
mental design, we give the following answers:

A1: SAN-based encoder trained on the WRD data
is indeed harder to learn positional informa-
tion than the recurrence architectures (Sec-
tion 4.1), while there is no evidence that
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Models Insert Original Both
RNN 78.4 73.4 68.2
SAN 73.2 66.0 60.1
DiSAN 79.6 70.1 68.0

Table 1: Accuracy on the WRD task. “Insert” and
“Original” denotes the accuracies of detecting the in-
serted and original positions respectively, and “Both”
denotes detecting both positions.

Figure 3: Learning curve of WRD encoders on WRD
task. Y-axis denotes the accuracy on the validation set.
Obviously, SAN has slower convergence.

SAN-based NMT encoders learns less word
order information (Section 4.2);

A2: The learning objective plays a more crucial
role on learning word order than the architec-
ture in downstream tasks (Section 4.3);

A3: While the position encoding is powerful
enough to capture word order information
in machine translation, DiSAN is a more
universally-effective mechanism (Table 2).

4.1 Results on WRD Encoders

We first check the performance of each WRD en-
coder on the proposed WRD task from two as-
pects: 1) WRD accuracy; and 2) learning ability.

WRD Accuracy The detection results are con-
cluded in Table 1. As seen, both RNN and DiSAN
significantly outperform SAN on our task, indi-
cating that the recurrence structure (RNN) exactly
performs better than parallelization (SAN) on cap-
turing word order information in a sentence. Nev-
ertheless, the drawback can be alleviated by apply-
ing directional attention functions. The compara-
ble result between DiSAN and RNN confirms the
hypothesis by Shen et al. (2018a) and Devlin et al.
(2019) that directional SAN exactly improves the

ability of SAN to learn word order. The consis-
tency between prior studies and our results verified
the reliability of the proposed WRD task.

Learning Curve We visualize the learning
curve of the training. As shown in Figure 3, SAN
has much slower convergence than others, show-
ing that SAN has a harder time learning word or-
der information than RNN and DiSAN. This is
consistent with our intuition that the parallel struc-
ture is more difficult to learn word order infor-
mation than those models with a sequential pro-
cess. Considering DiSAN, although it has slightly
slower learning speed at the early stage of the
training, it is able to achieve comparable accuracy
to RNN at the mid and late phases of the training.

4.2 Results on Pre-Trained NMT Encoders
We investigate whether the SAN indeed lacks the
ability to learn word order information under ma-
chine translation context. The results are con-
cluded in Table 2. We first report the effectiveness
of the compared models on translation tasks. For
En-De translation, SAN outperforms RNN, which
is consistent with the results reported in (Chen
et al., 2018). The tendency is universal on En-Ja
which is a distant language pair (Bosch and Se-
bastián-Gallés, 2001; Isozaki et al., 2010). More-
over, DiSAN incrementally improves the transla-
tion quality, demonstrating that model directional
information benefits to the translation quality. The
consistent translation performances make the fol-
lowing evaluation on WRD accuracy convincing.

Concerning the performances of NMT encoders
on the WRD task:

SAN-based NMT Encoder Performs Better It
is surprising to see that SAN yields even higher ac-
curacy on WRD task than other pre-trained NMT
encoders, despite its lower translation qualities
comparing with DiSAN. The results not only dis-
pel the doubt on the inablity of SAN-based en-
coder to learn word order in machine translation,
but also demonstrate that SAN learns to retain
more features with respect to word order during
the training of machine translation.

Learning Objectives Matter More In addition,
both the NMT encoders underperform the WRD
encoders on detection task across models and lan-
guage pairs.4 The only difference between the

4The En⇒Ja pre-trained encoders yield lower accuracy
on WRD task than that of En⇒De pre-trained encoders. We
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Model Translation Detection
En⇒De En⇒Ja En⇒De Enc. En⇒Ja Enc. WRD Enc.

RNN 26.8 42.9 33.9 29.0 68.2
SAN 27.3 43.6 41.6 32.8 60.1

- Pos Emb 11.5 – 0.3 – 0.3
DiSAN 27.6 43.7 39.7 31.2 68.0

- Pos Emb 27.0 43.1 40.1 31.0 62.8

Table 2: Performances of NMT encoders pre-trained on WMT14 En⇒De and WAT17 En⇒Ja data. “Translation”
denotes translation quality measured in BLEU scores, while “Detection” denotes the accuracies on WRD task.
“En⇒De Enc.” denotes NMT encoder trained with translation objective on the En⇒De data. We also list the
detection accuracies of WRD encoders (“WRD Enc.”) for comparison. “- Pos Emb” indicates removing posi-
tional embeddings from SAN- or DiSAN-based encoder. Surprisingly, SAN-based NMT encoder achieves the best
accuracy on the WRD task, which contrasts with the performances of WRD encoders (the last column).

