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Abstract

Neural Machine Translation (NMT) has
achieved notable success in recent years. Such
a framework usually generates translations in
isolation. In contrast, human translators often
refer to reference data, either rephrasing the in-
tricate sentence fragments with common terms
in source language, or just accessing to the
golden translation directly. In this paper, we
propose a Reference Network to incorporate
referring process into translation decoding of
NMT. To construct a reference book, an intu-
itive way is to store the detailed translation his-
tory with extra memory, which is computation-
ally expensive. Instead, we employ Local Co-
ordinates Coding (LCC) to obtain global con-
text vectors containing monolingual and bilin-
gual contextual information for NMT decod-
ing. Experimental results on Chinese-English
and English-German tasks demonstrate that
our proposed model is effective in improving
the translation quality with lightweight com-
putation cost.

1 Introduction

Neural Machine Translation (NMT) has enjoyed
impressive success in most large-scale transla-
tion tasks (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Cho et al., 2014). Typical
NMT model to date is a single end-to-end trained
deep neural network that encodes the source sen-
tence into a fixed-length vector and generates the
words in the target sentence sequentially. The
alignment relationship between source and target
sentence is learned by the attention mechanism
(Bahdanau et al., 2015; Luong et al., 2015).

Though the framework has achieved significant
success, one critical concern is that NMT gener-
ates translations in isolation, which leads to trans-
lation inconsistency and ambiguity arising from
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a single source sentence (Tu et al., 2018). Re-
cently, there have been few attempts to model the
semantic information across sentences. The basic
ideas are to store a handful of previous source or
target sentences with context vectors (Jean et al.,
2017; Wang et al., 2017a) or memory compo-
nents (Maruf and Haffari, 2018; Tu et al., 2018).
However, these methods have several limitations.
First, the very short view of the previous sentences
(usually one or two sentence(s)) is not sufficient
enough to catch long term dependencies across
paragraphs and storing detailed translation history
is computationally expensive. Second, in the real-
world scenarios, input data of MT application is
often isolated sentences, such as Google Trans-
late, where no cross-sentence contexts are pro-
vided. Moreover, translations generated by such
document-level NMT models are not stable, ef-
fected by the sentences surrounding the current
one to translate.

To address these limitations, we model the se-
mantic information across sentences by mimick-
ing the human translation process. In real scenar-
ios, there will always be sentences or fragments
that the translator can understand the meaning but
cannot write down the translations directly. The
obstacle could be unfamiliar collocation, descrip-
tions in specific language habits and slang. The
usual solutions for human are: (1) paraphrasing
the sentence in another way, with simpler and
more colloquial terms in the source language, and
(2) directly referring to the standard translations
of the intricate sentence fragments. For example
in Table 1, the Chinese word ”zaiyu” is not a com-
mon expression. A reference can either provide
simple Chinese terms such as ”daizhe rongyu” or
directly offer the corresponding English transla-
tion ”with honor”. Therefore, if a good quality
reference book which covers various translation
scenes is provided, it can definitely improve the
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source canjia dongaohui de faguo yun-
dongyuan zaiyu fanhui bali.

translation French athletes participating in
winter olympics returned to
paris with honors.

Table 1: An example of sentence fragment that is hard
to translate.

performance of human translators.
To be specific, the motivation of this work can

be summarized as two aspects corresponding to
the two kinds of human reference processes. First,
we aim to provide the machine translator with a
reference during decoding, which contains all pos-
sible source sentence fragments that are semanti-
cally similar to the current one. If the system finds
it hard to translate the source fragment, it can turn
to translate the fragments in the reference. Sec-
ond, we intend to offer the oracle translations of
the current sentence fragments to translate.

In this paper, we propose a novel model namely
Reference Network that incorporates the referring
process into translation decoding of NMT. Instead
of storing the detailed sentences or translation his-
tory, we propose to generate representations con-
taining global monolingual and bilingual contex-
tual information with Local Coordinate Coding
(LCC) (Yu et al., 2009). Specifically, for solution
(1), the hidden states of NMT encoder are coded
by a linear combination of a set of anchor points
in an unsupervised manner. The anchors are ca-
pable to cover the entire latent space of the source
language seamlessly. For solution (2), we employ
local codings to approximate the mapping from
source and target contexts to the current target
word with a supervised regression function. The
local coding is then fed to the decoder to modify
the update of the decoder hidden state. In this way,
the translation decoding can be improved by of-
fering the representation of a common paraphrase
(Figure 1) or golden target translation (Figure 2).

