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Abstract

Tree-LSTMs have been used for tree-based

sentiment analysis over Stanford Sentiment

Treebank, which allows the sentiment signals

over hierarchical phrase structures to be cal-

culated simultaneously. However, traditional

tree-LSTMs capture only the bottom-up de-

pendencies between constituents. In this pa-

per, we propose a tree communication model

using graph convolutional neural network and

graph recurrent neural network, which allows

rich information exchange between phrases

constituent tree. Experiments show that our

model outperforms existing work on bidirec-

tional tree-LSTMs in both accuracy and effi-

ciency, providing more consistent predictions

on phrase-level sentiments.

1 Introduction

There has been increasing research interest inves-

tigating sentiment classification over hierarchical

phrases (Tai et al., 2015; Zhu et al., 2015; Looks

et al., 2017; Teng and Zhang, 2017). As shown in

Figure 1, the goal is to predict the sentiment class

over a sentence and each phrase in its constituent

tree. There have been methods that classify each

phrase independently (Li et al., 2015; McCann

et al., 2017). However, sentiments over hierarchi-

cal phrases can have dependencies. For example,

in Figure 1, both sentences have a phrase “an awe-

some day”, but the polarities of which are different

according to their sentence level contexts.

To better represent such sentiment dependen-

cies, one can encode a constituency tree holisti-

cally using a neural encoder. To this end, tree-

structured LSTMs have been investigated as a

dominant approach (Tai et al., 2015; Zhu et al.,

2015; Gan and Gong, 2017; Yu et al., 2017; Liu

et al., 2016). Such methods work by encoding

hierarchical phrases bottom-up, so that sub con-

stituents can be used as inputs for representing a

2

(1) 2

2

0 2

2

I        had   an    awesome   day    winning    the         game

0

02

2

2

0

(2)

I        had   an    awesome   day      experiencing  the       tsunami

* 

00

0

0

0

0

0

0

* 

0

-2

-1

-2

-2

-1

-1

-2

-2

-2

* 
* 

* 
* 

Figure 1: Examples of tree-based sentiment.

constituent. However, they cannot pass informa-

tion from a constituent node to its children, which

can be necessary for cases similar to Figure 1. In

this example, sentence level information from top-

level nodes is useful for disambiguating “an awe-

some day”. Bi-directional tree LSTMs provide a

solution, using a separate top-down LSTM to aug-

ment a tree-LSTM (Teng and Zhang, 2017). This

method has achieved highly competitive accura-

cies, at the cost of doubling the runtime.

Intuitively, information exchange between tree

nodes can happen beyond bottom-up and top-

down directions. For example, direct communica-

tion between sibling nodes, such as (“an awesome

day”, “winning the game”) and (“an awesome

day”, “experiencing the tsunami”) can also bring

benefits to tree representation. Recent advances

of graph neural networks, such as graph convolu-

tional neural network (GCN) (Kipf and Welling,

2016; Marcheggiani and Titov, 2017) and graph

recurrent neural network (GRN) (Beck et al.,

2018; Zhang et al., 2018b; Song et al., 2018) of-

fer rich node communication patterns over graphs.

For relation extraction, for example, GCNs have
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been shown superior to tree LSTMs for encoding

a dependency tree (Zhang et al., 2018c)

We investigate both GCNs and GRNs as tree

communication models for tree sentiment classi-

fication. In particular, initialized with a vanilla

tree LSTM representation, each node repeatedly

exchanges information with its neighbours using

graph neural networks. Such multi-pass informa-

tion exchange can allow each node to be more in-

formed about its sentence-level context through

rich communication patterns. In addition, the

number of time steps does not scale with the height

of the tree. To allow better interaction, we fur-

ther propose a novel time-wise attention mecha-

nism over GRN, which summarizes the represen-

tation after each communication step.

Experiments on Stanford Sentiment Treebank

(SST; Socher et al. 2013) show that our model

outperforms standard bottom-up tree-LSTM (Zhu

et al., 2015; Looks et al., 2017) and also re-

cent work on bidirectional tree-LSTM (Teng and

Zhang, 2017). In addition, our model allows a

more holistic prediction of phase-level sentiments

over the tree with a high degree of node sen-

timent consistency. To our knowledge, we are

the first to investigate graph NNs for tree senti-

ment classification, and the first to discuss phrase

level sentiment consistency over a constituent tree

for SST. We release our code and models at

https://github.com/fred2008/TCMSA.

