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Abstract

Discriminating antonyms and synonyms is an
important NLP task that has the difficulty that
both, antonyms and synonyms, contains sim-
ilar distributional information. Consequently,
pairs of antonyms and synonyms may have
similar word vectors. We present an ap-
proach to unravel antonymy and synonymy
from word vectors based on a siamese network
inspired approach. The model consists of a
two-phase training of the same base network:
a pre-training phase according to a siamese
model supervised by synonyms and a train-
ing phase on antonyms through a siamese-like
model that supports the antitransitivity present
in antonymy. The approach makes use of the
claim that the antonyms in common of a word
tend to be synonyms. We show that our ap-
proach outperforms distributional and pattern-
based approaches, relaying on a simple feed
forward network as base network of the train-
ing phases.

1 Introduction

Antonymy and synonymy are lexical relations that
are crucial in language semantics. Antonymy is
the relation between opposite words, (e.g. big-
small) and synonymy refers to words with similar
meaning (e.g. bug-insect). Detecting them auto-
matically is a challenging NLP task that can ben-
efit many others like textual entailment (Haghighi
et al., 2005; Snow et al., 2006), machine transla-
tion (Bar and Dershowitz, 2010) and abstractive
summarization (Khatri et al., 2018).

Hand crafted lexical databases, such as Word-
Net (Miller, 1995), have been built and main-
tained to be used in NLP and other fields con-
taining antonyms, synonyms and other lexical se-
mantic relations. However, its construction and
maintenance takes a considerable human effort
and it is difficult to achieve a broad coverage. De-

tecting antonyms automatically, relying on exis-
tent resources such as text, dictionaries and lexical
databases is an active NLP research area.

In the last decade, the use and research concern-
ing word vectors have increased rapidly. Word
vectors rely on words co-occurrence information
in a large corpus. The key idea behind word vec-
tors is the distributional hypothesis that can be ex-
pressed as ”the words that are similar in meaning
tend to occur in similar contexts” (Sahlgren, 2008;
Rubenstein and Goodenough, 1965). A variety of
methods have been developed to train word vec-
tors, such as skip-gram (Mikolov et al., 2013),
GloVe (Pennington et al., 2014), FastText (Joulin
et al., 2016) and ElMo (Peters et al., 2018). Word
vectors are used widely in NLP, for example, a
well-known use is in supervised learning, taking
advantage of the expansion through words relat-
edness of the training data.

A main problem to discriminate antonymy au-
tomatically in a distributional unsupervised set-
ting is that the oppositeness is not easily distin-
guishable in terms of the context distributions. In
fact, pairs of antonyms are very similar in mean-
ing. Antonyms are usable in the same contexts
but leading to opposite meanings. Antonymy is
said to have the paradox of simultaneous similarity
and difference (Cruse, 1986), because antonyms
are similar in almost every dimension of meaning
except the one where they are opposite.

The paradox of simultaneous similarity and dif-
ference is notorious in word space models. The
contexts of a word and its antonyms contexts usu-
ally are similar and therefore they have close vec-
tor representations1.

1In fact, word space models may give similar representa-
tions to a broader range of related words, such as synonyms
and hyponyms. Note the difference between the terms word
similarity and word relatedness. While word similarity refers
to similar words (synonyms), the concept of word relatedness
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Due to this paradox, word space models seem
not suitable for antonymy detection. Then, a
commonly used resource is the path of words
connecting the joint occurrence of two candidate
words (Nguyen et al., 2017). Path based ap-
proaches take profit of the fact that antonyms co-
occur in the same context more than expected by
chance (Scheible et al., 2013; Miller and Charles,
1991), so it is possible to obtain a significant
amount of patterns.