We conduct experiments on NIST Chinese-
English (Zh-En) and WMT German-Chinese (En-
De) translation tasks. The experimental results in-
dicate that the proposed method can effectively ex-
ploit the global information and improve the trans-
lation quality. The two proposed models signif-
icantly outperform the strong NMT baselines by
adding only 9.3% and 19.6% parameters respec-
tively.

2 Background

2.1 Neural Machine Translation

Our model is built on the RNN-based NMT (Bah-
danau et al., 2015). However, since recurrent ar-
chitecture is not necessary for our approach, the
idea can also be applied to ConvS2S (Gehring
et al., 2017) and Transformer (Vaswani et al.,
2017). We leave it for future work. Formally, let
x = (x1, ..., xm) be a given source sentence and
y = (y1, ..., yT ) be the corresponding target sen-
tence. NMT generates the target words sequen-
tially by maximizing the probability of translation
conditioned on the source sentence:

ŷ = argmax
y

T∑
t=1

log p(yt|x,y<t). (1)

At each timestep, the generation probability is
computed as

p(yt|x,y<t) = softmax(g(e(yt−1), st, ct)), (2)

where g is a transformation function that outputs a
vocabulary-sized vector, e(yt−1) is the embedding
of previous target word yt−1, ct is the source con-
text vector obtained by attention mechanism, and
st is the t-th hidden state of NMT decoder, com-
puted as:

st = fd(e(yt−1), st−1, ct), (3)

where fd is a nonlinear activation. The source con-
text ct is typically a weighted sum of encoder hid-
den states as:

ct =

m∑
i=1

αti · hi, (4)

where attention score αti is the alignment vector
of the i-th source word xi and the t-th target word
yt:

αti = softmax(v>α tanh(Wαst−1+Uαhi)). (5)

where Wα, Uα and vα are trainable matrices or
vectors. hi is the annotation of xi computed by
the NMT encoder. The encoder, generally imple-
mented as a bi-directional RNN, encodes the input
sentence into a sequence of source hidden states
h = (h1, ...,hm) where hi is obtained by concate-
nating the forward hidden state

−→
hi and backward

one
←−
hi at timestep i.
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  𝐡𝐡1𝑁𝑁  𝐡𝐡2𝑁𝑁  𝐡𝐡|𝐱𝐱𝑁𝑁|
𝑁𝑁  … 

𝑥𝑥2𝑁𝑁 𝑥𝑥|𝐱𝐱𝑁𝑁|
𝑁𝑁  𝑥𝑥1𝑁𝑁 𝐱𝐱𝑁𝑁: 

average pooling 

  𝐡𝐡12  𝐡𝐡22  𝐡𝐡|𝐱𝐱2|
2  … 

𝑥𝑥22 𝑥𝑥|𝐱𝐱2|
2  𝑥𝑥12 𝐱𝐱2: 

average pooling … 
  𝐡𝐡𝑀𝑀1    𝐡𝐡𝑀𝑀2    𝐡𝐡𝑀𝑀𝑁𝑁  

local coordinate coding 

  𝐡𝐡11  𝐡𝐡21   𝐡𝐡|𝐱𝐱1|
1  … 

𝑥𝑥21 𝑥𝑥|𝐱𝐱1|
1  𝑥𝑥11 𝐱𝐱1: 

average pooling 

  𝐯𝐯2   𝐯𝐯1   𝐯𝐯|𝒞𝒞| … 
LCC anchors 

  𝐡𝐡1   𝐡𝐡2   𝐡𝐡𝑚𝑚 … 
 𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑚𝑚 

attention 

  𝐬𝐬1   𝐬𝐬𝑡𝑡   𝐬𝐬𝑡𝑡−1 … 
 𝑦𝑦1  𝑦𝑦𝑡𝑡−1  𝑦𝑦𝑡𝑡 

  𝐜𝐜1   𝐜𝐜𝑡𝑡   𝐜𝐜𝑡𝑡−1 … 

attention 

  𝐜𝐜𝑡𝑡𝐺𝐺  

Figure 1: Framework of NMT with M-RefNet. xi represents the i-th source sentence in the training corpus and
|xi| is the length of the sentence. The global context vector cGt can be regarded as a paraphrase of the current
source context ct.

