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Abstract
Modern NLP applications have enjoyed a great
boost utilizing neural networks models. Such
deep neural models, however, are not applica-
ble to most human languages due to the lack
of annotated training data for various NLP
tasks. Cross-lingual transfer learning (CLTL)
is a viable method for building NLP models
for a low-resource target language by lever-
aging labeled data from other (source) lan-
guages. In this work, we focus on the multi-
lingual transfer setting where training data in
multiple source languages is leveraged to fur-
ther boost target language performance.

Unlike most existing methods that rely only
on language-invariant features for CLTL, our
approach coherently utilizes both language-
invariant and language-specific features at in-
stance level. Our model leverages adversarial
networks to learn language-invariant features,
and mixture-of-experts models to dynamically
exploit the similarity between the target lan-
guage and each individual source language1.
This enables our model to learn effectively
what to share between various languages in the
multilingual setup. Moreover, when coupled
with unsupervised multilingual embeddings,
our model can operate in a zero-resource set-
ting where neither target language training
data nor cross-lingual resources are available.
Our model achieves significant performance
gains over prior art, as shown in an extensive
set of experiments over multiple text classifi-
cation and sequence tagging tasks including a
large-scale industry dataset.

1 Introduction

Recent advances in deep learning enabled a wide
variety of NLP models to achieve impressive per-
formance, thanks in part to the availability of

∗Most work was done while the first author was an intern
at Microsoft Research.

1The code is available at https://github.com/
microsoft/Multilingual-Model-Transfer.

large-scale annotated datasets. However, such an
advantage is not available to most of the world lan-
guages since many of them lack the the labeled
data necessary for training deep neural nets for a
variety of NLP tasks. As it is prohibitive to obtain
training data for all languages of interest, cross-
lingual transfer learning (CLTL) offers the pos-
sibility of learning models for a target language
using annotated data from other languages (source
languages) (Yarowsky et al., 2001). In this paper,
we concentrate on the more challenging unsuper-
vised CLTL setting, where no target language la-
beled data is used for training.2

Traditionally, most research on CLTL has been
devoted to the standard bilingual transfer (BLTL)
case where training data comes from a single
source language. In practice, however, it is of-
ten the case that we have labeled data in a few
languages, and would like to be able to utilize all
of the data when transferring to other languages.
Previous work (McDonald et al., 2011) indeed
showed that transferring from multiple source lan-
guages could result in significant performance im-
provement. Therefore, in this work, we focus on
the multi-source CLTL scenario, also known as
multilingual transfer learning (MLTL), to fur-
ther boost the target language performance.

One straightforward method employed in CLTL
is weight sharing, namely directly applying the
model trained on the source language to the target
after mapping both languages to a common em-
bedding space. As shown in previous work (Chen
et al., 2016), however, the distributions of the hid-
den feature vectors of samples from different lan-
guages extracted by the same neural net remain di-
vergent, and hence weight sharing is not sufficient
for learning a language-invariant feature space that
generalizes well across languages. As such, previ-

2In contrast, supervised CLTL assumes the availability of
annotations in the target language.

https://github.com/microsoft/Multilingual-Model-Transfer
https://github.com/microsoft/Multilingual-Model-Transfer
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ous work has explored using language-adversarial
training (Chen et al., 2016; Kim et al., 2017) to ex-
tract features that are invariant with respect to the
shift in language, using only (non-parallel) unla-
beled texts from each language.

On the other hand, in the MLTL setting,
where multiple source languages exist, language-
adversarial training will only use, for model trans-
fer, the features that are common among all source
languages and the target, which may be too re-
strictive in many cases. For example, when trans-
ferring from English, Spanish and Chinese to
German, language-adversarial training will retain
only features that are invariant across all four lan-
guages, which can be too sparse to be informative.
Furthermore, the fact that German is more similar
to English than to Chinese is neglected because the
transferred model is unable to utilize features that
are shared only between English and German.

To address these shortcomings, we propose a
new MLTL model that not only exploits language-
invariant features, but also allows the target lan-
guage to dynamically and selectively leverage
language-specific features through a probabilistic
attention-style mixture of experts mechanism (see
§3). This allows our model to learn effectively
what to share between various languages. An-
other contribution of this paper is that, when com-
bined with the recent unsupervised cross-lingual
word embeddings (Lample et al., 2018; Chen and
Cardie, 2018b), our model is able to operate in a
zero-resource setting where neither task-specific
target language annotations nor general-purpose
cross-lingual resources (e.g. parallel corpora or
machine translation (MT) systems) are available.
This is an advantage over many existing CLTL
works, making our model more widely applicable
to many lower-resource languages.

We evaluate our model on multiple MLTL tasks
ranging from text classification to named entity
recognition and semantic slot filling, including a
real-world industry dataset. Our model beats all
baseline models trained, like ours, without cross-
lingual resources. More strikingly, in many cases,
it can match or outperform state-of-the-art models
that have access to strong cross-lingual supervi-
sion (e.g. commercial MT systems).

2 Related Work

The diversity of human languages is a critical chal-
lenge for natural language processing. In order to

alleviate the need for obtaining annotated data for
each task in each language, cross-lingual transfer
learning (CLTL) has long been studied (Yarowsky
et al., 2001; Bel et al., 2003, inter alia).