In this paper, we claim that vector space models,
despite giving close representations for synonyms
and antonyms, contain subtle differences that al-
low to discriminate antonymy. In order to stick out
those differences we propose a method based on a
neural network model that takes account of alge-
braic properties of synonymy and antonymy. The
model formulation is based on the transitivity of
synonymy and the antitransitivity of antonymy, on
the symmetry of both relations and on the reflex-
ivity and irreflexivity of synonymy and antonymy,
respectively. Moreover, the model exploits the
property that two antonyms of the same word tend
to be synonyms (Edmundson, 1967) (Figure 1).
We use these properties to define a model based on
siamese networks and a training strategy through
antonyms and synonyms.

Figure 1: The antonyms of a same word tend to be syn-
onyms.

We show that the presented approach gives sur-
prisingly good results, even in comparison to mod-
els that use external information, such as depen-
dency parsing, part-of-speech tagging or path pat-
terns from a corpus. The introduced model is a
way to learn any kind of antitransitive relations be-
tween distributed vectors. Antitransitivity may be
suitable, for instance, to represent the relation of
being adversary (Bonato et al., 2017). A different
application of the presented approach could be in

includes other semantic fields, like antonyms, hypernyms, co-
hyponyms and specific relations (e.g. dog-bone).

social networks in order to find out possible un-
known enemies relying on a given set of known
enmity and friendship links.

The rest of the paper is structured as follows:
In Section 2 we present the previous work on
antonymy detection. In Section 3 we describe
the proposed approach. We start with some al-
gebraic principles of synonymy and antonymy on
which our approach relies. Then we describe
siamese networks and how the learned transforma-
tion tends to induce an equivalence relationship,
suitable for synonyms. In Section 3.3, we com-
ment the unsuitability of siamese networks to deal
with an antitransitive relationship like antonymy
and we propose a variation of the original siamese
network to do so. We refer to this network as
a parasiamese network. Then, we argue that
the same base network of a parasiamese model
for antonymy can be pre-trained minimizing a
siamese scheme on synonyms. Section 4 details
the dataset, word vectors and the random search
strategy carried out to find out an adequate hyper-
parameter configuration. In Section 5 we present
the results and the behavior of the model. Finally,
Section 6 contains the conclusion of this paper.

2 Related Work

Antonymy detection, and antonymy and syn-
onymy discrimination, have been treated prin-
cipally by two approaches: distributional and
pattern-based. Distributional approaches refer to
the use of word vectors or word’s distributional
information. Pattern-based are those that rely on
patterns of joint occurrences of pair of words (such
as ”from X to Y”) to detect antonymy. Due to the
direction of this work, we will not extend on path-
based approaches and we will give the most atten-
tion in this section to distributional approaches.

As we commented before, at first glance
word vectors seem not suitable to discrimi-
nate antonymy from synonymy because pairs of
antonyms correspond to similar vectors. Many
research studies and experiments have focused
on the construction of vector representations that
deem antonymy.

Scheible et al. (2013) showed that the context
distributions of adjectives allow to discriminate
antonyms and synonyms if only words from cer-
tain classes are considered as context in the vector
space mode. Hill et al. (2014) found that word vec-
tors from machine translation models outperform
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those learned from monolingual models in word
similarity. They suggest that vectors from machine
translation models should be used on tasks that re-
quire word similarity information, while vectors
from monolingual models are more suitable for
word relatedness. Santus et al. (2014) proposed
APAnt, an unsupervised method based on average
precision of contexts intersections of two words,
to discriminate antonymy from synonymy.

Symmetric patterns in corpus (e.g. X and Y)
were used by Schwartz et al. (2015) to build word
vectors and they showed that the patterns can
be chosen so that the resulting vectors consider
antonyms as dissimilar. Ono et al. (2015) pro-
posed an approach to train word vectors to detect
antonymy using antonymy and synonymy infor-
mation from a thesauri as supervised data. A main
difference between their approach and ours is that
they did not rely on pre-trained vectors. They used
distributional information jointly with the super-
vised information to train vectors through a model
based on skip-gram. Also, Nguyen et al. (2016)
integrated synonymy and antonymy information
into the skip-gram model to predict word similar-
ity and distinguish synonyms and antonyms.

