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Abstract

This paper introduces CogNet, a new,
large-scale lexical database that provides
cognates—words of common origin and
meaning—across languages. The database
currently contains 3.1 million cognate pairs
across 338 languages using 35 writing sys-
tems. The paper also describes the automated
method by which cognates were computed
from publicly available wordnets, with an
accuracy evaluated to 94%. Finally, statistics
and early insights about the cognate data
are presented, hinting at a possible future
exploitation of the resource1 by various fields
of lingustics.

1 Introduction

Cognates are words in different languages that
share a common origin and the same meaning,
such as the English letter and the French lettre.
Cognates and the problem of cognate identifica-
tion have been extensively studied in the fields
of language typology and historical linguistics,
as cognates are considered useful for research-
ing the relatedness of languages (Bhattacharya
et al., 2018). Cognates are also used in computa-
tional linguistics, e.g., for lexicon extension (Wu
and Yarowsky, 2018) or to improve cross-lingual
NLP tasks such as machine translation or bilingual
word recognition (Kondrak et al., 2003; Tsvetkov
and Dyer, 2015).

Despite the interest in using cognate data for
research, state-of-the-art cognate databases have
had limited practical uses from an applied perspec-
tive, for two reasons. Firstly, popular cognate-
coded databases that are used in historical lin-
guistics, such as ASJP (Wichmann et al., 2010),

1The CogNet resource and WikTra tool are available on
http://cognet.ukc.disi.unitn.it.

IELex2, or ABVD (Greenhill et al., 2008), cover
only the small set of 225 Swadesh basic concepts,
although with an extremely wide coverage of up to
4000 languages. Secondly, in these databases, lex-
ical entries that belong to scripts other than Latin
or Cyrillic mostly appear in phonetic transcription
instead of using their actual orthographies in their
original scripts. These limitations prevent such re-
sources from being used in real-world computa-
tional tasks on written language.

This paper describes CogNet, a new large-scale,
high-precision, multilingual cognate database, as
well as the method used to build it. Our main
technical contributions are (1) a general method
to detect cognates from multilingual lexical re-
sources, with precision and recall parametrable ac-
cording to usage needs; (2) a large-scale cognate
database containing 3.1 million word pairs across
338 languages, generated with the method above;
(3) WikTra, a multilingual transliteration dictio-
nary and library derived from Wiktionary data; and
(4) an online platform that lets users explore the
resource.

The paper is organised as follows. Section 2
presents the state of the art. Section 3 describes
the main cognate discovery algorithm and sec-
tion 4 the way various forms of evidence used
by the algorithm are computed. The method is
parametrised and the results are evaluated in sec-
tion 5. Section 6 describes the resulting CogNet
database in terms of structure and statistical in-
sights. Finally, section 7 concludes the paper.

2 State of the Art

To our knowledge, cognates have so far been
defined and explored in two fundamental ways
by two distinct research communities. On the

2Indo-European Lexical Cognacy Database,
http://ielex.mpi.nl/
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one hand, cognate identification has been studied
within linguistic typology and historical linguis-
tics. On the other hand, computational linguists
have been researching methods for cognate pro-
duction.

The very definition of the term ‘cognate’ varies
according to the research community. In histori-
cal linguistics, cognates must have a provable ety-
mological relationship and must be translated into
each language (Bhattacharya et al., 2018). Ac-
cordingly, the English skyscraper and the German
Wolkenkratzer are considered as cognates but the
English song and the Japanese �S⇣ /songu/)
are not. In computational linguistics, the notion
of cognate is more relaxed with respect to etymol-
ogy and loanwords are also considered as cognates
(Kondrak et al., 2003). For our work we adopted
the latter, computational point of view.

In historical linguistics, cognate identification
methods proceed in two main steps. First, a sim-
ilarity matrix of all words is estimated by three
types of similarity measures: semantic similar-
ity, phonetic similarity, and orthographic simi-
larity. For information on semantic similarity,
special-purpose multilingual dictionaries, such as
the well-known Swadesh List, are used. For or-
thographic similarity, string metrics (Hauer and
Kondrak, 2011; St Arnaud et al., 2017) are of-
ten employed, e.g., edit distance, Dice’s coeffi-
cient, or LCSR. As these methods do not work
across scripts, they are completed by phonetic
similarity, exploiting transformations and sound
changes across related languages (Kondrak, 2000;
Jäger, 2013; Rama et al., 2017). Phonetic similar-
ity measures, however, require phonetic transcrip-
tions to be a priori available. More recently, his-
torical linguists have started exploiting identified
cognates to infer phylogenetic relationships across
languages (Rama et al., 2018; Jäger, 2018).