For unsupervised CLTL in particular, where no
target language training data is available, most
prior research investigates the bilingual trans-
fer setting. Traditionally, research focuses on
resource-based methods, where general-purpose
cross-lingual resources such as MT systems or
parallel corpora are utilized to replace task-
specific annotated data (Wan, 2009; Prettenhofer
and Stein, 2010). With the advent of deep learn-
ing, especially adversarial neural networks (Good-
fellow et al., 2014; Ganin et al., 2016), progress
has been made towards model-based CLTL meth-
ods. Chen et al. (2016) propose language-
adversarial training that does not directly depend
on parallel corpora, but instead only requires a set
of bilingual word embeddings (BWEs).

On the other hand, the multilingual transfer
setting, although less explored, has also been stud-
ied (McDonald et al., 2011; Naseem et al., 2012;
Täckström et al., 2013; Hajmohammadi et al.,
2014; Zhang and Barzilay, 2015; Guo et al., 2016),
showing improved performance compared to us-
ing labeled data from one source language as in
bilingual transfer.

Another important direction for CLTL is to
learn cross-lingual word representations (Klemen-
tiev et al., 2012; Zou et al., 2013; Mikolov et al.,
2013). Recently, there have been several notable
work for learning fully unsupervised cross-lingual
word embeddings, both for the bilingual (Zhang
et al., 2017; Lample et al., 2018; Artetxe et al.,
2018) and multilingual case (Chen and Cardie,
2018b). These efforts pave the road for perform-
ing CLTL without cross-lingual resources.

Finally, a related field to MLTL is multi-source
domain adaptation (Mansour et al., 2009), where
most prior work relies on the learning of domain-
invariant features (Zhao et al., 2018; Chen and
Cardie, 2018a). Ruder et al. (2019) propose a
general framework for selective sharing between
domains, but their method learns static weights
at the task level, while our model can dynami-
cally select what to share at the instance level.
A very recent work (Guo et al., 2018) attempts
to model the relation between the target domain
and each source domain. Our model combines the
strengths of these methods and is able to simul-
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Figure 1: An overview of the MAN-MoE model.

taneously utilize both the domain-invariant and
domain-specific features in a coherent way.

3 Model

One commonly adopted paradigm for neu-
ral cross-lingual transfer is the shared-private
model (Bousmalis et al., 2016), where the fea-
tures are divided into two parts: shared (language-
invariant) features and private (language-specific)
features. As mentioned before, the shared fea-
tures are enforced to be language-invariant via
language-adversarial training, by attempting to
fool a language discriminator. Furthermore, Chen
and Cardie (2018a) propose a generalized shared-
private model for the multi-source setting, where a
multinomial adversarial network (MAN) is adopted
to extract common features shared by all source
languages as well as the target. On the other hand,
the private features are learned by separate feature
extractors, one for each source language, captur-
ing the remaining features outside the shared ones.
During training, the labeled samples from a certain
source language go through the corresponding pri-
vate feature extractor for that particular language.
At test time, there is no private feature extractor
for the target language; only the shared features
are used for cross-lingual transfer.

As mentioned in §1, using only the shared fea-
tures for MLTL imposes an overly strong con-

straint and many useful features may be wiped
out by adversarial training if they are shared
only between the target language and a subset of
source languages. Therefore, we propose to use
a mixture-of-experts (MoE) model (Shazeer et al.,
2017; Gu et al., 2018) to learn the private features.
The idea is to have a set of language expert net-
works, one per source language, each responsi-
ble for learning language-specific features for that
source language during training. However, instead
of hard-switching between the experts, each sam-
ple uses a convex combination of all experts, dic-
tated by an expert gate. Thus, at test time, the
trained expert gate can decide the optimal expert
weights for the unseen target language based on
its similarity to the source languages.

Figure 1 shows an overview of our MAN-MoE
model for multilingual model transfer. The boxes
illustrate various components of the MAN-MoE
model (§3.1), while the arrows depict the training
flow (§3.2).

3.1 Model Architecture

Figure 1 portrays an abstract view of the
MAN-MoE model with four components: the Mul-
tilingual Word Representation, the MAN Shared
Feature Extractor Fs (together with the Language
DiscriminatorD), the MoE Private Feature Extrac-
tor Fp, and finally the MoE Predictor C. Based on
the actual task (e.g. sequence tagging, text classi-
fication, sequence to sequence, etc.), different ar-
chitectures may be adopted, as explained below.
Multilingual Word Representation embeds
words from all languages into a single semantic
space so that words with similar meanings are
close to each other regardless of language. In
this work, we mainly rely on the MUSE embed-
dings (Lample et al., 2018), which are trained in
a fully unsupervised manner. We map all other
languages into English to obtain a multilingual
embedding space. However, in certain experi-
ments, MUSE yields 0 accuracy on one or more
language pairs (Søgaard et al., 2018), in which
case the VecMap embeddings (Artetxe et al.,
2017) are used. It uses identical strings as su-
pervision, which does not require parallel corpus
or human annotations. We further experiment
with the recent unsupervised multilingual word
embeddings (Chen and Cardie, 2018b), which
gives improved performance (§4.2).