More recently, Nguyen et al. (2017) distinguish
antonyms and synonyms using lexico-syntactic
patterns jointly with the supervised word vectors
from Nguyen et al. (2016). To finish, (Vulić,
2018) obtain great performance injecting lexical
contrast into word embeddings by terms of their
ATTRACT-REPEL strategy.

3 Method

In this section we describe the proposed approach
to discriminate antonymy and synonymy. It con-
sists on a siamese networks inspired approach to
magnify the subtle differences on antonyms that
distinguish them from synonyms.

3.1 Algebra of synonymy and antonymy
In order to define and substantiate our approach
we introduce an axiomatic characterization of
antonymy and synonymy based on the work done
by Edmundson (1967). Precisely, synonymy and
antonymy are modeled as relations and a set of ax-
ioms is proposed. These axioms, as we are going
to show, are essential to formulate our approach.

At first glance, synonymy and antonymy can be
seen as binary relations between words. However,

based on empirical results2 Edmundson defined
synonymy and antonymy as ternary relations in or-
der to consider the multiple senses of the words, as
follows:

xSiy ≡ x synonym of y according to sense i

xAiy ≡ x antonym of y according to sense i

Note that the senses of the words are repre-
sented in the relationship rather than in the words
themselves. Each i (and therefor Si and Ai) re-
flects a particular configuration of the senses of
the words in the vocabulary, considering a unique
sense for each word.

Firstly, synonymy is considered a reflexive,
symmetric and transitive relationship. This is ex-
pressed by the following axioms:

∀i∀x(xSix) (1)

∀i∀x∀y(xSiy =⇒ ySix) (2)

∀i∀x∀y∀z(xSiy ∧ ySiz =⇒ xSiz) (3)

Si is an equivalence relation for each fixed i and
therefor it splits the set of words into equivalence
classes. In the next section we show that this is
suitable for siamese networks.

Antonymy is also a symmetric relation but it is
irreflexive and antitransitive:

∀i∀x¬(xAix) (4)

∀i∀x∀y(xAiy =⇒ yAix) (5)

∀i∀x∀y∀z(xAiy ∧ yAiz =⇒ ¬xAiz) (6)

So far, synonymy and antonymy are described
separately. The following two axioms involve both
relationships:

∀i∀x∀y∀z(xAiy ∧ yAiz =⇒ xSiz) (7)

∀i∀x∀y∀z(xAiy ∧ ySiz =⇒ xAiz) (8)

Axiom 7 is a refined version of the antitran-
sitive property (axiom 6)3. Assuming that two
words cannot be synonyms and antonyms simul-
taneously, it is direct to prove that axiom 7 implies
axiom 6. We include axiom 6 for clarification pur-
pose.

2Precisely, analyzing graphs of several sets of synonyms
treated as a binary relation and the adjacency matrices asso-
ciated with these graphs.

3In fact, the term antitransitivity is used in Edmundson
article to refer axiom 7 instead of axiom 6
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The right-identity, axiom 8, says that synonyms
of an antonym of a word are also antonyms. Con-
sequently, antonymy relation can be extended to
operate between synonymy equivalence classes.

To introduce our model and the considered task
setting, we simplify this definition enforcing a bi-
nary relation. We consider:

xRy ⇐⇒ ∃i(xRiy),

whereR andRi are S orA and Si orAi, respec-
tively. This simplification encapsulates the multi-
ple senses of the words and therefore it is suitable
for word embeddings. However, the presented ax-
ioms may not be completely fulfilled under this
simplification.