2 Related Work

Bi-directional Tree-LSTM Paulus et al. (2014)

capture bidirectional information over a binary

tree by propagating global belief down from

the tree root to leaf nodes. Miwa and Bansal

(2016) adopt a bidirectional dependency tree-

LSTM model by introducing a top-down LSTM

path. Teng and Zhang (2017) propose a first bidi-

rectional tree-LSTM for constituent structures, by

building a top-down tree-LSTM with estimations

of head lexicons. Compared with their work, we

achieve information interaction using an asymp-

totically more efficient algorithm, which per-

forms node communication simultaneously across

a whole tree.

Graph Neural Network Scarselli et al. (2009)

propose graph neural network (GNN) for encod-

ing an arbitrary graph structure. Kipf and Welling

(2016) use graph convolutional network to learn

node representation for graph structure. Marcheg-

giani and Titov (2017) and Bastings et al. (2017)

extend the use of graph convolutional network

(GCN) to NLP tasks. In particular, they use GCN

to learn dependency-syntactic word representation

for semantic role labeling and machine translation,

respectively. Zhang et al. (2018b) use a graph re-

current network (GRN) to model sentences. Beck

et al. (2018) and Song et al. (2018) use a graph re-

current network for learning representation of ab-

stract meaning representation (AMR) graphs. Our

work is similar in utilizing graph neural network

for NLP. Compared with their work, we apply

GNN to constituent trees. In addition, we propose

a novel time-wise attention mechanism on GRN to

combine recurrent time steps dynamically.

3 Baseline

We take standard bottom-up tree-LSTMs as our

baseline. Tree-LSTM extends sequence-LSTM by

utilizing 2 previous states for modeling a left child

node and a right child node, respectively, in a re-

current state transition process. Formally, a tree-

LSTM calculates a cell state through an input gate,

an output gate and two forget gates at each time

step. In particular, at time step t, the input gate it
and the output gate ot are calculated respectively

as follows:

it = σ
(

WL
hih

L
t−1 +WR

hih
R
t−1

+WL
cic

L
t−1 +WR

ci c
R
t−1 + bi

)

,

ot = σ
(

WL
hoh

L
t−1 +WR

hoh
R
t−1

+WL
coc

L
t−1 +WR

coc
R
t−1 + bo

)

,

where WL
hi, W

R
hi, W

L
ci , W

R
ci , bi, W

L
ho, WR

ho, WL
co,

WR
co and bo are parameters of the input gate and

the output gate, respectively.

The forget gates of the left node fL
t and the right

node fR
t are calculated respectively as:

fL
t = σ

(

WL
hfL

hLt−1 +WR
hfL

hRt−1

+WL
cfL

cLt−1 +WR
cfL

cRt−1 + bfL
)

,

fR
t = σ

(

WL
hfR

hLt−1 +WR
hfR

hRt−1

+WL
cfR

cLt−1 +WR
cfR

cRt−1 + bfR
)

,

where WL
hfL

, WR
hfL

, WL
cfL

, WR
cfL

, bfL , WL
hfR

,

WR
hfR

, WL
cfR

, WR
cfR

and bfR are parameters.

The cell candidate C̃t is dependent on both cLt−1

and cRt−1:

C̃t = tanh
(

WL
hCh

L
t−1 +WR

hCh
R
t−1 + bC

)
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Figure 2: Tree communication model.

where WhC , WR
hC and bC are model parameters.

Based on the two previous cell states cLt−1 and

cRt−1, the cell state of the current node ct is calcu-

lated as:

ct = f l
t ⊗ cLt−1 + fR

t ⊗ cRt−1 + it ⊗ C̃t,

where f l
t is the forget gate of the left child node,

fR
t is the forget gate of the right child node, C̃t is

the cell candidate.

Finally, the hidden state ht of the current node

is calculated based on the current cell ct and the

output gate ot:

ht = ot ⊗ tanh(ct)

Limitation Tree-LSTM models capture only

bottom-up node dependencies. Specifically, for a

node j, the hidden representation htreej is depen-

dent on the descendant nodes only. Formally,

htreej = f(hdj0 , hdj1 , · · · , hdjk),

where dj is the set of descendant nodes of node j.