In addition, for tasks where morphological fea-
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Figure 2: The MoE Private Feature Extractor Fp with
three source languages: English (EN), Spanish (ES),
and Chinese (ZH).

tures are important, one can add character-level
word embeddings (Dos Santos and Zadrozny,
2014) that captures sub-word information. When
character embeddings are used, we add a single
CharCNN that is shared across all languages, and
the final word representation is the concatenation
of the word embedding and the char-level embed-
ding. The CharCNN can then be trained end to
end with the rest of the model.
MAN Shared Feature Extractor Fs is a multi-
nomial adversarial network (Chen and Cardie,
2018a), which is an adversarial pair of a feature
extractor (e.g. LSTM or CNN) and a language dis-
criminator D. D is a text classifier (Kim, 2014)
that takes the shared features (extracted by Fs) of
an input sequence and predicts which language it
comes from. On the other hand, Fs strives to fool
D so that it cannot identify the language of a sam-
ple. The hypothesis is that if D cannot recognize
the language of the input, the shared features then
do not contain language information and are hence
language-invariant. Note thatD is trained only us-
ing unlabeled texts, and can therefore be trained
on all languages including the target language.
MoE Private Feature Extractor Fp is a key dif-
ference from previous work, shown in Figure 2.
The figure shows the Mixture-of-Experts (Shazeer
et al., 2017) model with three source languages,
English, Spanish, and Chinese. Fp has a shared
BiLSTM at the bottom that extracts contextualized
word representations for each token w in the input
sentence. The LSTM hidden representation hw is
then fed into the MoE module, where each source

language has a separate expert network (a MLP).
In addition, the expert gate G is a linear transfor-
mation that takes hw as input and outputs a soft-
max score αi for each expert. The final private
feature vector is a mixture of all expert outputs,
dictated by the expert gate weights α.

During training, the expert gate is trained to pre-
dict the language of a sample using the gate loss
Jg, where the expert gate output α is treated as the
softmax probability of the predicted languages. In
other words, the more accurate the language pre-
diction is, the more the correct expert gets used.
Therefore, Jg is used to encourage samples from
a certain source language to use the correct ex-
pert, and each expert is hence learning language-
specific features for that language. As the BiL-
STM is exposed to all source languages during
training, the trained expert gate will be able to
examine the hidden representation of a token to
predict the optimal expert weights α, even for un-
seen target languages at test time. For instance,
if a German test sample is similar to the English
training samples, the trained expert gate will pre-
dict a higher α for the English expert, resulting
in a heavier use of it in the final feature vector.
Therefore, even for the unforeseen target language
(e.g. German), Fp is able to dynamically deter-
mine what knowledge to use from each individual
source language at a token level.

MoE Task-Specific Predictor C is the final mod-
ule that make predictions for the end task, and may
take different forms depending on the task. For in-
stance, for sequence tagging tasks, the shared and
private features are first concatenated for each to-
ken, and then past through a MoE module similar
to Fp (as shown in Figure 6 in the Appendix). It is
straightforward to adapt C to work for other tasks.
For example, for text classification, a pooling layer
such as dot-product attention (Luong et al., 2015)
is added at the bottom to fuse token-level features
into a single sentence feature vector.

C first concatenates the shared and private fea-
tures to form a single feature vector for each to-
ken. It then has another MoE module that outputs
a softmax probability over all labels for each to-
ken. The idea is that it may be favorable to put dif-
ferent weights between the language-invariant and
language-specific features for different target lan-
guages. Again consider the example of English,
German, Spanish and Chinese. When transferring
to Chinese from the other three, the source lan-
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Algorithm 1 MAN-MoE Training
Require: labeled corpus X; unlabeled corpus U; Hyperpa-

mameter λ1, λ2 > 0, k ∈ N
1: repeat
2: . D iterations
3: for diter = 1 to k do
4: lD = 0
5: for all l ∈ ∆ do . For all languages
6: Sample a mini-batch x ∼ Ul

7: fs = Fs(x) . Shared features
8: lD += LD(D(fs); l) . D loss
9: Update D parameters using∇lD

10: . Main iteration
11: loss = 0
12: for all l ∈ S do . For all source languages
13: Sample a mini-batch (x,y) ∼ Xl

14: fs = Fs(x) . Shared features
15: fp, g1 = Fp(x) . Private feat. & gate outputs
16: ŷ, g2 = C(fs,fp)
17: loss += LC(ŷ;y) + λ2(Lg(g1; l) +Lg(g2; l))

18: for all l ∈ ∆ do . For all languages
19: Sample a mini-batch x ∼ Ul

20: fs = Fs(x) . Shared features
21: loss += −λ1 · LD(D(fs); l) . Confuse D
22: Update Fs, Fp, C parameters using∇loss
23: until convergence

guages are similar to each other while all being
rather distant from Chinese. Therefore, the adver-
sarially learned shared features might be more im-
portant in this case. On the other hand, when trans-
ferring to German, which is much more similar
to English than to Chinese, we might want to pay
more attention to the MoE private features. There-
fore, we adopt a MoE module in C, which provides
more flexibility than using a single MLP3.