According to the above formulations, conven-
tional NMT models translate sentences indepen-
dently. However, human translators usually tend
to seek for reference materials when in trouble.
Motivated by such common human behaviors, we
propose Reference Network to provide global in-
formation as a reference book in two ways. First,
the model utilizes all source hidden states to para-
phrase current source sentence. Second, the model
directly provides the target word ỹt according to
the rest translation samples in the training corpus.
Since it is impossible to store all information di-
rectly, we leverage local coordinate coding (LCC)
to compress the semantics into a latent manifold.

2.2 Local Coordinate Coding

With the assumption that data usually lies on the
lower dimensional manifold of the input space, the
manifold approximation of high dimensional input
x can be defined as a linear combination of sur-
rounding anchor points as:

x ≈ γ(x) =
∑
v

γv(x)v, (6)

where v is an anchor point and γv is the weight
corresponding to v such that

∑
v

γv(x) = 1. (7)

According to the definitions, it is proved in (Yu
et al., 2009) that if the anchor points are local-
ized enough, any (lα, lβ)-Lipschitz smooth func-
tion f(x) defined on a lower dimensional mani-
foldM can be globally approximated by a linear

combination of the function values of a set of the
anchors C as:

f(x) ≈
∑
v∈C

γv(x)f(v), (8)

with the upper bound of the approximation error:

lα‖x−
∑
v∈C

γv(x)v‖

+
∑
v∈C

lβ|γv(x)|‖v −
∑
v∈C

γv(x)v‖2.
(9)

3 Reference Network

In this section, we present our proposed Reference
Network (RefNet).

3.1 Overview
We propose two models which explore the global
information from the training data in different
manners as illustrated by Figure 1 and Figure 2.

The monolingual reference network (M-
RefNet) provides a global source context vector
to paraphrase the current context ct based on all
other source sentences. To be specific, we train
several unsupervised anchors as the bases of the
semantic space of source contexts and each source
sentence in the training corpus can be represented
by a weighted sum of the anchors.

The bilingual reference network (B-RefNet)
generates a referable target embedding according
to all sentence pairs in the training corpus to guide
output sequence generation. Concretely, we for-
mulate the translation process as a mapping from
source and target contexts (ct and st−1) to the
current target word embedding e(yt). B-RefNet



3005

  𝐡𝐡1   𝐡𝐡2   𝐡𝐡𝑚𝑚 … 
 𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑚𝑚 

attention 

  𝐬𝐬1   𝐬𝐬𝑡𝑡   𝐬𝐬𝑡𝑡−1 … 
 𝑦𝑦1  𝑦𝑦𝑡𝑡−1  𝑦𝑦𝑡𝑡 

  𝐜𝐜1   𝐜𝐜𝑡𝑡   𝐜𝐜𝑡𝑡−1 … 

  𝐜𝐜𝑡𝑡  𝐬𝐬𝑡𝑡−1  𝑦𝑦𝑡𝑡−1 

  𝐪𝐪𝑡𝑡 

𝛾𝛾𝐯𝐯1(𝐖𝐖𝐯𝐯1𝑔𝑔 𝐪𝐪𝑡𝑡 + 𝐛𝐛𝐯𝐯1) 𝛾𝛾𝐯𝐯2(𝐖𝐖𝐯𝐯2𝑔𝑔(𝐪𝐪𝑡𝑡) + 𝐛𝐛𝐯𝐯2) 𝛾𝛾𝐯𝐯 𝒞𝒞 (𝐖𝐖𝐯𝐯 𝒞𝒞 𝑔𝑔(𝐪𝐪𝑡𝑡) +𝐛𝐛𝐯𝐯|𝒞𝒞|) … 

 𝑓𝑓𝑠𝑠(𝐪𝐪𝑡𝑡) 
local coordinate coding 

Figure 2: Framework of NMT with B-RefNet. The output fs(qt) of RefNet can be regarded as an approximation
of current target word embedding e(yt).

learns this mapping with a supervised regression
function derived from LCC.