3.2 Synonymy and Siamese Networks
A siamese network is a model that receives two
inputs an returns an output. A base neural net-
work is applied to each input and the both outputs
are measured using a vector distance function (see
Figure 2). Usually, siamese networks are trained
using a contrastive loss function. The complete
model can be interpreted as a trainable distance
function on complex data, like images, sound, or
text. Siamese networks have been used in a va-
riety of tasks such as sentence similarity (Chi and
Zhang, 2018), palmprint recognition (Zhong et al.,
2018) and object tracking (Bertinetto et al., 2016),
among many others.

Figure 2: A siamese network model.

Consider a vocabulary V of words where we
want to discriminate synonyms and a given word
vector set for that vocabulary of dimension n.
Then consider a neural network Fθ : IRn → IRn

with weights θ and the following contrastive loss
function

L =
∑

(x,y)∈P

d(Fθ(x), Fθ(y))+∑
(x′,y′)∈N

max{0, α− d(Fθ(x′), Fθ(y′))},

where d : IRn× IRn → IR+ is a vector distance
function (e.g. d = ||x − y||2), α is the threshold
for the negative examples, and P and N are pos-
itive and negative example pairs, respectively. So
P is a set of pairs of synonyms and N a set of pair
of words that are not synonyms. We consider that
each pair is already composed by the word vec-
tor of each word, this is convenient to simplify the
notation. This model can be trained using a back-
propagation based technique and the output vec-
tors closer than a given threshold are classified as
related.

It can be proved that the relation induced by a
siamese network is reflexive and symmetric. Tran-
sitivity is a little more tricky. It is assured to be
satisfied when the sum of the distances of the an-
tecedent related pairs is below the threshold and,
in every case, the distance of the transitive pairs
is below the double of the threshold. Therefore, a
siamese network is a reasonable approach for su-
pervised synonymy detection.

3.3 Antonymy and Antitransitivity
While a siamese network seems a reason-
able choice for supervised synonym detection,
antonymy presents a really different scenario.
Consider Fθ∗ as the base neural network in a
siamese scheme and suppose that it is trained
and working perfectly to discriminate pairs of
antonyms. Consider also three words w1, w2, w3

such that w1 is antonym of w2 and w2 is antonym
of w3, then

Fθ∗(w1) = Fθ∗(w2),

Fθ∗(w2) = Fθ∗(w3)

hence, Fθ∗(w1) = Fθ∗(w3) an therefore, w1

and w3 would be recognized as antonyms, violat-
ing axiom 6.

A siamese network induces a transitive relation-
ship but antonymy is actually antitransitive. To
model an antitransitive relation, we propose the
following variation of the siamese network.

Let’s consider Fθ and the model diagrammed
in figure 3. It consists of a model that consumes
two vectors with the same dimension and applies
a base neural network once to one input and twice
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to the other. The idea behind this scheme is that
if two word are antonyms then the base network
applied once in one word vector and twice in the
other word vector, will return close vectors. It can
be interpreted as one application of the base net-
work takes to a representation of the equivalence
class of the synonymy relation and the second ap-
plication to a representation its opposite class in
terms of antonymy.

Figure 3: The proposed parasiamese network to dis-
criminate antonymy.

Assume that Fθ∗ is trained and behaves per-
fectly on data according to the following loss func-
tion:

Lant =
∑

(x,y)∈P

d(Fθ(x), Fθ(Fθ(y)))+∑
(x′,y′)∈N

max{0, α− d(Fθ(x′), Fθ(Fθ(y′)))},

where P and N are positive and negative exam-
ple pairs, respectively; α is the threshold for the
negative examples, and d a distance function as
in siamese network. Then, it can be seen that the
relation induced fulfills the antitransitivity prop-
erty if Fθ∗(w) 6= Fθ∗(Fθ∗(w)), which is expected
since antonymy is an antireflexive relation.

Symmetry is not forced by definition but can be
included in the loss function or by data, adding the
reversed version of each pair in the dataset. The
latter is the alternative chosen in this work.