Bi-directional Solution A bidirectional tree-

LSTM (Bi-tree-LSTM) takes a bottom-up tree-

LSTM as a first step, performing a top-down tree

communication process. Teng and Zhang (2017)

is one example.

4 Tree Communication Models

Our tree communication models (TCM) take a

trained tree LSTM as an initial state, performing

information exchange using graph neural network

(GNN). Thus hj is dependent on all related neigh-

borhood nodes rather than only descendant nodes:

hj = f(hrj0 , hrj1 , · · · , hrjk),

where rj is the set of all relevant nodes of node

j. Such node can be the full tree with sufficient

communication.

Time-wise

Attention

Mechanism

Figure 3: Recurrent tree communication model.

In particular, given a constituent tree, for each

constituent node j, the initial state h′j is obtained

using a tree-LSTM:

h′j = treeLSTM(h′left(j), c
′

left(j), h
′

right(j), c
′

right(j)),

where h′j is the hidden state of the node j, c′j is the

cell state of node j, left(j) denote the left child of

node j, right(j) denotes the right child of node j.

As shown in Figure 2, a TCM performs in-

formation exchange between a constituent node j
with its neighbor nodes in three channels:

• A self-to-self channel transfers information

from node j to itself. The input for the chan-

nel is represented as xself
j = h′j , where h′j is

the initial state of tree communication model.

• A bottom-up channel transfers information

from lower level nodes to upper-level nodes.

The inputs for the channel are represented as

xleft
j = h′

left(j), x
right
j = h′

right(j), where left(j)

and right(j) denote the left child and the right

child of node j, respectively. xup
j is the sum

of inputs from bottom up: xup
j = xleft

j +xright
j .

• A top-down channel transfers information

from parent nodes to child nodes. The input

for the channel is represented as: xdown
j =

h′
prt(j), where prt(j) denotes the parent node

of node j.

When tree communications are executed repeat-

edly, each node receives information from an in-

creasingly larger context. We explore a convo-

lutional tree communication model (CTCM) and

a recurrent tree communication model (RTCM),

which are based on GCN (Marcheggiani and

Titov, 2017) and GRN (Song et al., 2018), re-

spectively. Both models allow node interactions

in a tree to be performed in parallel, and thus are
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computationally efficient. The time complexity to

achieve additional interaction of TCMs are O(1),

in contrast to O(n) by top-down tree-LSTM.

4.1 Convolutional Tree Communication Model

We apply the strategy of Marcheggiani and Titov

(2017), where multiple convolutional layers can be

used for information combination. In particular,

for the k-th layer, transformed inputs are obtained

by linear transformation for each channel:

xk,self
j = W k,selfhk−1,self

j + bk,self,

xk,d
j = W k,uphk−1,d

j + bk,up, d ∈ {left, right},

xk,down
j = W k,downhk−1,down

j + bk,down,

where W k,e and be (e ∈ {self, up, down})

are model parameters, and hk−1,e
j (e ∈

{self, left, right, down}) is the hidden state

of last layer for node e(j). The initial h−1,e
j are

the inputs of three channels xe
j defined earlier.

Following Marcheggiani and Titov (2017), for

each edge type e ∈ {self, left, right, down}, we

apply edge-wise gate to all inputs:

gk,ej = σ(W k,e
g hk,ej + bk,eg ),

where W k,e
g and bk,eg are model parameters.

The final representation of node j is:

hkj = f(
∑

e

xk,ej ⊗ gk,ej ).

4.2 Recurrent Tree Communication Model

We take the stategy of Song et al. (2018). The

structure of RTCM shows in Figure 3. For each

recurrent step t, the hidden states from the last re-

current step are taken to calculate the cell state of

the current state. In particular, for node j, the hid-

den state of the previous step can be divided into

the last hidden state hself
j from self-to-self chan-

nel, the last hidden state hup
t−1,j from bottom-up

channel and the last hidden state hdown
t−1,j from the

top-down channel:

hself
t−1,j = ht−1,j ,

hup
t−1,j = ht−1,left(j) + ht−1,right(j),

hdown
t−1,j = ht−1,prt(j).