In computational linguistics, cognate produc-
tion consists of finding for a word in a given lan-
guage its cognate pair in another language. State-
of-the-art methods (Beinborn et al., 2013; Sen-
nrich et al., 2016) have employed character-based
machine translation, trained from parallel corpora,
to produce cognates or transliterations. (Wu and
Yarowsky, 2018) also employs similar techniques,
as well as multilingual dictionaries, to produce
large-scale cognate clusters for Romance and Tur-
kic languages. Although the cognates produced
in this manner are, in principle, a good source for

improving certain cross-lingual tasks in NLP, the
quality of the output often suffers due to not be-
ing able to handle certain linguistic phenomena
properly. For example, words in languages such
as Arabic or Hebrew are written without vowels
and machine-produced transliterations often fail to
vowelize such words (Karimi et al., 2011). The so-
lution we propose is the use of a dictionary-based
transliteration tool over machine transliteration.

Our method provides new contributions for both
research directions. Firstly, to our knowledge no
other work on cognate generation has so far used
high-quality multilingual lexical resources on a
scale as large as ours, covering hundreds of lan-
guages and more than 100,000 cross-lingual con-
cepts. Secondly, this large cross-lingual cover-
age could only be achieved thanks to a robust
transliteration tool that is part of the contributions
of our paper. Finally, our novel, combined use
of multiple—orthographic, semantic, geographic,
and etymological—sources of evidence for detect-
ing cognates was crucial to obtain high-quality re-
sults, in terms of both precision and recall.

3 The Algorithm

For our work we have adopted a computational-
linguistic interpretation of the notion of cognate
(Kondrak et al., 2003): two words in different lan-
guages are cognates if they have the same meaning
and present a similarity in orthography, resulting
from a supposed underlying etymological relation-
ship (common ancestry or borrowing).

Based on this interpretation, our algorithm is
based on three main principles: (1) semantic
equivalence, i.e., that the two words share a com-
mon meaning; (2) sufficient proof of etymological
relatedness; and (3) the logical transitivity of the
cognate relationship.

The core resource for obtaining cross-lingual
evidence on semantic equivalence—i.e., the same-
ness of word meanings—is the Universal Knowl-
edge Core (UKC), a large multilingual lexico-
semantic database (Giunchiglia et al., 2018) al-
ready used both in linguistics research as well
as for practical applications (Bella et al., 2016;
Giunchiglia et al., 2017; Bella et al., 2017).
The UKC includes the lexicons and lexico-
semantic relations for 338 languages, contain-
ing 1,717,735 words and 2,512,704 language-
specific word meanings. It was built from word-
nets (Miller, 1995) and wiktionaries converted
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into wordnets (Bond and Foster, 2013)). As all
of the resources composing the UKC were built
and validated by humans(Giunchiglia et al., 2015),
we consider the quality of our input data to be
high enough for obtaining accurate results on cog-
nates (Giunchiglia et al., 2017). As most wordnets
map their units of meaning (synsets in WordNet
terminology) to English meanings, they can effec-
tively be interconnected into a cross-lingual lexi-
cal resource. The UKC reifies all of these map-
pings as supra-lingual lexical concepts (107,196
in total, excluding named entities such as Ulan-
baatar). For example, if the German Fahrrad and
the Italian bicicletta are mapped to the English
bicycle then a single concept is created to which
all three language-specific meanings (i.e., wordnet
synsets) will be mapped.

In terms of etymological evidence, we use both
direct and indirect evidence of etymological re-
latedness. Direct evidence is provided by gold-
standard etymological resources, such as the one
we use and present in section 4.1. Such evidence,
however, is relatively sparse and would not, in it-
self, provide high recall. We therefore also con-
sider indirect evidence in the form of a combined
orthographic–geographic relatedness: a measure
of geographic proximity of languages combined
with the orthographic similarity of words, involv-
ing transliteration, can provide strong clues on lan-
guage contact and probable cross-lingual lexical
borrowing.