3.2 Model Training
Denote the set of all N source languages as S,
where |S| = N . Denote the target language as
T , and let ∆ = S ∪ T be the set of all languages.
Denote the annotated corpus for a source language
l ∈ S as Xl, where (x, y) ∼ Xl is a sample drawn
from Xl. In addition, unlabeled data is required
for all languages to facilitate the MAN training. We
hence denote as Ul′ the unlabeled texts from a lan-
guage l′ ∈ ∆.

The overall training flow of variant components
is illustrated in Figure 1, while the training al-
gorithm is depicted in Algorithm 1. Similar to
MAN, there are two separate optimizers to train
MAN-MoE, one updating the parameters of D (red
arrows), while the other updating the parameters
of all other modules (green arrows). In Algo-

3We also experimented with an attention mechanism be-
tween the shared and private features, or a gating mechanism
to modulate each feature channel, but got sub-optimal results.

rithm 1, LC , LD and Lg are the loss functions for
the predictor C, the language discriminator D, and
the expert gates in Fp and C, respectively.

In practice, we adopt the NLL loss for LC for
text classification, and token-level NLL loss for
sequence tagging:

LNLL(ŷ; y) = − logP (ŷ = y) (1)

LT -NLL(ŷ;y) = − logP (ŷ = y)

= −
∑
i

logP (ŷi = yi) (2)

where y is a scalar class label, and y is a vector of
token labels. LC is hence interpreted as the neg-
ative log-likelihood of predicting the correct task
label. Similarly, D adopts the NLL loss in (1)
for predicting the correct language of a sample.
Finally, the expert gates G use token-level NLL
loss in (2), which translates to the negative log-
likelihood of using the correct language expert for
each token in a sample.

Therefore, the objectives that C, D and G mini-
mize are, respectively:

JC =
∑
l∈S

E
(x,y)∈Xl

[LC (C(Fs(x),Fp(x)); y)] (3)

JD =
∑
l∈∆

E
x∈Ul

[LD(D(Fs(x)); l)] (4)

JG =
∑
l∈S

E
x∈Xl

[∑
w∈x

LG(G(hw); l)

]
(5)

where hw in (5) is the BiLSTM hidden representa-
tion in Fp as shown in Figure 2. In addition, note
that D is trained using unlabeled corpora over all
languages (∆), while the training ofFp and C (and
hence G) only take place on source languages (S).
Finally, the overall objective function is:

J = JC − λ1JD + λ2(J
(1)
G + J

(2)
G ) (6)

where J (1)
G and J (2)

G are the two expert gates in Fp

and C, respectively. More implementation details
can be found in Appendix B.

4 Experiments

In this section, we present an extensive set of
experiments across three datasets. The first ex-
periment is on a real-world multilingual slot fill-
ing (sequence tagging) dataset, where the data is
used in a commercial personal virtual assistant. In
addition, we conduct experiments on two public
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English German Spanish Chinese

Domain #Train #Dev #Test #Train #Dev #Test #Train #Dev #Test #Train #Dev #Test #Slot

Navigation 311045 23480 36625 13356 1599 2014 13862 1497 1986 7472 1114 1173 8
Calendar 64010 5946 8260 8261 1084 1366 6706 926 1081 2056 309 390 4
Files 30339 2058 5355 3005 451 480 6082 843 970 1289 256 215 5

Domain Examples

Navigation [Driving ]transportation type directions to [Walmart ]place name in [New York ]location .
Calendar Add [school meeting ]title to my calendar on [Monday ]start date at [noon]start time .
Files Search for [notes]data type with [grocery list ]keyword .

Table 1: Statistics for the Multilingual Semantic Slot Filling dataset with examples from each domain.

academic datasets, namely the CoNLL multilin-
gual named entity recognition (sequence tagging)
dataset (Sang, 2002; Sang and Meulder, 2003),
and the multilingual Amazon reviews (text clas-
sification) dataset (Prettenhofer and Stein, 2010).

4.1 Cross-Lingual Semantic Slot Filling
As shown in Table 1, we collect data for four lan-
guages: English, German, Spanish, and Chinese,
over three domains: Navigation, Calendar, and
Files. Each domain has a set of pre-determined
slots (the slots are the same across languages), and
the user utterances in each language and domain
are annotated by crowd workers with the correct
slots (see the examples in Table 1). We employ
the standard BIO tagging scheme to formulate the
slot filling problem as a sequence tagging task.

For each domain and language, the data is di-
vided into a training, a validation, and a test set,
with the number of samples in each split shown
in Table 1. In our experiments, we treat each do-
main as a separate experiment, and consider each
of German, Spanish and Chinese as the target lan-
guage while the remaining three being source lan-
guages, which results in a total of 9 experiments.