3.4 Relaxed Loss Function
In order to classify a pair of words we rely in a
threshold ρ. If the candidate pair obtains a distance

(between its transformed vectors) below ρ, then it
is classified as positive, otherwise as negative. So,
it is not necessary to minimize the distance to 0
to classify it correctly. We propose to change the
positive part of the contrastive loss function by∑

(x,y)∈P

max(d(Fθ(x), Fθ(Fθ(y)))− ρν, 0)

where ν is a factor in [0, 1] that states the impor-
tance given to ρ, the rest of the terms remains the
same as in the previous section. If ν = 0 then the
original loss function is recovered. We consider
ν = 1/2 and we experimentally observe an im-
provement in results when this relaxed loss func-
tion is used.

3.5 Pre-training using synonyms
Consider Fθ∗ trained and perfectly working to
detect pairs of antonyms using the parasiamese
scheme presented in the previous section. Now,
lets consider the word vectors w1, w2 and w3 such
that w1 is antonym of w2 and w2 is antonym of
w3. According to the parasiamese loss function
we have that,

Fθ∗(w1) = Fθ∗(Fθ∗(w2)),

Fθ∗(Fθ∗(w2)) = Fθ∗(w3).

This implies that Fθ∗(w1) = Fθ∗(w3), suggest-
ing to F the role of a siamese network. On the
other hand, using axiom 7 we have that w1 and
w3 tend to be synonyms, which, as we previously
show, fits fine for siamese networks.

Using this result, we propose to pre-train Fθ,
minimizing a siamese network on synonymy
data as in Section 3.2, and then perform the
parasiamese training to detect antonyms as de-
scribed in Section 3.3. We use the same
antonymy/synonymy dataset to pre-train and train
the parasiamese network and we experimentally
observe that this pre-training phase improves the
performance of the parasiamese model.

4 Experiments

In this section we describe the setup details of
the experiments performed using the presented
approach. Here we give the complete informa-
tion to reproduce the experiments performed. We
describe the dataset, word vectors set used and
the random search strategy used for the hyper-
parameter configuration.
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Model
Adjective Verb Noun

P R F1 P R F1 P R F1

Baseline (concat) 0.691 0.664 0.677 0.756 0.641 0.694 0.764 0.716 0.739
AntSynNet 0.763 0.807 0.784 0.743 0.815 0.777 0.816 0.898 0.855
Parasiam (regular loss) 0.735 0.804 0.768 0.815 0.894 0.853 0.786 0.857 0.820
Parasiam (no pre-train) 0.764 0.848 0.804 0.825 0.892 0.857 0.787 0.849 0.817
Parasiam (ElMo) 0.838 0.844 0.841 0.830 0.910 0.869 0.802 0.855 0.827
Parasiam (FastText) 0.855 0.857 0.856 0.864 0.921 0.891 0.837 0.859 0.848

Table 1: Performance of our approach and the baseline models. AntSynNet corresponds to the work presented
by Nguyen et al. (2017) and Baseline (concat) to a feed forward network on vectors concatenation. The third row
refers to the parasiamese model without including the relaxed loss function, and the fourth to the model without
performing the pre-training stage. Third and fourth row results were carried out using FastText vectors. Fifth and
sixth rows show the results of the complete model (i.e. using pre-training and the relaxed loss function) on ElMo
and FastText vectors, respectively.

4.1 Antonymy Dataset
To perform our experiments we use the dataset
created by Nguyen et al. (2017). This dataset con-
tains a large amount of pairs of antonyms and syn-
onyms grouped according to its word class (noun,
adjective and verb). This dataset was built us-
ing pairs extracted by Nguyen et al. (2016) from
WordNet and Wordnik4 to induce patterns through
a corpus. Then, the induced patterns were used to
extract new pairs, filtering those that match less
than five patterns. Finally, the dataset was bal-
anced to contain the same number of antonyms
and synonyms, and split into train, validation and
test. The number of pairs contained on each parti-
tion of each word class is showed in Table 2.