It should be noted that the corpus from which
the reference vectors (cGt or fs(qt)) are learned
can be any monolingual or bilingual data, and the
translations generated are relatively effected by
the quality of the corpus. In this work, we con-
strain it as the training corpus for convenience and
a fair comparison with the related work.

3.2 Monolingual Referent Network

In this section, we seek to improve NMT by
rephrasing the source sentence. Instead of stor-
ing all source contexts, we regenerate the source
contexts from a learned manifold with a combina-
tion of a fixed number of anchor points. Formally,
given any source sequence x with length m in the
training samples, let h = (h1, ...,hm) denotes the
hidden states generated by the NMT encoder. We
firstly obtain the representation of the source sen-
tence hM via a mean-pooling operation. Accord-
ing to the definition of LCC, it can be assumed
that hM ≈ γ(hM ) where γ(hM ) is the local coor-
dinate coding of hM , computed as:

γ(hM ) =

|C|∑
j=1

γj(hM )vj . (10)

Here, vj is the j-th anchor point. The coeffi-
cient γj(hM ) is used to measure the weight of an-
chor point vj corresponding to γ(hM ). In conven-
tional manifold learning methods, γj(hM ) is gen-
erally computed with distance measure. And to
achieve localization, the coefficients correspond-
ing to anchor points out of the neighbors of hM
are set to zero. However, it is hard to train in deep

neural network using stochastic gradient methods.
Inspired by the attention mechanism (Bahdanau
et al., 2015), we propose to employ an attention
layer to obtain the weights:

γj(hM ) =
exp(s(hM ,vj))∑|C|
j=1 exp(s(hM ,vj))

, (11)

where s(·) is a score function. Here, we propose a
tri-nonlinear score function which has been proven
especially effective in the experiments:

s(hM ,vj) = v>s tanh(Wsvj +UshM

+Vs(vj ◦ hM )),
(12)

where Ws, Us, Vs and vs are trainable parame-
ters. ◦ is the element-wise multiplication, and di-
mension of any anchor point should be the same
to hM .

To find the optimal anchor point, localization
measure (Yu et al., 2009) is employed as the opti-
mization object:

min
γ,C

lα ‖hM − γ(hM )‖+

lβ

|C|∑
j=1

|γj(hM )| ‖vj − γ(hM )‖2 .
(13)

Since any source sentence presentation hM can
be represented by the linear combination of the an-
chors, the trained anchor points can be regarded
as the bases of the latent space of all source an-
notations, containing the global contextual infor-
mation. Therefore, during translation decoding of
NMT, we can drop the coefficient γ and rephrase
the source sentence only with the anchor points.
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Specifically, we apply an attention mechanism be-
tween current local contextual information and
each anchor point vj to get the global context as:

cGt =

|C|∑
j=1

αGtjvj , (14)

where αGtj is the attention score between current
local contexts and the global context, computed as:

αGtj = softmax(v>α tanh(Wαst−1

+Uαct +Vαvj)).
(15)

Once the global context cGt is obtained, we feed it
to decoder states:

st = fd(e(yt−1), st−1, ct, c
G
t ), (16)

where ct encodes the local contextual information
and cGt contains the global monolingual informa-
tion from all source sentences in the training cor-
pus. When the model has trouble to translate some
words or sentence fragments, it can refer to cGt to
gain the richer source contextual information.

3.3 Bilingual Reference Network
The bilingual model is proposed to improve NMT
by providing a golden translations according to
rest samples in the training corpora. To be specific,
once source context ct and target context st−1 are
obtained, we hope to provide a referable predic-
tion e(ỹt) of the current target word embedding
e(yt) according to other sentence pairs in the train-
ing data for the decoder.