4.1.1 Results
In Table 2, we report the performance of
MAN-MoE compared to a number of baseline sys-
tems. All systems adopt the same base architec-
ture, which is a multi-layer BiLSTM sequence tag-
ger (İrsoy and Cardie, 2014) with a token-level
MLP on top (no CRFs were used).
MT baselines employ machine translation (MT)
for cross-lingual transfer. In particular, the train-
on-trans(lation) method translates the entire En-
glish training set into each target language which
are in turn used to train a supervised system on the
target language. On the other hand, the test-on-
trans(lation) method trains an English sequence
tagger, and utilizes MT to translate the test set

of each target language into English in order to
make predictions. In this work, we adopt the Mi-
crosoft Translator4, a strong commercial MT sys-
tem. Note that for a MT system to work for se-
quence tagging tasks, word alignment informa-
tion must be available, in order to project word-
level annotations across languages. This rules out
many MT systems such as Google Translate since
they do not provide word alignment information
through their APIs.
BWE baselines rely on Bilingual Word Embed-
dings (BWEs) and weight sharing for CLTL.
Namely, the sequence tagger trained on the source
language(s) are directly applied to the target lan-
guage, in hopes that the BWEs could bridge the
language gap. This simple method has been shown
to yield strong results in recent work (Upadhyay
et al., 2018). The MUSE (Lample et al., 2018)
BWEs are used by all systems in this experiment.
1-to-1 indicates that we are only transferring from
English, while 3-to-1 means the training data from
all other three languages are leveraged.5

The final baseline is the MAN model (Chen and
Cardie, 2018a), presented before our MAN-MoE
approach. As shown in Table 2, MAN-MoE sub-
stantially outperforms all baseline systems that do
not employ cross-lingual supervision on almost all
domains and languages. Another interesting ob-
servation is that MAN performs strongly on Chi-
nese while being much worse on German and
Spanish compared to the BWE baseline. This
corroborates our hypothesis that MAN only lever-
ages features that are invariant across all lan-
guages for CLTL, and it learns such features bet-
ter than weight sharing. Therefore, when trans-
ferring to German or Spanish, which is similar to
a subset of source languages, the performance of

4https://azure.microsoft.com/en-us/services/
cognitive-services/translator-text-api/

5MAN and MAN-MoE results are always 3-to-1.

https://azure.microsoft.com/en-us/services/cognitive-services/translator-text-api/
https://azure.microsoft.com/en-us/services/cognitive-services/translator-text-api/
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German Spanish Chinese

Domain Navi. Cal. Files avg. Navi. Cal. Files avg. Navi. Cal. Files avg.

Methods with cross-lingual resources
MT (train-on-trans.) 59.95 63.53 38.68 54.05 64.37 59.93 67.55 63.95 60.56 66.49 61.01 62.69
MT (test-on-trans.) 54.49 51.74 55.87 54.03 52.13 58.10 55.00 55.08 54.23 22.71 64.01 46.98

Methods without cross-lingual resources
BWE (1-to-1) 57.53 58.28 35.73 50.51 62.54 44.44 57.56 54.85 17.62 22.48 21.32 20.47
BWE (3-to-1) 61.03 67.66 51.30 60.00 63.74 45.10 64.47 57.77 20.91 13.70 28.47 21.03
MAN 59.07 60.24 39.35 52.89 58.86 37.90 46.75 47.84 34.45 13.53 40.63 29.54
MAN-MoE 62.73 75.13 59.19 65.68 66.57 50.21 70.91 62.56 34.18 29.36 41.70 35.08

Table 2: F1 scores on the Multilingual Semantic Slot Filling dataset. The highest performance is in bold; the
highest performance within method group (with vs. without cross-lingual resources) is underlined (sic passim).

German Spanish Chinese

Domain Navi. Cal. Files avg Navi. Cal. Files avg Navi. Cal. Files avg

MAN-MoE 62.73 75.13 59.19 65.68 66.57 50.21 70.91 62.56 34.18 29.36 41.70 35.08
- C MoE 63.42 76.68 55.68 65.26 65.50 47.51 69.67 60.89 27.71 21.75 41.77 30.41
- Fp MoE 58.33 48.85 37.35 48.18 58.99 36.67 48.39 48.02 39.61 14.64 38.08 30.78
- both MoE 59.07 60.24 39.35 52.89 58.86 37.90 46.75 47.84 34.45 13.53 40.63 29.54
- MAN 60.64 67.69 55.10 61.14 65.38 46.71 68.25 60.11 18.43 10.82 28.90 19.38

Table 3: Ablation (w.r.t. MAN-MoE) results on the Multilingual Semantic Slot Filling dataset.

MAN degrades significantly. On the other hand,
when Chinese serves as the target language, where
all source languages are rather distant from it,
MAN has its merit in extracting language-invariant
features that could generalize to Chinese. With
MAN-MoE, however, this trade-off between close
and distant language pairs is well addressed by
the combination of MAN and MoE. By utilizing
both language-invariant and language-specific fea-
tures for transfer, MAN-MoE outperforms all cross-
lingually unsupervised baselines on all languages.

Furthermore, even when compared with the MT
baseline, which has access to hundreds of millions
of parallel sentences, MAN-MoE performs compet-
itively on German and Spanish. It even signifi-
cantly beats both MT systems on German as MT
sometimes fails to provide accurate word align-
ment for German. On Chinese, where the unsuper-
vised BWEs are much less accurate (BWE base-
lines only achieve 20% F1), MAN-MoE is able to
greatly improve over the BWE and MAN baselines
and shows promising results for zero-resource
CLTL even between distant language pairs.