We calculate gate and state values based on the

inputs and last hidden states from the three infor-

mation channels. The input gate ijt and the forget

gate f j
t are defined as:

itj = σ
(

W self
i xself

j +W up
i xup

j +W down
i xdown

j

+ U self
i hself

t−1,j + U up
i hup

t−1,j + U down
i hdown

t−1,j + bi

)

,

f t
j = σ

(

W self
f xself

j +W up

f xup
j +W down

f xdown
j

+ U self

f hself
t−1,j + U up

f hup
t−1,j + U down

f hdown
t−1,j + bf

)

,

where W self
i , W up

i , W down
i , U self

i , U up
i , U down

i , bi,

W self

f , W up

f , W down
f , U self

f , U up

f , U down
f and bf are

parameters of input and forget gate.

The cell candidate C̃j
t is defined as:

C̃t
j = σ

(

W self
C xselfj +W up

C xup
j +W down

C xdown
j

+ U self
C hself

t−1,j + U up
C hup

t−1,j+U down
C hdown

t−1,j+bC

)

,

where W self
C , W up

C , W down
C , U self

C , U up
C , U down

C and

bC are parameters of cell candidate.

The current cell state is calculated as:

ctj = f t
j ⊗ ct−1

j + itj ⊗ C̃t
j ,

The output gate ojt is defined as:

otj = σ
(

W self
o xself

j +W up
o xup

j +W down
o xdown

j

+ U self
o hself

t−1,j + U up
o hup

t−1,j + U down
o hdown

t−1,j + bo

)

,

where W self
o , W up

o , W down
o , U self

o , U up
o , U down

o and

bo are model parameters.

The final hidden htj is calculated through the

current cell state ctj and the output gate otj :

htj = otj ⊗ tanh(ctj).

4.2.1 Time-wise attention

Both GRN and GCN calculate a sequence of incre-

mentally more abstract representations c1j , c
2
j , ...c

t
j

for each node cj . We further introduce a novel at-

tention scheme to GRN. Intuitively, each recurrent

step in RTCM learns a different level of abstrac-

tion. For a constituent node higher in the tree or

on the leaf, more recurrent steps may be needed to

learn the interaction between nodes. Accordingly,

we use an adaptive recurrence mechanism to learn

a dynamic node representation through attention

structure (Bahdanau et al., 2014).

Our method first encodes a recurrent-step-

sensitive hidden state with positional embedding:

hj,depth
t = hjt + ept ,
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where hj,depth
t is the recurrent-step-sensitive hid-

den state for node j on t-th step, ep is positional

encoding of the recurrence steps.

Inspired by Vaswani et al. (2017), a static repre-

sentation is used for the positional encoding ep(t),
which does not require training:

ept,2k = sin(t/100002k/demb),

ept,2k+1 = cos(t/100002k/demb),

t is the index of recurrent steps, et,m is the m-th

dimension of positional embedding, and demb is

the dimension of embedding.

We learn the weight wt for the t-th recur-

rent step by the relationship between hj,depth
T and

hj,depth
t :

w′

j,t = hj,depth
T · hj,depth

t ,

wj,t =
exp(w′

j,i)
∑T−1

t=0 exp(w′

j,t)
.

The final state can be represented as a weighted

sum of the hidden states obtained after different

recurrent steps:

hj =

T−1
∑

t=0

wth
j
t .

5 Decoding and Training

Following Looks et al. (2017) and Teng and Zhang

(2017), we perform softmax classification on each

node according to the last hidden state:

o = softmax(Mh+ b)

where M and b are model parameters. For train-

ing, negative log-likelihood loss is computed over

each o locally, and accumulated over the tree.

6 Experiments

We test the effectiveness of TCM by comparing

its performance with a standard tree-LSTM (Zhu

et al., 2015) as well as a state-of-the-art bidirec-

tional tree-LSTM (Teng and Zhang, 2017). A se-

ries of analysis is conducted for measuring the

holistic representation of sentiment in a tree via

phrase-level sentiments consistency.

6.1 Data

We use the Stanford Sentiment Treebank (SST;

Socher et al. 2013), which is a dataset of movie

Corpus SST-5 SST-2

Classes 5 2

Sentences 11,855 9,613

Phrases 442,629 137,988

Tokens 227,242 185,621

Table 1: Data statistics.

reviews originally from Pang and Lee (2005) an-

notated at both the clause level and the sentence

level. Following Zhu et al. (2015) and Teng and

Zhang (2017), we perform both fine-grained sen-

timent classification and binary classification. For

the former, the dataset was annotated for 5 lev-

els of sentiment: strong negative, negative, neu-

tral, positive, and strong positive. For the latter,

the data was labeled with positive sentiment and

negative sentiment. We adopt a standard dataset

split following Tai et al. (2015); Teng and Zhang

(2017). Table 1 lists the data statistics.