The functionality of the NMT decoder during
translation (Eq.2 and Eq.3) is totally a function
that maps the source context ct, target context st−1
and last target word yt−1 to current target yt. NMT
takes it as a classification problem, using tanh or
other gated RNN unit to implement this function.
In this work, we propose a much stronger model in
information expression, that regrades the problem
as regression:

qt = [e(yt−1)
>, s>t−1, c

>
t ]
>, (17)

e(yt) ≈ fs(qt) = W(qt)g(qt) + b(qt), (18)

where g is a transformation function that trans-
forms qt to a anchor-size vector, W and b are
the weight matrix and bias vector of the regres-
sion function. The weight and bias are allowed to

vary according to the input qt, which makes the
function capable of mapping each qt to the corre-
sponding e(yt) precisely. However, it is impossi-
ble to store the weight and bias for every qt com-
puted within the training data. Therefore, we ap-
proximate the weight and bias function in Eq.18
using local coordinate coding as:

fs(qt) =

|C|∑
j=1

γj(qt)
(
Wvjg(qt) + bvj

)
, (19)

where vj ∈ C is an anchor point, Wvj and bvj

are trainable parameters corresponding to vj , and
γj(qt) is the weight function, computed as:

γj(qt) =
exp(s(qt,vj))∑|C|
j=1 exp(s(qt,vj))

. (20)

Similar to M-RefNet, the score is computed by the
tri-nonlinear function as:

s(qt,vj) = v>b tanh(Wbvj+Ubqt+Vb(vj◦qt)).
(21)

Here, fs(qt) can be regarded as an approximation
of e(yt) based on all the sentence pairs in the train-
ing data. Therefore, we feed the function value to
the decoder state to guide sentence generation:

st = fd(e(yt−1), st−1, ct, fs(qt)). (22)

The optimal weight matrices and anchor points
are obtained by minimizing the hinge loss for each
sentence pair (x,y) as:

LM =

|y|∑
t=1

‖e(yt)− fs(qt)‖2+λM
|C|∑
j=1

‖W(vj)‖2 .

(23)

3.4 Training and Inference
Stage-wise training strategies have been proven
to be efficient when system is relative compli-
cated by plenty of recent work (Maruf and Haf-
fari, 2018; Tu et al., 2018). In this work, we first
pre-train a standard NMT on a set of training ex-
amples {[xn,yn]}Nn=1 as initialization for training
the added parameters in our proposed models.

Let θ = {θE , θD} denote the parameters of the
standard NMT, where θE and θD are parameters of
the standard encoder and decoder (including atten-
tion model) respectively. For M-RefNet, the stage
following NMT training is to obtain the weight
vectors γ and anchor points C related to all training
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System MT05 MT06 MT08 Avg
Dl4mt 32.88 32.30 25.97 30.38
NMT 35.76 34.82 27.86 32.81
CS-NMT 36.63 36.41 29.47 34.17
LS-NMT 36.46 36.99 29.73 34.39
CC-NMT 36.65 37.08 29.71 34.48
DC-NMT 36.82 36.73 29.83 34.46

This work
M-RefNet 37.31 37.72 30.41 35.15
B-RefNet 37.71 37.99 30.80 35.50

Table 2: BLEU scores of different models on Zh-En.

sentence representations hM by minimizing local-
ization measure (Eq.13). Then we fix the trained
anchor points and encoder, and only fine-tune the
decoder θD and the added parameters θM related
to the monolingual reference network (Eq.15 and
Eq.16):

max
θD,θM

N∑
n=1

[logP (yn|xn; θ, θM , γ)] . (24)

To train B-RefNet efficiently, we fix the trained
parameters of the standard NMT and only update
the added parameters θB including all weight ma-
trices and biases related to local coordinate coding
(Eq.19 and Eq.21). The training object is:

max
θB

N∑
n=1

[logP (yn|xn; θ, θB)− λLM ] , (25)

where λ is a hyper-parameter that balances the
preference between likelihood and hinge loss.

During inference, all parameters related to LCC
are fixed. Therefore, the work can be regarded as
a static approach, compared with the conventional
document-level NMT. That means, the final trans-
lation is only effected by the reference corpus but
not by the sentences surrounding the current one
to translate. Naturally, there leaves a question that
how it influences the quality of translations when
various reference corpus is chosen. We leave it in
future work and only use the training corpus in this
paper.

4 Experiments

We evaluate the reference network models on two
translation tasks, NIST Chinese-English transla-
tion (Zh-En) and WMT English-German transla-
tion (En-De).