4.1.2 Feature Ablation

In this section, we take a closer look at the various
modules of MAN-MoE and their impacts on perfor-
mance (Table 3). When the MoE in C is removed,
moderate decrease is observed on all languages.
The performance degrades the most on Chinese,

suggesting that using a single MLP in C is not
ideal when the target language is not similar to the
sources. When removing the private MoE, the MoE
in C no longer makes much sense as C only has
access to the shared features, and the performance
is even slightly worse than removing both MoEs.
With both MoE modules removed, it reduces to the
MAN model, and we see a significant drop on Ger-
man and Spanish. Finally, when removing MAN
while keeping MoE, where the shared features are
simply learned via weight-sharing, we see a slight
drop on German and Spanish, but a rather great
one on Chinese. The ablation results support our
hypotheses and validate the merit of MAN-MoE.

4.2 Cross-Lingual Named Entity Recognition

In this section, we present experiments on the
CoNLL 2002 & 2003 multilingual named entity
recognition (NER) dataset (Sang, 2002; Sang and
Meulder, 2003), with four languages: English,
German, Spanish and Dutch. The task is also for-
mulated as a sequence tagging problem, with four
types of tags: PER, LOC, ORG, and MISC.

The results are summarized in Table 4. We
observe that using only word embeddings does
not yield satisfactory results, since the out-of-
vocabulary problem is rather severe, and morpho-
logical features such as capitalization is crucial for
NER. We hence add character-level word embed-
dings for this task (§3.1) to capture subword fea-
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Target Language de es nl avg

Methods with cross-lingual resources
Täckström et al. (2012) 40.4 59.3 58.4 52.7
Nothman et al. (2013) 55.8 61.0 64.0 60.3
Tsai et al. (2016) 48.1 60.6 61.6 56.8
Ni et al. (2017) 58.5 65.1 65.4 63.0
Mayhew et al. (2017) 57.5 66.0 64.5 62.3

Methods without cross-lingual resources
MAN-MoE 55.1 59.5 61.8 58.8
BWE+CharCNN (1-to-1) 51.5 61.0 67.3 60.0
BWE+CharCNN (3-to-1) 55.8 70.4 69.8 65.3
Xie et al. (2018)* 56.9 71.0 71.3 66.4
MAN-MoE+CharCNN 56.7 71.0 70.9 66.2
MAN-MoE+CharCNN+UMWE 56.0 73.5 72.4 67.3

* Contemporaneous work

Table 4: F1 scores for the CoNLL NER dataset on
German (de), Spanish (es) and Dutch (nl).

tures and alleviate the OOV problem. For Ger-
man, however, all nouns are capitalized, and the
capitalization features learned on the other three
languages would lead to poor results. Therefore,
for German only, we lowercase all characters in
systems that adopt CharCNN.

Table 4 also shows the performance of several
state-of-the-art models in the literature6. Note
that most of these systems are specifically de-
signed for the NER task, and exploit many task-
specific resources, such as multilingual gazetteers,
or metadata in Freebase or Wikipedia (such as en-
tity categories). Among these, Täckström et al.
(2012) rely on parallel corpora to learn cross-
lingual word clusters that serve as features. Noth-
man et al. (2013); Tsai et al. (2016) both lever-
age information in external knowledge bases such
as Wikipedia to learn useful features for cross-
lingual NER. Ni et al. (2017) employ noisy par-
allel corpora (aligned sentence pairs, but not al-
ways translations) and bilingual dictionaries (5k
words for each language pair) for model trans-
fer. They further add external features such as
entity types learned from Wikipedia for improved
performance. Finally, Mayhew et al. (2017) pro-
pose a multi-source framework that utilizes large
cross-lingual lexica. Despite using none of these
resources, general or task-specific, MAN-MoE
nonetheless outperforms all these methods. The
only exception is German, where task-specific re-
sources remain helpful due to its unique capital-
ization rules and high OOV rate.

6We also experimented with the MT baselines, but it often
failed to produce word alignment, resulting in many empty
predictions. The MT baselines attain only a F1 score of
∼30%, and were thus excluded for comparison.
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Figure 3: Average expert gate weights aggregated on a
language level for the Amazon Reviews dataset.

In a contemporaneous work by (Xie et al.,
2018), they propose a cross-lingual NER model
using Bi-LSTM-CRF that achieves similar perfor-
mance compared to MAN-MoE+CharCNN. How-
ever, our architecture is not specialized to the NER
task, and we did not add task-specific modules
such as a CRF decoding layer, etc.

Last but not least, we replace the MUSE em-
beddings with the recently proposed unsupervised
multilingual word embeddings (Chen and Cardie,
2018b), which further boosts the performance,
achieving a new state-of-the-art performance as
shown in Table 4 (last row).

4.3 Cross-Lingual Text Classification on
Amazon Reviews

Finally, we report results on a multilingual
text classification dataset (Prettenhofer and Stein,
2010). The dataset is a binary classification
dataset where each review is classified into posi-
tive or negative sentiment. It has four languages:
English, German, French and Japanese.