6.2 Experimental Settings

Hyper-parameters We initialize word embed-

dings using GloVe (Pennington et al., 2014) 300-

dimensional embeddings. Embeddings are fine-

tuned during training. The size of LSTM hidden

states are set to 300. We thus fix the number to 9.

Training In order to obtain a good representa-

tion for an initial constituent state, we first train

an independent bottom-up tree-LSTM, over which

we train our tree communication models. To avoid

over-fitting, we adopt dropout on the embedding

layer, with a rate of 0.5. Training is done on mini-

batches through Adagrad (Duchi et al., 2011) with

a learning rate of 0.05. We adopt gradient clipping

with a threshold of 1.0. The L2 regularization pa-

rameter is set to 0.001.

6.3 Development Experiments

Hyper-parameters We investigate the effect of

recurrent steps of RTCM as shown in Block A of

Table 2. As the number of steps increases from

1, the accuracy increases, showing the effective-

ness of tree node communication. A recurrent step

of 9 gives the best accuracies, and a larger num-

ber of steps does not give further improvements.

This is consistent with observations of Song et al.

(2018), which shows that sufficient context infor-

mation can be collected over a small number of

iterations.

The effectiveness of TCM Block B in Table 2
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Block Model SST-5 SST-2

A

3 Step RTCM 83.1 92.3

6 Step RTCM 83.2 92.7

9 Step RTCM 83.4 92.9

18 Step RTCM 83.2 92.8

B

Tree-LSTM 82.9 92.4

CTCM 83.3 92.8

RTCM 83.4 92.9

RTCM+attention 83.5 93.3

Table 2: Phrase level performances on the dev set.

shows the performance of different models. Tree-

LSTMs with different TCMs outperform the base-

line tree-LSTM on both datasets. In addition, the

time-wise attention mechanism in Section 4.2.1

improves performance on both SST-5 and SST-2.

In the remaining experiments, we use RTCM with

time wise-attention.

6.4 Final Results

Table 3 shows the overall performances for senti-

ment classification on both SST-5 and SST-2. We

report accuracies on both the sentence level and

the phrase level. Compared with previous methods

based on constituent tree-LSTM, our model im-

proves the preformance on different datasets and

settings. In particular, it outperforms BiConL-

STM (Teng and Zhang, 2017), which use bidirec-

tional tree-LSTM. This demostrates the advantage

of graph neural networks compared to a top-down

LSTM for tree communication. Our model gives

the state-of-the-art accuracies on phrase-level set-

tings. Note that we do not leverage character rep-

resentation or external resources such as sentiment

lexicons and large-scale corpuses.

There has also been work using large-scale ex-

ternal datasets to improve performance. McCann

et al. (2017) pretrain their model on large par-

allel bilingual datasets and exploit character n-

gram features. They report an accuracy of 53.7

on sentence-level SST-5 and an accuracy of 90.3

on sentence-level SST-2, which are lower than our

model. Peters et al. (2018) pretrain a language

model with character convolutions on a large-scale

corpus and report an accuracy of 54.7 on sentence-

level SST-5, which is slightly higher than our

model. Large-scale pretraining is orthogonal to

our method. For a fair comparison, we do not list

their results on Table 3.

We further analyze the performance with re-

Model
SST-5 SST-2

R P R P

RNTN (S13) 45.7 80.7 85.4 87.6

BiLSTM (L15) 49.8 83.3 86.7 -

ConTree (LZ15) 49.9 - 88.0 -

ConTree (Z15) 50.1 - - -

ConTree (L15) 50.4 83.4 86.7 -

ConTree (T15) 51.0 - 88.0 -

Disan (S18) 51.7 - - -

RL LD/HS-LSTM (Z18) 50.0 - 87.8 -

NTI-SLSTM (MY17) 53.1 - 89.3 -

ConTree(Fold) (L17) 52.3 - 89.4 -

BiConTree (TZ17) 53.5 83.5 90.3 92.8

RTC + attention 54.3 83.6 90.3 93.4

Table 3: Final results (R-Root, P-Phrase). S13 – Socher

et al. (2013); L15 – Li et al. (2015); LZ15 – Le and

Zuidema (2015); Z15 – Zhu et al. (2015); T15 – Tai

et al. (2015); S18 – Shen et al. (2018); Z18 – Zhang

et al. (2018a); MY17 – Munkhdalai and Yu (2017); L17

– Looks et al. (2017); TZ17 – Teng and Zhang (2017)
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Figure 4: Sentiment classification accuracies against

the sentence length. The accuracy for each length l is

calculated on the test set sentences length in the bin

[l, l + 5].