Finally, we exploit logical transitivity in order
further to improve recall: we build on the intu-
ition that if words wa and wb are cognates and wb

and wc are cognates then wa and wc are also cog-
nates. For example, if the German Katze is found
to be a cognate of the English cat (based on di-
rect etymological evidence) and cat is found to be
a cognate of the French chat (based on orthogra-
phy) then Katze and chat are also considered to be
cognates).

Based on these principles, we have imple-
mented a cognate discovery algorithm as shown
in algorithm 1. Its input is a single lexical concept
from the UKC (the algorithm being applicable to
every concept in loop). It builds an undirected
graph where each node represents a word and each
edge between two nodes represents a cognate re-
lationship.

The process starts by retrieving the lexicalisa-
tions of the input concept in all available lan-

Algorithm 1: Cognate Discovery Algorithm

Input : c, a lexical concept
Input : R, a lexical resource
Output : G+, graph of all cognates of c

1 V,E  ;;
2 L LanguagesR(c);
3 for each language l 2 L do

4 for each word w 2 WordsR(c, l) do

5 V  V [ {v =<w, l>};
6 for each node v1 =<w1, l1> 2 V do

7 for each node v2 =<w2, l2> 2 V do

8 if l1 = l2 then

9 continue;
10 if EtyRel(w1, l1, w2, l2) then

11 E  E [ {e =<v1, v2>};
12 else if OrthSim(w1, l1, w2, l2) + TG ⇥

GeoProx(l1, l2) > TF then

13 E  E [ {e =<v1, v2>};
14 G < V, E >;
15 G+ = TransitiveClosure(G)
16 return G+;

guages and creating the corresponding word nodes
in the graph (lines 2–5). All such words thus
fulfil the criterion of semantic equivalence above.
Then, for all different-language word pairs that ex-
press the concept (lines 6–9), we verify whether
etymological evidence exists for a potential cog-
nate relationship. The latter may either be direct
evidence (EtyRel, line 10) or indirect, which we
implement as a score of relatedness combined of
orthographic similarity (OrthSim) and geographic
proximity (GeoProx). We consider indirect evi-
dence to be sufficient if this combined score is su-
perior to an experimental threshold TF (line 12).
In case either direct or indirect evidence is found,
an edge between the two word nodes is created
(lines 10–13). As the last step, in order to apply
the principle of logical transitivity, the transitive
closure of the graph is computed (line 15). In the
resulting graph G+ each connected subgraph rep-
resents a group of cognate words.

4 Computing Etymological Relatedness

Our method predicts the etymological relatedness
of words based on both direct and indirect etymo-
logical evidence. Section 4.1 below describes how
the EtyRel function provides direct evidence. Sec-
tions 4.2 and 4.3 explain how indirect evidence is
computed based on orthographic similarity using
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the OrthSim function and on geographic proxim-
ity using the GeoProx function.

4.1 Direct Etymological Evidence

The EtyRel function in algorithm 1 uses gold-
standard evidence to compute the etymological re-
latedness of words. It exploits etymological ances-
tor (marked as Anc below) relations for each word
of the word pair being evaluated as cognates. Two
words are considered as etymologically related if
they are found to have at least one common etymo-
logical ancestor word (such as the German Ross
and the English horse having as ancestor the proto-
Germanic root *harss-).

EtyRel(w1, l1, w2, l2) =

=

(
true if Anc(w1, l1) \ Anc(w2, l2) 6= ;
false otherwise

(1)

Ancestor relations are retrieved from the Etymo-
logical WordNet (EWN)3 (De Melo, 2014), a lex-
ical resource providing relations between words,
e.g., derivational or etymological. EWN was au-
tomatically built by harvesting etymological infor-
mation encoded in Wiktionary. In this work, we
have only used its 94,832 cross-lingual etymolog-
ical relations.