Train Val Test
Adjective 5562 398 1986
Verb 2534 182 908
Noun 2836 206 1020

Table 2: Nguyen et al. (2017) number of word pairs of
each partition in the dataset.

4.2 Pre-trained word vectors
For the experimental setting we consider pre-
trained general purpose word vectors. We avoid
out-of-vocabulary terms using character based ap-
proaches. The following publicly available re-
sources were considered:

• FastText (Joulin et al., 2016) vectors trained
on English Wikipedia dump 5. We use default

4http://www.wordnik.com
5http://mattmahoney.net/dc/enwik9.zip

hyper-parameters and vectors dimension is
300.

• ElMo (Peters et al., 2018) vectors for English
from Che et al. (2018) 6. We use the first layer
of ElMo that gives representations for decon-
textualized words.

In the case of FastText we compute 300 dimen-
sional vectors for each word in the dataset. In the
case of ElMo embeddings, the pre-trained model
was already defined to generate representations of
1024 dimensions.

4.3 Base Network Structure
The base network transforms each word vec-
tor into a representative form synonymy and
antonymy. Any differentiable function that inputs
and outputs vectors of the same dimension of the
word embeddings space can be used as base net-
work. In this work we consider layered fully con-
nected networks with ReLU as activation function.

The presented model involves tens of hyper-
parameters and some of them with many options.
We use random search to find a good hyper-
parameter configuration, since it may lead to a
better and more efficient solution in comparison
to grid or manual search (Bergstra and Bengio,
2012). This improvement is given by the fact that
some hyper-parameters do not really matter and
grid or manual search would consume time ex-
ploring each combination of them (for each com-
bination of the rest), while random search does not
exhaustively explore irrelevant parts of the hyper-
parameters space.

6http://vectors.nlpl.eu/repository/11/
144.zip

http://www.wordnik.com
http://mattmahoney.net/dc/enwik9.zip
http://vectors.nlpl.eu/repository/11/144.zip
http://vectors.nlpl.eu/repository/11/144.zip
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We perform random search sampling models
according to the following considerations:

• 2,3,4 and 5 layers uniformly chosen

• for each hidden layer (if any) we sample its
size from a Gaussian distribution with µ =
d/2 and σ = d/5, where d is the dimension
of the word vectors.7

• dropout with 1/2 of probability to be acti-
vated or not and dropout probability is given
by a Gaussian distribution (µ = 0.25 and
σ = 0.1).

• prediction (or positive) threshold and con-
trastive loss threshold uniformly chosen be-
tween {2.5, 2, 1.5, 1, 0.5, 0.2} and {3, 5, 10},
respectively.

• batch size uniformly chosen from
{32, 64, 128}

• we choose between SGD and Adam with
equal probability with a learning rate chosen
from {0.01, 0.001, 0.0001}

• the patience for the early stopping was sam-
pled uniformly from {3, 4, 7, 9}

We initialize the weights of the network us-
ing Glorot uniform function (Glorot and Bengio,
2010). We stop the training using early stopping
and we checkout the best model in the whole run
against the validation set. For the implementation
we use Keras (Chollet et al., 2015).

After analyzing the results of 200 sampled
hyperparameter configurations using the Fast-
Text vectors we found that an adequate hyper-
parameters setting is a four layered network of
input dimensions [300, 227, 109, 300] on its layer
from input to output, without dropout, and ReLu
activation function for every neuron. For training,
a batch size is 64, an acceptance threshold of 2.0
and of 3.0 for the negative part of the contrastive
loss. The optimizer method is SGD with a learn-
ing rate of 0.01 and a patience of 5 for the early
stopping. This training setup was used in both
phases: pre-training and training. For the exper-
iments with ElMo embeddings we uniquely adjust
hidden layers sizes, probably ElMo results may
improve by a dedicated hyperparameter search.

7The dimension of input and output layers is d by model
definition.