4.1 Settings

Datasets For Zh-En, we choose 1.25M sentence
pairs from LDC dataset1 with 34.5 English words
and 27.9M Chinese words. NIST MT02 is cho-
sen as the development set, and NIST MT05/06/08
as test sets. Sentences with more than 50 words
are filtered and vocabulary size is limited as 30k.
We use case-insensitive BLEU score to evaluate
Zh-En translation performance. For En-De, the
training set is from (Luong et al., 2015) which
contains 4.5M bilingual pairs with 116M English
words and 100M German words. BPE (Sennrich
et al., 2016) is employed to split the sentence pairs
into subwords and we limit the vocabulary as 40k
sub-words units. Newstest2012/2013 are chosen
for developing and Newsetest2014 for test. case-
sensitive BLEU2 is employed as the evaluation
metric.

Models We evaluate our RefNet with different
structures on Zh-En and En-De. For Zh-En we
choose the typical attention-based recurrent NMT
model (Bahdanau et al., 2015) as initialization,
which consists of a bi-directional RNN-based en-
coder and a one layer RNN decoder. The dimen-
sions of embedding and hidden state are 620 and
1000 respectively. For En-De, deep linear associa-
tive unit model (DeepLAU) (Wang et al., 2017b)
is chosen as the base model. Both the encoder
and decoder consist of 4-layer LAUs. All embed-
ding and hidden states are 512-dimensional vec-
tors. Moreover, we use layer normalization (Ba
et al., 2016) on all layers. For both architectures,
the number of anchor points is 100 for M-RefNet
and 30 for B-RefNet. The anchor dimension of
B-RefNet is set to 100. The hyper-parameter λ in
Eq.25 is set to 1. The norm of gradient is clipped
to be within [−1, 1] and dropout is applied to em-
bedding and output layer with rate 0.2 and 0.3 re-
spectively. When generating translations, we uti-
lize beam search with beam size 10 on Zh-En and
8 on En-De.

4.2 Results on Chinese-English Translation

The standard attention-based NMT model is cho-
sen as the baseline and initialization of our mod-
els. Moreover, we also list the results of the open-

1The corpus contains LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06

2https://github.com/moses-smt/mosesdecoder
/blob/master/scripts/generic/multi-bleu.perl
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source Dl4mt and re-implementations of the fol-
lowing related work for comparison:

• Cross-sentence context-aware NMT (CS-
NMT) (Wang et al., 2017a): A cross-sentence
NMT model that incorporates the histori-
cal representation of three previous sentences
into decoder.

• LC-NMT (Jean et al., 2017): A NMT model
that concurrently encodes the previous and
current source sentences as context, added to
decoder states.

• NMT augmented with a continuous cache
(CC-NMT) (Tu et al., 2018): A NMT model
armed with a cache3 which stores the recent
translation history.

• Document Context NMT with Memory Net-
works (DC-NMT) (Maruf and Haffari, 2018):
A document-level NMT model that stores all
source and target sentence representations of
a document to guide translation generating4.

All the re-implemented systems share the same
settings with ours for fair comparisons.

4.2.1 Main Results
Results on Zh-En are shown in Table 2. The
baseline NMT significantly outperforms the open-
source Dl4mt by 2.43 BLEU points, indicating the
baseline is strong. Our proposed M-RefNet and
B-RefNet improve the baseline NMT by 2.34 and
2.69 BLEU respectively and up to 2.90 and 3.17
BLEU on NIST MT06, which confirms the ef-
fectiveness of our proposed reference networks.
Overall, B-RefNet achieves the best performance
over all test sets

Compared with the related work which incor-
porate document-level information NMT, our pro-
posed models still have a significant advantage.
Compared to the best performance achieved by
the related work (CC-NMT), M-RefNet and B-
RefNet outperform it over all test sets and gain
improvements of 0.77 BLEU and 1.02 BLEU in
average. The possible reason is that all the related
work only leverage a small range of the document-
level information, limited by model complexity

3Cache size is set to 25.
4LDC training corpora contains nature boundaries. How-

ever document range is not clear for NIST test data. We use
clustering and regard each class as a document. Dimension
of document context is set to 1024.