4.2 Orthographic Similarity

Orthographic similarity is computed using a string
similarity metric LCSSim based on the longest
common subsequence (LCS) of the two input
words, returning a similarity score between 0
and 1:

LCSSim(w1, w2) =
2⇥ len(LCS(w1, w2))

len(w1) + len(w2)
(2)

When w1 and w2 belong to different writing
systems, LCS returns 0 and thus the formula above
is not directly usable. In order to be able to
identify cognates across writing systems, we ap-
ply transliteration to the Latin script (also known
as romanization) using the WikTra tool. Ortho-
graphic similarity is thus computed as:

OrthSim(w1, w2) = max{LCSSim(w1, w2),

LCSSim(WikTra(w1),WikTra(w2))}
(3)

3http://www1.icsi.berkeley.edu/⇠demelo/etymwn/,
accessed on 10/14/2018.

WikTra is a dictionary-based transliteration tool
compiled from information collected from Wik-
tionary and developed specifically for this work
by the authors4. It is Unicode-based and sup-
ports 85 languages in 35 writing systems, defin-
ing transliteration rules and codes according to in-
ternational standards, as developed by the Wik-
tionary community (the largest community in lex-
icography).

An illustration of the output provided by Wik-
Tra compared to three existing transliteration tools
is provided in table 1. The use of WikTra with
respect to existing tools is justified by a need for
high-quality results that also cover complex cases
of orthography, e.g., in Semitic scripts where vow-
els are typically omitted. In particular, Junide-
code5 is a character-based transliterator, an ap-
proach that seriously limits its accuracy. The
Google transliterator is dictionary-based and is
therefore of higher quality, but it supports a lower
number of languages and is not freely available.
Finally, uroman (Hermjakob et al., 2018) is a new,
high-quality, dictionary-based tool that neverthe-
less provides a limited support for scripts without
vowels (e.g., Arabic or Hebrew), as also visible in
table 1.

While WikTra gains its high accuracy from
human-curated Wiktionary data, it still needs to
be improved for Thai and Japanese. In Thai,
WikTra only works on monosyllabic words, and
it needs an additional tool to recognize sylla-
bles. In Japanese, it only works with Hiragana
and Katakana scripts and not with Kanji (Chinese
characters). We therefore combined WikTra with
the Kuromoji6 transliteration tool.

4.3 Geographic Proximity

We exploit geographic information on languages
in order to take into account the proximity of lan-
guage speakers for the prediction of borrowing.
Our hypothesis is that, even if in the last century
lexical borrowing on a global scale has been faster
than ever before, the effect of geographic distance
is still a significant factor when applying cognate
discovery to entire vocabularies. This effect is
combined with orthographic similarity in line 12
of algorithm 1, in a way that geographic proximity
increases the overall likelihood of word pairs be-
ing cognates, without being a necessary condition.

4https://github.com/kbatsuren/wiktra
5https://github.com/gcardone/junidecode
6https://github.com/atilika/kuromoji
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Table 1: Comparison with state-of-the art transliteration tools

# Languages Word Uroman Junidecode Google WikTra

1 English book book book book book
2 Malayalam malayaallam mlyaallN malayāl.aṁ malayāl.am.
3 Arabic nwaa nw@ nawa nawātun
4 Japanese ◆S4E⌧� konpyuta konpiyuta konpyūtā konpyūtā*

5 Thai raachaatiraa raachaathiraad rā chā thi rād raa-chaa-tí-râat b

6 Russian moskva moskva moskva moskva
7 Hindi devanaa devnaagrii devanaagaree devnāgrı̄
8 Bengali baangla baaNlaa bānlā bangla
9 Greek anaute anauteo anāftéo anautéō
10 Kashmiri kampivwuttar khampy[?]w?ttar - kampeūt.ar
11 Persian armnstan rmnstn - armanestân
12 Hebrew yshshkr yshshkr yissachar yiśśāk

¯
ār

13 Tamil rehs reHs reh. s rex
14 Ethiopic aadise aababaa ‘aadise ’aababaa ādı̄si ābeba -ädis -äbäba
15 Tibetan kha·pa kh-pr - kha par
16 Korean Bj�◆ò:r megapon megapon megapon megapon
17 Armenian hayiastan hayastan hayastan hayastan
18 Uyghur yeayealae y’y’-lae - a’ile
19 Khmer kromaaro krmaar krama r krâméar
20 Telugu amkapali aNkpaalli aṅkapāl.i aṅkapāl.i
21 Odia oddishaa rodd’ishaa - oriśa
22 Burmese sannykhre snny[?]:kh[?]e saeehkyay sany:hkre
* WikTra in Japanese language only works with scripts of Hiragana and Katakana.
b WikTra in Thai language only works with a sequence of syllables.