As shown in Table 5, MT-BOW uses machine
translation to translate the bag of words of a target
sentence into the source language, while CL-SCL
learns a cross-lingual feature space via structural
correspondence learning (Prettenhofer and Stein,
2010). CR-RL (Xiao and Guo, 2013) learns bilin-
gual word representations where part of the word
vector is shared among languages. Bi-PV (Pham
et al., 2015) extracts bilingual paragraph vector by
sharing the representation between parallel doc-
uments. UMM (Xu and Wan, 2017) is a multi-
lingual framework that could utilize parallel cor-
pora between multiple language pairs, and pivot
as needed when direct bitexts are not available for
a specific source-target pair. Finally CLDFA (Xu
and Yang, 2017) proposes cross-lingual distilla-
tion on parallel corpora for CLTL. Unlike other
works listed, however, they adopt a task-specific
parallel corpus (translated Amazon reviews) that
are difficult to obtain in practice, making the num-
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German French Japanese

Domain books dvd music avg books dvd music avg books dvd music avg

Methods with general-purpose cross-lingual resources
MT-BOW1 79.68 77.92 77.22 78.27 80.76 78.83 75.78 78.46 70.22 71.30 72.02 71.18
CL-SCL1 79.50 76.92 77.79 78.07 78.49 78.80 77.92 78.40 73.09 71.07 75.11 73.09
CR-RL2 79.89 77.14 77.27 78.10 78.25 74.83 78.71 77.26 71.11 73.12 74.38 72.87
Bi-PV3 79.51 78.60 82.45 80.19 84.25 79.60 80.09 81.31 71.75 75.40 75.45 74.20
UMM4 81.65 81.27 81.32 81.41 80.27 80.27 79.41 79.98 71.23 72.55 75.38 73.05

Methods with task-specific cross-lingual resources
CLDFA5 83.95 83.14 79.02 82.04 83.37 82.56 83.31 83.08 77.36 80.52 76.46 78.11

Methods without cross-lingual resources
BWE (1-to-1) 76.00 76.30 73.50 75.27 77.80 78.60 78.10 78.17 55.93 57.55 54.35 55.94
BWE (3-to-1) 78.35 77.45 76.70 77.50 77.95 79.25 79.95 79.05 54.78 54.20 51.30 53.43
MAN-MoE 82.40 78.80 77.15 79.45 81.10 84.25 80.90 82.08 62.78 69.10 72.60 68.16

1 Prettenhofer and Stein (2010) 2 Xiao and Guo (2013) 3 Pham et al. (2015)
4 Xu and Wan (2017) 5 Xu and Yang (2017)

Table 5: Results for the Multilingual Amazon Reviews dataset. Numbers indicate binary classification accuracy.
VecMap embeddings (Artetxe et al., 2017) are used for this experiment as MUSE training fails on Japanese (§3.1).

bers not directly comparable to others.
Among these methods, UMM is the only one

that does not require direct parallel corpus be-
tween all source-target pairs. It can instead utilize
pivot languages (e.g. English) to connect multiple
languages. MAN-MoE, however, takes another gi-
ant leap forward to completely remove the neces-
sity of parallel corpora while achieving similar re-
sults on German and French compared to UMM.
On Japanese, the performance of MAN-MoE is
again limited by the quality of BWEs. (BWE base-
lines are merely better than randomness.) Nev-
ertheless, MAN-MoE remains highly effective and
the performance is only a few points below most
SoTA methods with cross-lingual supervision.

For a better understanding of the model behav-
ior, Figure 3 visualizes the expert weights when
transferring to different languages, which corrob-
orates our model hypothesis and the findings in
§4.1.2 (see Appendix A for more details).

5 Conclusion

In this paper, we propose MAN-MoE, a mul-
tilingual model transfer approach that exploits
both language-invariant (shared) features and
language-specific (private) features, which de-
parts from most previous models that can only
make use of shared features. Following earlier
work, the shared features are learned via language-
adversarial training (Chen et al., 2016). On the
other hand, the private features are extracted by a
mixture-of-experts (MoE) module, which is able to
dynamically capture the relation between the tar-

get language and each source language on a token
level. This is extremely helpful when the target
language is similar to a subset of source languages,
in which case traditional models that solely rely
on shared features would perform poorly. Further-
more, MAN-MoE is a purely model-based trans-
fer method, which does not require parallel data
for training, enabling fully zero-resource MLTL
when combined with unsupervised cross-lingual
word embeddings. This makes MAN-MoE more
widely applicable to lower-resourced languages.

Our claim is supported by a wide range of ex-
periments over multiple text classification and se-
quence tagging tasks, including a large-scale in-
dustry dataset. MAN-MoE significantly outper-
forms all cross-lingually unsupervised baselines
regardless of task or language. Furthermore, even
considering methods with strong cross-lingual su-
pervision, MAN-MoE is able to match or outper-
form these models on closer language pairs. When
transferring to distant languages such as Chinese
or Japanese (from European languages), where the
quality of cross-lingual word embeddings are un-
satisfactory, MAN-MoE remains highly effective
and substantially mitigates the performance gap
introduced by cross-lingual supervision.