spect to different sentence lengths. Figure 4 shows

the results. On both datasets, the performance of

tree-LSTM on sentences of lengths less than 10

(l = 5 in the figure) is much better than that of

longer sentences. There is a tendency of decreas-

ing accuracies as the sentence length increases. As

the length of sentences increases, there are longer-

range dependencies along the depth of tree struc-

ture, which is more difficult to model than short

sentences.

It can be seen that the improvement of TCM

over tree-LSTM model is larger with increasing

sentence length. This shows that longer sentences

can benefit more from rich tree communication.
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Figure 5: Sentence-level phrase accuracy (SPAcc) scat-

ter plot. Each dot represents a sentence in the test

dataset. Its x-coordinate and y-coordinate are SPAcc

for predicted phrase label sequence of the baseline

model and TCM respectively. The blue line is a linear

regression line of all dots.

Dataset α Baseline Our Model Diff.

SST-5

1.0 3.5 3.7 +0.2

0.9 18.9 21.2 +2.3

0.8 67.6 71.4 +3.8

SST-2

1.0 56.0 61.4 +5.4

0.9 18.9 21.2 +4.6

0.8 67.6 71.4 +2.0

Table 4: Rates of holistically-labeled sentences with

sentence-level phrase accuracy SPAcc > α.

6.5 Disscusion

Sentence-level performance To further compare

performances of holistic phrase sentiment classifi-

cation on the sentence level, we measure the accu-

racy on the sentence level. We define sentence-

level phrase accuracy (SPAcc) of a sentence as:

SPAcc = ncorrect/ntotal, where ntotal is the total

number of phrases in the sentence, and ncorrect is

the number of correct sentiment predictions in the

sentence. For each sentence of test dataset, taking

SPAcc of the corresponding label sequence result-

ing from the baseline model as the x-coordinate

and SPAcc of the corresponding label sequence re-

sulting from TCM as the y-coordinate, we draw a

scatter plot with a regression line as shown in Fig-

ure 5. The regression line is inclined towards the

top-left, indicating that TCM can improve the per-

formance on holistic phrase classifications over a

whole sentence.

If the SPAcc of a sentence is high, the sentence

is more holistically-labeled. Table 4 shows the

statistics on the rate of holistically-labeled sen-

tences with SPAcc > α (SPAcc-α). The rate of

holistically-labeled sentences for TCM is higher
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Figure 6: Deviation of node errors for each tree.

Dataset Metric Baseline TCM Diff.

SST-5
mean 36.9 35.7 -1.2

median 38.1 37.0 -1.1

SST-2
mean 31.4 21.8 -9.6

median 34.3 25.8 -8.3

Table 5: Deviation statistics. Values in units of ×10−2

than that for tree-LSTM on both SST-5 and SST-

2 for different values of α. It demonstrates that

TCM labels the constituent nodes of the whole tree

better than the tree-LSTM model, thanks to more

information exchange between phrases in a tree.

Consistency between nodes To compare the

sentiment classification consistency of phrases in

each sentence, we define a metric, phrase error de-

viation (PEDev), to measure the deviation among

the error of labels for one sentence:

PEDev(ŷ, y) =

√

1

N

∑N−1

i=0

[

d(ŷi, yi)− d̄
]2
,

where d(ŷi, yi) is the Hamming distance between

the i-th predicted label and the i-th ground truth

label. d̄ is the mean value of d(ŷi, yi). Since

d(ŷi, yi) ∈ [0, 1], PEDev(ŷ, y) ∈ [0, 0.5].
For an input sentence, if all the predicted labels

are the same as the ground truth, or all the pre-

dicted labels are different from the ground truth,

PEDev(ŷ, y) = 0, which means that the sen-

tence is labeled with the maximum consistency.