Our relatively simple solution considers only
the languages of the input words, computing a lan-
guage proximity value between 0 and 1, as fol-
lows:

GeoProx(l1, l2) = min(
TD

GeoDist(l1, l2)
, 1.0)

(4)

The function GeoDist(l1, l2) is an approximate
‘geographic distance’ between two languages l1
and l2, based on the geographical areas where the
languages are spoken. The constant TD corre-
sponds to a minimal distance: if two languages are
spoken within this distance then they have max-
imum geographic relatedness. TD is empirically
set as described in section 5.2.

Distances between languages are provided by
the WALS resource7, one of most comprehensive
language databases. WALS provides latitude and
longitude coordinates for a language given as in-
put. While a single coordinate returned for a lan-
guage may in some cases be a crude approxima-
tion of linguistic coverage (e.g., Spanish is spo-
ken both in Spain and in most countries of Latin
America), even this level of precision was found
to improve our evaluation results.

7https://wals.info

5 Evaluation

This section describes how CogNet was evaluated
on a manually built cognate corpus and how its
parameters were tuned to optimise results.

5.1 Dataset Annotation

While our initial idea was to use existing cognate
datasets for evaluation, the most comprehensive
databases turned out to represent cognates in their
phonetic transcriptions instead of having words
written in their original scripts. Such data was not
usable to test our method that performs transliter-
ation on its own.

Consequently, we created a dataset of 40 con-
cepts with fully annotated sets of cognate groups.
On average, a concept was represented in 107 lan-
guages by 129 words: 5,142 words in total for the
40 concepts. The concepts were chosen from the
Swadesh basic word list and from the WordNet
core concepts (Boyd-Graber et al., 2006). The lex-
icalizations (words) corresponding to these con-
cepts were retrieved from the UKC. For each con-
cept, we asked two language experts to find cog-
nate clusters among its lexicalizations. The ex-
perts made their decisions based on online re-
sources such as Wiktionary and the Online Ety-
mology Dictionary8. Cohen’s Kappa score, inter-

8https://www.etymonline.com
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Table 2: Parameter configuration and comparisons.

Methods TF TG TD P R F1

Baseline 1: LCS 0.60 - - 94.70 25.62 40,32
Baseline 2: Consonant - - - 98.07 19.11 31,98
LCS + Geo 0.60 0.01 1.3 94.02 27.63 42.71
LCS + Geo + EWN 0.60 0.01 1.3 94.10 30.41 45.97
LCS + Geo + WikTra 0.63 0.02 1.2 94.15 42.42 58.49
LCS + Geo + WikTra + EWN 0.63 0.02 1.2 94.20 44.86 60.78
LCS + Geo + Trans 0.68 0.02 1.2 95.94 44.27 60.59
LCS + Geo + Trans + EWN 0.70 0.06 1.3 97.32 53.53 69.07
LCS + Geo + Trans + WikTra 0.72 0.06 1.2 94.14 77.59 85.07
LCS + Geo + Trans + WikTra + EWN 0.71 0.04 1.1 93.94 86.32 89.97

annotator agreement, was 95.15%. The resulting
human-annotated dataset contained 5,142 words,
38,447 pairs of cognate words and 320,338 pairs
of non-cognate words. We divided this dataset into
two equal parts: the first 20 concepts for parame-
ter configuration and the second 20 concepts for
evaluation.

5.2 Algorithm Configuration

The goal of configuration was to optimise the al-
gorithm with respect to three hyperparameters: the
threshold of combined orthographic–geographic
relatedness TF (section 3), the geographic proxim-
ity contribution parameter TG, and the minimum
distance TD (section 4.3).

We have created a three-dimensional grid with
TF = [0.0; 1.0] (the higher the value, the more
the strings need to be similar to be considered as
cognates), TG = [0.0; 1.0] (the higher the value,
the more geographic proximity is considered as
evidence), and TD = [0.0; 22.0] (here, the unit
of 1.0 corresponds to a distance of 1000km, within
which geographic relatedness is a constant maxi-
mum).