For future work, we plan to apply MAN-MoE
to more challenging languages for tasks such
as syntactic parsing, where multilingual data
exists (Nivre et al., 2017). Furthermore, we
would like to experiment with multilingual con-
textualized embeddings such as the Multilingual
BERT (Devlin et al., 2018).
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Cebiroğlu Eryiğit, Giuseppe G. A. Celano, Savas
Cetin, Fabricio Chalub, Jinho Choi, Yongseok Cho,
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Appendix A Visualization of Expert Gate
Weights

In Figure 4 and 5, we visualize the average expert
gate weights for each of the three target languages
in the Amazon and CoNLL datasets, respectively.
For each sample, we first compute a sentence-
level aggregation by averaging over the expert gate
weights of all its tokens. These sentence-level ex-
pert gate weights are then further averaged across
all samples in the validation set, which forms a fi-
nal language-level average expert gate weight for
each target language. For the Amazon dataset, we
take the combination of all three domains (books,
dvd, music).

The visualization further collaborates with our
hypothesis that our model makes informed de-
cisions when selecting what features to share to
the target language. On the Amazon dataset, it
can be seen that when transferring to German or
French (from the remaining three), the Japanese
expert is less utilized compared to the European
languages. On the other hand, it is interesting that
when transferring to Japanese, the French and En-
glish experts are used more than the German one,
and the exact reason remains to be investigated.
However, this phenomenon might be of less sig-
nificance since the private features may not play a
very important role when transferring to Japanese
as the model is probably focusing more on the
shared features, according to the ablation study in
Section 4.1.2.

In addition, on the CoNLL dataset, we ob-
serve that when transferring to German, the ex-
perts from the two more similar lanaguages, En-
glish and Dutch, are favored over the Spanish one.
Similarly, when transferring to Dutch, the highly
relevant German expert is heavily used, and the
Spanish expert is barely used at all. Interest-
ingly, when transferring to Spanish, the model also
shows a skewed pattern in terms of expert usage,
and prefers the German expert over the other two.

Appendix B Implementation Details

In all experiments, Adam (Kingma and Ba, 2015)
is used for both optimizers (main optimizer and
D optimizer), with learning rate 0.001 and weight
decay 10−8. Batch size is 64 for the slot fill-
ing experiment and 16 for the NER and Amazon
Reviews experiments, which is selected mainly
due to memory concerns. CharCNN increases the
GPU memory usage and NER hence could only

λ1 λ2 k

Slot Filling 0.01 1 5
CoNLL NER 0.0001 0.01 1
Amazon 0.002 0.1 1

Table 6: The hyperparameter choices for different ex-
periments.

use a batch size of 16 to fit in 12GB of GPU
memory. The Amazon experiment does not em-
ploy character embeddings but the documents are
much longer, and thus also using a smaller batch
size. All embeddings are fixed during training.
Dropout (Srivastava et al., 2014) with p = 0.5 is
applied in all components. Unless otherwise men-
tioned, ReLU is used as non-linear activation.

Bidirectional LSTM is used in the feature ex-
tractors for all experiments. In particular, Fs is
a two-layer BiLSTM of hidden size 128 (64 for
each direction), and Fp is a two-layer BiLSTM of
hidden size 128 stacked with a MoE module (see
Figure 2). Each expert network in the MoE mod-
ule of Fp is a two-layer MLP again of hidden size
of 128. The final layer in the MLP has a tanh
activation instead of ReLU to match the LSTM-
extracted shared features (with tanh activations).
The expert gate is a linear transformation (matrix)
of size 128×N , where N is the number of source
languages.

On the other hand, the architecture of the task
specific predictor C depends on the task. For se-
quence tagging experiments, the structure of C
is shown in Figure 6, where each expert in the
MoE module is a token-level two-layer MLP with
a softmax layer on top for making token label
predictions. For text classification tasks, a dot-
product attention mechanism (Luong et al., 2015)
is added after the shared and private features are
concatenated. It has a length 256 weight vector
that attends to the feature vectors of each token
and computes a softmax mixture that pools the
token-level feature vectors into a single sentence-
level feature vector. The rest of C remains the
same for text classification.

For the language discriminator D, a CNN text
classifier (Kim, 2014) is adopted in all experi-
ments. It takes as input the shared feature vec-
tors of each token, and employs a CNN with max-
pooling to pool them into a single fixed-length fea-
ture vector, which is then fed into a MLP for clas-
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Figure 4: Average expert gate weights aggregated on a language level for the Amazon dataset.
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Figure 5: Average expert gate weights aggregated on a language level for the CoNLL dataset.
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Figure 6: The MoE Predictor C for Sequence Tagging.

sifying the language of the input sequence. The
number of kernels is 200 in the CNN, while the
kernel sizes are 3, 4, and 5. The MLP has one
hidden layer of size 128.

The MUSE, VecMap, and UMWE embeddings
are trained with the monolingual 300d fastText
Wikipedia embeddings (Bojanowski et al., 2017).
When character-level word embeddings are used,
a CharCNN is added that takes randomly initial-
ized character embeddings of each character in a
word, and passes them through a CNN with ker-
nel number 200 and kernel sizes 3, 4, and 5. Fi-
nally, the character embeddings are max-pooled
and fed into a single fully-connected layer to form
a 128 dimensional character-level word embed-
ding, which is concatenated with the pre-trained
cross-lingual word embedding to form the final
word representation of that word.

The remaining hyperparameters such as λ1, λ2

and k (see Algorithm 1) are tuned for each indi-
vidual experiment, as shown in Table 6.