(a) WRD Encoder (b) En⇒De NMT Encoder (c) En⇒Ja NMT Encoder

Figure 4: Accuracy of pre-trained NMT encoders according to various distances between the positions of “O”
and “I” (X-axis). As seen, the performance of each WRD encoder (a) is stable across various distances, while the
pre-trained (b) En⇒De and (c) En⇒Ja encoders consistently get lower accuracy with the increasing of distance.

two kinds of encoders is the learning objective.
This raises a hypothesis that the learning objective
sometimes severs as a more critical factor than the
model architecture on modeling word order.

Position Encoding VS. Recurrence Modeling
In order to assess the importance of position en-
coding, we redo the experiments by removing
the position encoding from SAN and DiSAN (“-
Pos Emb”). Clearly, SAN-based encoder without
position embedding fails on both machine trans-
lation and our WRD task, indicating the neces-
sity of position encoding on learning word or-
der. It is encourage to see that SAN yields higher
BLEU score and detection accuracy than “DiSAN-
Pos Emb” in machine translation scenario. It
means that position embedding is more suitable on
capture word order information for machine trans-

attribute this to the difference between the source sentences
in pre-training corpus (En-Ja) and that of WRD data (from
En-De dataset). Despite of this, the tendency of results are
consistent across language pairs.

lation than modeling recurrence for SAN. Consid-
ering both two scenarios, DiSAN-based encoders
achieve comparable detection accuracies to the
best models, revealing its effectiveness and uni-
versality on learning word order.

4.3 Analysis
In response to above results, we provide further
analyses to verify our hypothesis on NMT en-
coders. We discuss three questions in this section:
1) Does learning objective indeed affect the ex-
tracting of word order information; 2) How SAN
derives word order information from position en-
coding; and 3) Whether more word order informa-
tion retained is useful for machine translation.

Accuracy According to Distance We further
investigate the accuracy of WRD task according
to various distance between the positions of word
is popped out and inserted. As shown in Figure 4
(a), WRD encoders marginally reduce the perfor-
mance with the increasing of distances. How-
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(a) En⇒De NMT encoder (b) En⇒Ja NMT encoder

Figure 5: Performance of each layer from (a) pre-trained En⇒De encoder and (b) pre-trained En⇒Ja encoder on
WRD task. The evaluation are conducted on the test set. Clearly, the accuracy of SAN gradually increased with
the stacking of layers and consistently outperform that of other models across layers.

ever, this kind of stability is destroyed when we
pre-train each encoder with a learning objective
of machine translation. As seen in Figure 4 (b)
and (c), the performance of pre-trained NMT en-
coders obviously became worse on long-distance
cases across language pairs and model variants.
This is consistent with prior observation on NMT
systems that both RNN and SAN fail to fully cap-
ture long-distance dependencies (Tai et al., 2015;
Yang et al., 2017; Tang et al., 2018).

Regarding to information bottleneck princi-
ple (Tishby and Zaslavsky, 2015; Alemi et al.,
2016), our NMT models are trained to maximally
maintain the relevant information between source
and target, while abandon irrelevant features in the
source sentence, e.g. portion of word order infor-
mation. Different NLP tasks have distinct require-
ments on linguistic information (Conneau et al.,
2018). For machine translation, the local patterns
(e.g. phrases) matter more (Luong et al., 2015;
Yang et al., 2018, 2019), while long-distance word
order information plays a relatively trivial role in
understanding the meaning of a source sentence.
Recent studies also pointed out that abandoning
irrelevant features in source sentence benefits to
some downstream NLP tasks (Lei et al., 2016; Yu
et al., 2017; Shen et al., 2018b). An immediate
consequence of such kind of data process inequal-
ity (Schumacher and Nielsen, 1996) is that infor-
mation about word order that is lost in encoder
cannot be recovered in the detector, and conse-
quently drops the performance on our WRD task.
The results verified that the learning objective in-
deed affects more on learning word order informa-
tion than model architecture in our case.

Accuracy According to Layer Several re-
searchers may doubt that the parallel structure of
SAN may lead to failure on capturing word or-
der information at higher layers, since the posi-
tion embeddings are merely injected at the input
layer. Accordingly, we further probe the repre-
sentations at each layer on our WRD task to ex-
plore how does SAN learn word order informa-
tion. As seen in Figure 5, SAN achieves better
performance than other NMT encoders on the pro-
posed WRD tasks across almost all the layers. The
result dispels the doubt on the inability of position
encoding and confirms the speculation by Vaswani
et al. (2017) and Shaw et al. (2018) who suggested
that SAN can profit from the use of residual net-
work which propagates the positional information
to higher layers. Moreover, both SAN and RNN
gradually increase their performance on our task
with the stacking of layers. The same tendency
demonstrates that position encoding is able to pro-
vide same learning manner to that of recurrent
structure with respect to word order for SAN. Both
the results confirm the strength of position encod-
ing to bring word order properties into SAN.