# System #Para
Speed

Train Test
0 NMT 71.1M 3590.4 114.21
1 CS-NMT 95.7M 747.5 97.10
2 LC-NMT 96.8M 1983.5 70.11
3 CC-NMT 75.1M 2844.7 113.09
4 DC-NMT 86.2M 2093.6 54.07
5 M-RefNet 77.7M 2563.98 113.26
6 B-RefNet 85.1M 2191.4 104.07

Table 3: Statistics of parameters, training speed (sen-
tences/minute) and testing speed (words/second).

10

20

30

40

50

60

70

80

[0,10) [10,20) [20,30) [30,40) [40,50) >50

Tr
an

sl
at

io
n 

Le
ng

th

Length of Source Sentence

NMT

M-RefNet

B-RefNet

Reference

10

15

20

25

30

35

40

[0,10) [10,20) [20,30) [30,40) [40,50) >50
B

LE
U

Length of Source Sentence

NMT
M-RefNet
B-RefNet

(a) Translation quality (b) Averaged length

Figure 3: Translation quality and averaged length of
the translations as source sentences become longer.

and time consuming. In contrast, our models are
capable to express all information with more ab-
stract representations. According to the results,
though the information is deeply compressed in
our models, it is still effective.

4.2.2 Analysis
Parameters and Speed The number of parame-
ters and speed of each model are listed in Table 3.
It can be seen that M-RefNet only introduces 6.6M
additional parameters while B-RefNet introduces
relative larger number of parameters (14M). Con-
sidering training process, both M-RefNet and B-
RefNet are quite efficient and the training speeds
are little slower than CC-NMT, for the added
amount of parameters is quite small compared
to the baseline NMT and related systems. In
terms of decoding, both proposed models do not
slow down the translation speed obviously and
M-RefNet achieves the fastest speed over all sys-
tems except the baseline NMT. The reason is that
our models do not incorporate additional previ-
ous sentences or interact with extra memory as the
relevant document-level systems. Furthermore,
though the training speed and number of param-
eters of B-RefNet and DC-NMT are similar, B-
RefNet gains a twice faster translation speed, be-
cause that DC-NMT needs a two-pass translation
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Source agenting zantong yige zhongguo de lichang .
Reference argentina supports the ” one china ” policy.
NMT argentina agrees with china ’ s stand on the one china .
M-RefNet the argentine government supports the one china position .
B-RefNet argentina supports the one china policy .
Source yindu bianfang minbing 2 yue 17 ri , jiaqiang le dui niboer bianjie de xunluo .
Reference on february 17 , the indian border security force stepped up patrols along the border

with nepal .
NMT on 17 february , indian border defense militia [ UNK UNK UNK UNK UNK ] .
M-RefNet the indian border defense militia , on 17 february , strengthened the patrol of nepal ’ s

border .
B-RefNet the indian border defense militia has stepped up patrols on the nepalese border on 17

february .

Table 4: Comparison on translation examples. The translation errors are highlighted with italic and the correct
ones are highlighted with bold type.

process to fill the memory cells.

Length Analysis We follow (Luong et al., 2015)
to group sentences with similar lengths and com-
pute the BLEU score of each group, as shown in
Figure 3. The reason for the falling of BLEU in the
last group (>50) is that sentences longer than 50
are removed during training. From this figure, we
can see that our proposed models outperform the
baseline NMT in all ranges of length. Moreover,
translations generated by M-RefNet and B-RefNet
have more similar lengths to the references com-
pared with the baseline NMT.

Case Study Table 4 shows the translation exam-
ples on Zh-En. In the first case, the Chinese word
”lichang” (standpoint, position, or policy) is incor-
rectly interpreted as ”stand on” by NMT. Both M-
RefNet and B-RefNet generate legible translations
while translation from B-RefNet is more precise.
This is because the word pair (”lichang”, ”policy”)
appear somewhere in the training data and is lever-
aged by the systems according to the contexts.
This phenomenon is similar in the second case.
Translation given by NMT is not readable. In con-
trast, M-RefNet generates the core verb ”strength-
ened” and B-RefNet provides a more accurate col-
location ”stepped up patrols”.