In this grid, we computed optimal values for
each parameter (in increments of 0.01) based
on performance on the configuration dataset de-
scribed in section 5.1. With these optimal settings,
we evaluated all possible combinations of the vari-
ous components of the cognate generation method,
in order to understand their relative contribution
to the overall score. Since our ultimate goal is
to generate high-quality knowledge, we favoured
precision over recall, setting our minimum pre-
cision threshold to 95% and maximizing recall
with respect to this constraint. The best settings
(computed on the parameter configuration dataset)

as well as the corresponding precision–recall fig-
ures (computed on the evaluation dataset) are re-
ported in table 2. Although we set the precision
threshold to 95% for the configuration dataset, we
obtained precision results that are slightly lower,
about 94%, on the evaluation dataset.

The results of configuration can be seen in ta-
ble 2. The optimal geographic region parame-
ter TD varies between 1.1 and 1.3, which corre-
spond to a radius of 1,100–1,300km: languages
spoken within such a distance tend to share more
cognates.

One interesting insight from table 2 concerns
the use of logical transitivity. While it is an ex-
tremely efficient component in our algorithm, in
order to maintain precision it requires the related-
ness threshold TS to be increased from [0.6; 0.63]
to [0.68; 0.71] and the influence of geographic re-
latedness TG from [0.1; 0.2] to [0.2; 0.6]. This
means that in order for transitivity to hold, both the
overall relatedness criterion and the geographic
proximity need to become more strict.

5.3 Evaluation Results

We evaluated the effect of the various components
of our method (geographic relatedness, WikTra
transliteration, Etymological WordNet, transitiv-
ity) on its overall performance. As a baseline,
we used two string similarity methods often used
in cognate identification (St Arnaud et al., 2017):
LCS, i.e., the longest common subsequence ratio
of two words (which we also use in equation 2),
and Consonant, which is a heuristic method that
checks if the first two consonants of the words
are identical. Although the baseline Consonant
method achieved the highest precision of 98.07%,
its recall is the lowest, 19.11%, due to being lim-
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ited to Latin characters.
Adding geographic proximity, direct etymolog-

ical evidence, and transliteration to the algorithm
increased recall in a consistent manner, by about
2%, 3%, and 15%, respectively, all the while
maintaining precision at the same level. Comput-
ing the transitive closure, finally, had a major mul-
tiplicator effect on recall, bringing it to 86.32%.
With this full setup we were able to generate
3,167,642 cognate pairs across 338 languages.

In order to cross-check the quality of the out-
put, we randomly sampled 400 cognate pairs not
covered by the evaluation corpus and had them
re-evaluated by the same experts. Accuracy was
found to fall in the 93–97% range, very much in
line with the goal of 95% we initially set in sec-
tion 5.2.

6 Exploring CogNet

At an accuracy of 94%, our algorithm has gen-
erated 3,167,642 cognates. They cover 567,960
words and 80,836 concepts, corresponding to
33.06% of all words and 73.52% of all concepts in
the UKC: one word out of three and three concepts
out of four have at least one cognate relationship.

In terms of WordNet formalism, cognate rela-
tionships can be expressed as cross-lingual sense
relations that connect (word, synset) pairs—reified
in wordnets as senses—across languages. As not
all wordnets represent senses explicitly, CogNet
encodes these relationships in the following tuple
form:

(PWN_synset, w1, l1, w2, l2, metadata)

where PWN_synset is the Princeton WordNet En-
glish synset ID representing the shared meaning
of the cognate pair, w1 and w2 are the two words,
l1 and l2 are their respective languages (expressed
as ISO-639-3 codes), and metadata is a set of at-
tributes describing the cognate pair, such as the
type of evidence for the relationship (direct etymo-
logical or indirect). The entire CogNet resource is
described and freely downloadable from the web9.

While we expect CogNet to provide linguistic
insights for both theoretical and applied research,
we are just starting to exploit its richness. As a
first result, we have developed an online tool10 for
the visual exploration of cognate data (see figure 1
for an illustration). In the long term, this web tool

9http://cognet.ukc.disi.unitn.it
10http://linguarena.eu

is intended for linguists both for the exploration of
data and for collaborative work on extending the
resource.