5 Results

In this section we discuss the results obtained with
the presented approach and we analyze the model
behavior through the outputs of the base network
in siamese and parasiamese schemes. We include
two baselines with different motivations for com-
parison purpose. We analyze the model outputs for
related and unrelated pairs (i.e. pairs that are not
synonyms or antonyms). In the end of this section,
we analyze the output of the base network.

5.1 Baselines
We consider two baselines to compare our exper-
iments. The first baseline is a feed forward net-
work classifier that consumes the concatenation of
the embeddings of each word in the candidate pair.
This baseline compares the performance boost of
the proposed model against a conventional super-
vised classification scheme using neural networks.
For this baseline we consider the FastText vec-
tors to feed a four layered network with layer di-
mensions of [600, 400, 200, 1] from input to out-
put and ReLu as activation function. This model
was trained through binary cross-entropy loss and
SGD with a learning rate of 0, 01.

The second baseline we consider for compari-
son is AntSynNet (Nguyen et al., 2017), a pattern-
based approach that encodes the paths connecting
the joint occurrences of each candidate pairs using
a LSTM. It relies on additional information, such
as, part-of-speech, lemma, syntax and dependency
trees.

5.2 Antonymy and Synonymy discrimination
We evaluate our model in the antonymy-
synonymy discrimination task proposed by
Nguyen et al. (2017). However, the task here is
faced from a different point of view. In this work
we are interested in showing that word vectors
contains what is needed to distinguish between
antonyms and synonyms, instead of resolving the
general task using any available resource. For that
reason we do not try to improve the performance
adding more information to the model, such as,
paths. It is a supervised approach that discriminate
antonymy and synonymy using only word vectors
as features.

The obtained results are reported in Table 1.
The first baseline is included to compare the per-
formance of our model with a word vector con-
catenation classification. We also report results
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with and without pre-training to show the perfor-
mance gain that pre-training contributes. Notice
that, in contrast to AntSynNet, no path-based in-
formation is considered in our approach.

5.3 Siamese and parasiamese outputs
In this section we show the outputs of the siamese
and parasiamese networks on word pairs chosen
from the validation set (see Table 3).

Word1 Word2 Cos Siam Psiam
cold warm 0.327 3.051 1.01
cold hot 0.367 3.576 0.801
raw hot 0.467 5.398 1.424
peace war 0.448 6.167 0.367
stupid clever 0.406 7.635 1.192
stretch contract 0.526 4.351 0.354
love hate 0.378 2.771 0.153
reject take 0.528 2.341 0.66
close harsh 0.544 4.11 0.682
small large 0.178 4.076 0.302
auntie uncle 0.351 1.721 0.561
day night 0.366 1.098 0.803
sloping vertical 0.331 0.254 2.687
hot cool 0.253 1.753 2.239
invisible visible 0.137 1.816 2.11
change mutate 0.593 0.853 4.879
ample large 0.398 0.115 4.05
flee depart 0.499 0.682 3.958
cure heal 0.332 0.646 5.769
elegant classy 0.48 0.964 5.917
herald hail 0.507 0.752 5.826
live exist 0.527 0.126 4.737
agitate disturb 0.282 0.627 4.683
chop divide 0.657 1.56 4.085
sturdy hardy 0.333 1.894 3.493
stout robust 0.541 1.903 4.361
scatter dot 0.477 2.05 1.402
fizzle fail 0.437 3.706 3.464
see discern 0.501 3.878 3.724

Table 3: A word sampling and their vector cosine dis-
tances, siamese and parasiamese (Psiam) outputs. The
upper and lower parts correspond to pairs in the valida-
tion data as antonyms and synonyms, respectively. The
threshold for acceptance is 2.0.

It can be observed in the obtained results, in
general, a suitable behavior of the model. We also
include the cosine distance to compare and show
that it is unable to distinguish between antonyms
and synonyms. It is interesting to notice, for in-

stance, in the upper part of the table, that corre-
sponds to antonyms, the difference in outputs be-
tween the pairs cold-warm and cold-hot. It may
be interpreted as that cold-hot are more antonyms
than cold-warm, which seems adequate. Below
the dashed line of each part we include some fail-
ure cases.