We strove to come up with the reason why SAN
captured even more word order information in ma-
chine translation task. Yin et al. (2017) and Tran
et al. (2018) found that the approach with a re-
currence structure (e.g. RNN) has an easier time
learning syntactic information than that of mod-
els with a parallel structure (e.g. CNN, SAN). In-
spired by their findings, we argue that SAN tries
to partially countervail its disadvantage in paral-
lel structure by reserving more word order infor-
mation, thus to help for the encoding of deeper
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Figure 6: The differences of translation performance
when the pre-trained NMT models are fed with the
original (“Golden”) and reordered (“Reorder”) source
sentences. As seen, SAN and DiSAN perform better
on handling noises in terms of erroneous word order.

linguistic properties required by machine transla-
tion. Recent studies on multi-layer learning shown
that different layers tend to learn distinct linguis-
tic information (Peters et al., 2018; Raganato and
Tiedemann, 2018; Li et al., 2019). The better ac-
curacy achieved by SAN across layers indicates
that SAN indeed tries to preserve more word order
information during the learning of other linguistic
properties for translation purpose.

Effect of Wrong Word Order Noises For hu-
mans, a small number of erroneous word orders in
a sentence usually does not affect the comprehen-
sion. For example, we can understand the meaning
of English sentence “Dropped the boy the ball.”,
despite its erroneous word order. It is intrigu-
ing whether NMT model has the ability to tackle
the wrong order noises. As a results, we make
erroneous word order noises on English-German
development set by moving one word to another
position, and evaluate the drop of the translation
quality of each model. As listed in Figure 6, SAN
and DiSAN yield less drops on translation quality
than their RNN counterpart, demonstrating the ef-
fectiveness of self-attention on ablating wrong or-
der noises. We attribute this to the fact that models
(e.g. RNN-based models) will not learn to be ro-
bust to errors since they are never observed (Sper-
ber et al., 2017; Cheng et al., 2018). On the con-
trary, since SAN-based NMT encoder is good at
recognizing and reserving anomalous word order
information under NMT context, it may raise the
ability of decoder on handling noises occurred in
the training set, thus to be more robust in translat-
ing sentences with anomalous word order.

5 Related Work

Exploring Properties of SAN SAN has yielded
strong empirical performance in a variety of NLP
tasks (Vaswani et al., 2017; Tan et al., 2018; Li
et al., 2018; Devlin et al., 2019). In response
to these impressive results, several studies have
emerged with the goal of understanding SAN on
many properties. For example, Tran et al. (2018)
compared SAN and RNN on language inference
tasks, and pointed out that SAN is weak at learning
hierarchical structure than its RNN counterpart.
Moreover, Tang et al. (2018) conducted experi-
ments on subject-verb agreement and word sense
disambiguation tasks. They found that SAN is
good at extracting semantic properties, while un-
derperforms RNN on capturing long-distance de-
pendencies. This is in contrast to our intuition that
SAN is good at capturing long-distance dependen-
cies. In this work, we focus on exploring the abil-
ity of SAN on modeling word order information.

Probing Task on Word Order To open the
black box of networks, probing task is used as
a first step which facilitates comparing differ-
ent models on a much finer-grained level. Most
work has focused on probing fixed-sentence en-
coders, e.g. sentence embedding (Adi et al., 2017;
Conneau et al., 2018). Among them, Adi et al.
(2017) and Conneau et al. (2018) introduced to
probe the sensitivity to legal word orders by de-
tecting whether there exists a pair of permuted
word in a sentence by giving its sentence em-
bedding. However, analysis on sentence encod-
ings may introduce confounds, making it diffi-
cult to infer whether the relevant information is
encoded within the specific position of interest
or rather inferred from diffuse information else-
where in the sentence (Tenney et al., 2019). In
this study, we directly probe the token representa-
tions for word- and phrase-level properties, which
has been widely used for probing token-level rep-
resentations learned in neural machine translation
systems, e.g. part-of-speech, semantic tags, mor-
phology as well as constituent structure (Shi et al.,
2016; Belinkov et al., 2017; Blevins et al., 2018).

6 Conclusion

In this paper, we introduce a novel word reorder-
ing detection task which can probe the ability of
a model to extract word order information. With
the help of the proposed task, we evaluate RNN,
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SAN and DiSAN upon Transformer framework to
empirically test the theoretical claims that SAN
lacks the ability to learn word order. The results
reveal that RNN and DiSAN exactly perform bet-
ter than SAN on extracting word order informa-
tion in the case they are trained individually for
our task. However, there is no evidence that SAN
learns less word order information under the ma-
chine translation context.

Our further analyses for the encoders pre-
trained on the NMT data suggest that 1) the learn-
ing objective sometimes plays a crucial role on
learning a specific feature (e.g. word order) in a
downstream NLP task; 2) modeling recurrence is
universally-effective to learn word order informa-
tion for SAN; and 3) RNN is more sensitive on er-
roneous word order noises in machine translation
system. These observations facilitate the under-
standing of different tasks and model architectures
in finer-grained level, rather than merely in overall
score (e.g. BLEU). As our approach is not lim-
ited to the NMT encoders, it is also interesting to
explore how do the models trained on other NLP
tasks learn word order information.
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