We also carried out an initial exploration of cog-
nate data along the axes of language, language
family, and geographic distance. Figure 2 shows
the number of cognates found at a given geo-
graphic distance (i.e., the distance of the speakers
of the two languages, as defined in section 4.3).
We observe that the vast majority of cognates is
found within a distance of about 3,000km. Our in-
terpretation of these results is that, by and large,
locality is still a major influence on modern lexi-
cons, despite the globalising effects of the last cen-
turies. Let us note that the geographic proximity
component of our algorithm alone could not have
caused this distribution, as it had a relatively mi-
nor overall contribution on the results (see the ge-
ographic factor TG = 0.04 in table 2).

In order to avoid biasing per-language statistics
by the incompleteness of the lexicons (wordnets)
used, we limited our study to the 45 languages
with a vocabulary size larger than 10,000 words.
As a further abstraction from lexicon size, we in-
troduce the notion of cognate density, defined over
a set of words as the ratio of words covered by at
least one cognate pair of CogNet. In other words,
working with cognate densities allows us to char-
acterise the ‘cognate content’ of each language in-
dependently of the wordnet size.

Cognate densities for the 45 languages stud-
ied show a wide spread between languages with
the highest density (the top five language being
Indonesian: 60.80%, Czech: 59.05%, Catalan:
58.66%, Malay: 57.63%, and French: 57.25%)
and those with the lowest (the bottom five lan-
guages being Thai: 7.87%, Arabic: 9.01%, Per-
sian: 9.64%, Mongolian: 10.37%, and Mandarin
Chinese: 11.03%). The main factor behind high
cognate density is the presence of closely related
languages in our data: as Malay and Indone-
sian are mutually intelligible registers of the same
language, the existence of separate wordnets for
the two naturally results in a high proportion of
shared vocabulary. Inversely, languages on the
other end of the spectrum tend not to have ma-
jor living languages that are closely related. Let
us finally note that non-perfect transliteration and
failed transliteration-based matches may also be a
reason for low cognate recall for languages with
very different scripts, such as Chinese, Arabic, or
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Figure 1: Cognate sets of the concept ‘song’, represented with different colours. It is easy to observe the effects
of language families (e.g., red triangles stand for Romance languages) and geographic proximity (e.g., the higher
density of orange in South-West Asia and green in Central Asia).
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Figure 2: The number of cognates according to the ge-
ographic distance of the language speakers.

Thai.
In order to verify these intuitions, we examined

cognate densities for the 45 languages manually
clustered into 16 language families (see table 3,
the language name was kept for clusters of size 1).
Indeed, families such as Malay, Romance, Slavic,
or Indo-Aryan, well known for containing several
mutually intelligible language pairs, came out on
top, while families with generally fewer or mutu-
ally non-intelligible members at the bottom. The
only outlier is Basque that, despite being an iso-
late, is close to the resource-wide average cognate
density of 33%.

7 Conclusions

In this paper, we have demonstrated a general
method for building a cognate database using ex-
isting wordnet resources. Identifying cognates
based on orthography for words written in 35 dif-
ferent writing systems, as opposed to phonetic
data, made the problem statement novel with re-
spect to existing research in cognate identification.

Family Density Family Density
Malay 59.22% Greek 22.99%
Romance 53.32% Niger-Congo 18.63%
Slavic 36.67% Japanese 12.16%
Indo-Aryan 36.08% Sino-Tibetan 11.22%
Germanic 34.10% Mongolian 10.37%
Basque 32.82% Persian 9.64%
Dravidian 24.79% Arabic 9.01%
Finno-Ugric 24.57% Thai 7.87%

Table 3: Cognate density by language family, com-
puted over the 45 largest-vocabulary languages.

The use of a large-scale cross-lingual database and
a combination of linguistic, semantic, etymologi-
cal, and geographic evidence resulted in what in
our knowledge is the largest cognate database both
in terms of the number of concepts and of the writ-
ing systems covered. The evaluation showed that
the resource has promisingly high quality, with
precision and recall adjustable through the algo-
rithm parameters. The resource has been made
available online, together with a graphical web-
based tool for the exploration of cognate data, our
hope being to attract both linguists and computer
scientists as potential users.
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