On the contrary, if the predicted labels of some

phrases are the same as ground truth while oth-

ers are not, PEDev(ŷ, y) is high. Table 5 lists

the statistics on PEDev(ŷ, y) of the baseline model

and our model for all the test sentences on SST-5

and SST-2. The mean and median of PEDev(ŷ, y)
of TCM are much less than those of the baseline

tree-LSTM model. In addition, as Figure 6 shows,

compared with the PEDev(ŷ, y) distribution of the

tree-LSTM model, the distribution of TCM is rel-

atively less in value. It demonstrates that TCM
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Figure 7: Sentiment classification samples.
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dataset for tree-LSTM (left) and TCM (right).

40 50 60 70 80 90 100
Bi-Tree-LSTM

40

50

60

70

80

90

100

Tr
ee

 C
om

m
un

ica
tio

n

(a)

0

10

20

30

40

50

60

Ph
ra

se
 e

rro
r d

ev
ia

tio
n 

(P
ED

ev
)

Bi-tree-LSTM
Tree Communication

(b)

Figure 9: Sentence-level phrase accuracy (a) and devi-

ation of node errors (b) comparison on SST-5 between

bi-tree-LSTM and TCM.

improves the consistency of phrase classification

for each sentence.

Confusion matrix Figure 8 shows the confu-

sion matrix on the SST-5 phrase-level test set for

tree-LSTM (left) and TCM (right). Compared

with tree-LSTM, the accuracies of most sentiment

labels by TCM increase (the accuracy of the neu-

tral label slightly decreases by 0.3%), indicating

that TCM is strong in differentiating fine-grained

sentiments in global and local contexts.

Metrics BTL TCM Diff.

SPAcc, α = 1.0 3.2 3.7 +0.5

SPAcc, α = 0.9 20.0 21.2 +1.2

SPAcc, α = 0.8 70.7 71.4 +0.7

PEDev-mean 36.4 35.7 -0.7

PEDev-median 37.6 37.0 -0.6

Table 6: Sentence-level phrase accuracy (SPAcc) and

phrase error deviation (PEDev) comparison on SST-5

between bi-tree-LSTM and TCM.

6.6 Comparison with Bi-tree-LSTM

Table 6 shows the sentence-level phrase accu-

racy (SPAcc) and phrase error deviation (PEDev)

comparison on SST-5 between bi-tree-LSTM and

TCM, respectively. TCM outperforms bi-tree-

LSTM on all the metrics, which demonstrates that

TCM gives more consistent predictions of senti-

ments over different phrases in a tree, compared

to top-down communication. This shows the ben-

efit of rich node communication.

Figure 9 shows a scatter chart and a deviation

chart comparision between the two models, in the

same format as Figure 5 and Figure 6, respec-

tively. As shown in Figure 9a, the errors of TCM

and bitree-LSTM are scattered, which shows that

different communication patterns influence senti-

ment prediction. The final observation is consis-

tent with Table 6.

6.7 Case Study

Figure 7 shows four samples on SST-5. In the first

sentence, the phrase “seemed static” itself bares

the neutral sentiment. However, it has a negative

sentiment in the context. The tree-LSTM model

captures the sentiment of the phrase bottom-up,

therefore giving the neutral sentiment. In con-
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trast, TCM considers larger contexts by repeated

node interaction. The phrase “seemed static” re-

ceives information from the constituents “never

took off” and “Though everything might be lit-

erate and smart” through their common ancestor

nodes, leading to the correct result. Although bi-

tree-LSTM predicts these sentiments of the phrase

“seemed static” and the whole sentence correctly,

it gives more incorrect results on the phrase level.

The other sentences in Figure 7 show similar

trends. From the samples we can find that TCM

provides more consistent predictions on phrase-

level sentiments thanks to its better understanding

of different contexts.

7 Conclusion

We investigated two tree communication mod-

els for sentiment analysis, leveraging recent ad-

vances in graph neural networks for information

exchange between nodes in a baseline tree-LSTM

model. Both GCNs and GRNs are explored and

compared, with GRNs showing better accuracies.

We additionally propose a novel time-wise atten-

tion mechanism to further improve GRNs. Re-

sults on standard benchmark show that graph NNs

give better results compared to bi-directional tree

LSTMs, providing more consistent predictions

over phrases in one sentence. To our knowledge,

we are the first to leverage graph neural network

structures for enhancing tree-LSTMs, and the first

to discuss tree-level sentiment consistency using a

set of novel metrics.
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