5.3.1 Non-related pairs
The task setting considered for this work only uses
synonyms and antonyms for training. It is interest-
ing to notice that in this work the behavior of the
model with unrelated pairs is learned from related
pairs and word embeddings, without considering
any unrelated pairs during training. We show in
Table 4 the outputs given by siamese and parasi-
amese networks on unrelated pairs.

Word1 Word2 Cos Siam Psiam
see disturb 0.579 3.803 3.866
flee cure 0.534 3.189 3.764
man wolf 0.507 4.017 2.649
ascend speak 0.63 1.927 2.776
safe adverse 0.475 4.57 0.625
change mature 0.511 1.118 3.602
cold night 0.48 1.134 1.98
cold day 0.574 3.727 0.483
warm night 0.462 0.773 0.658
warm day 0.52 0.733 1.601

Table 4: Unrelated pairs and its word vectors co-
sine distance, siamese model output and parasiamese
(Psiam) output.

The obtained results show that the model is not
capable to detect unrelated pairs correctly. In fact,
the model seems to learn a broader relation. For
example, the words safe and adverse are predicted
as antonyms and although they are not antonyms,
they have some oppositeness. Similarly, the com-
binations of cold and warm with day and night
also seems to be coherent since the day tends to
be warmer than the night and the night tends to be
colder than the day. In the upper part of the table
we include unrelated pairs that were correctly pre-
dicted as unrelated and below the dashed line we
include failure cases on unrelated pairs.

5.3.2 Base Network Output
In this section we analyze the learned base net-
work. In Figure 4 we show a 2D visualization
of the original and the transformed word embed-
dings. The sample of words was chosen from
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Figure 4: 2D visualization of the original (left) and the transformed (right) words vectors. Related words are col-
ored in red and light blue to facilitate the visualization of how the model split antonymy from original embeddings.

the validation set and t-SNE (Maaten and Hin-
ton, 2008) was used for the dimensionality reduc-
tion. It can be observed that in the original space
antonyms tend to be close and when the base net-
work is applied the space seems to be split into two
parts, corresponding to each pole of antonymy.

We also consider the resulting space from ap-
plying the transformation twice to the original
word vector space, which is similar to the result
of applying it only once. This behavior is coher-
ent with the parasiamese network definition.

To conclude this section, we show the closest
words (in the vocabulary) of the words natural
and unnatural, in the original and the transformed
spaces, sorted by distance (Table 5). Note how
some opposite words appear close in the original
space, while in the transformed space the nearest
words does not seem to be opposite to the word in
question.

6 Conclusion

We presented a supervised approach to distinguish
antonyms and synonyms using pre-trained word
embeddings. The proposed method is based on
algebraic properties of synonyms and antonyms,
principally in the transitivity of synonymy and the
antitransitivity of antonymy. We proposed a new
siamese inspired model to deal with antitransi-
tivity, the parasiamese network. In addition, we
proposed to pre-train this network, relying on the
claim that two antonyms of the same word tend

word neighborhood

natural
O

naturals, nonnatural,
naturalness, unnatural,

naturalmotion, connatural,
sobrenatural

T
pop, morning, simpleness,
pee, public, cardia, liveness

unnatural
O

nonnatural, unnaturalness,
connatural, unnaturally,

naturalness, natural,
sobrenatural

T

shumen, simpsons,
untroubledness, hither,

random, bewitched,
diarrhetic

Table 5: Nearest word vectors in the original (O) and
the transformed (T) spaces.

to be synonyms, through a siamese network; and
a relaxed version of the contrastive loss function.
We evaluated our approach using a publicly avail-
able dataset and word vectors, obtaining encour-
aging results.
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