4.3 Results on English-German Translation

On this task, DeepLAU (Wang et al., 2017b) is
chosen as the baseline and also used as the pre-
trained model. We list the translation performance
of our models and some existing NMT systems
in Table 5. All the systems except for Robust

NMT (Cheng et al., 2018) have a deep architec-
ture with no less than 4 layers while Robust NMT
introduces a additional discriminator for adversar-
ial training. From the table, we can observe that
our strong baseline DeepLAU is comparable to
Google’s neural machine translation (GNMT) (Wu
et al., 2016). M-RefNet outperforms the base-
line by 1.29 BLEU points and B-RefNet achieves
slightly better performance with a 1.79 BLEU im-
provement, which is consistent to the results on
Zh-En. Compared with the SOTA deep NMT sys-
tems, both M-RefNet and B-RefNet outperform
GNMT and even obtain comparable performance
with ConvS2S (Gehring et al., 2017) and Trans-
former (Vaswani et al., 2017) which have much
deeper architectures with relative much more pa-
rameters. Since the reference networks do not rely
on the recurrent structure, one interesting future
direction is to apply our methods to such compli-
cated models to bring further improvements.

5 Related Work

Document-level Neural Machine Translation
There are few works that consider the document-
level contextual information to improve typical
NMT. Jean et al. (2017) propose to use a addi-
tional encoder to generate the latent representa-
tion of previous sentence as extra context for de-
coder and attention mechanism is also applied be-
tween the decoder state and previous context to
get access to word-level information of the pre-
vious sentence. Contemporaneously, Wang et al.
(2017a) extend NMT by adding two encoders to
encode the previous sentences in word-level and



3010

System Architecture BLEU
0 GNMT 8-layer LSTM encoder and decoder 24.60
1 Robust NMT 2-layer GRU encoder and decoder + adversarial training 25.26
2 ConvS2S 15-layer CNN encoder and decoder 25.16
3 Transformer (big) 6-layer encoder and decoder + 16-head self-attention 28.40

This work
4 DeepLAU 24.37
5 M-RefNet 4-layer LAU encoder and decoder 25.66
6 B-RefNet 26.16

Table 5: Translation quality on En-De.

sentence-level respectively. The last hidden state
of encoders are considered as the summarization
of a previous sentence and the group. Bawden
et al. (2018) employ multiple encoder s to sum-
marize the antecedent and propose to combine the
contexts with a gated function. However, these in-
corporated extra encoders bring large amount of
parameters and slow down the translation speed.
Tu et al. (2018) propose to modify the NMT with
light-weight key-value memory to store the trans-
lation history. However, due to the limitation of
the memory size, the very short view on the pre-
vious (25 timesteps) is not sufficient to model the
document-level contextual information. Addition-
ally, Maruf and Haffari (2018) propose to capture
the global source and target context of a entire
document with memory network (Graves et al.,
2014; Wang et al., 2016). Nevertheless, since the
number of sentence pairs in a document could be
enormous, storing all sentence with memory com-
ponents could be very time and space consum-
ing. More recently, Miculicich et al. (2018) and
Zhang et al. (2018) propose to improve Trans-
former by encoding previous sentences with extra
encoders. The reference book in this work can be
regarded as a special kind of document context.
However, there are two major differences between
our approach and the above work. First, we en-
code the entire corpus into a handful of anchor
points which is much more light-weight but con-
centrated to capture the global contextual informa-
tion . Second, the global contexts in this work is
static. That means, given a sentence to translate,
the final translation result only depends on the ref-
erence corpus, but not the sentences surrounding
the current one.

Local Coding There are a number of works
on manifold learning (Roweis and Saul, 2000;
Van Gemert et al., 2008; Yu et al., 2009; Ladicky

and Torr, 2011). The manifold learning methods
approximate any point on the latent manifold with
a linear combination of a set of localized anchor
points relying on the assumption that high dimen-
sional input usually lies on the lower dimensional
manifold. Agustsson et al. (2017) utilize local
coding into deep neural networks on age predic-
tion from images and Cao et al. (2018) exploit
LCC for GAN (Goodfellow et al., 2014) to cap-
ture the local information of data. All these works
focus on application of Computer Vision while we
apply LCC in a Nature Language Processing task.
To our knowledge, this is the first attempt to incor-
porate local coding into NMT modeling.

6 Conclusion and Future Work

In this work, we propose two models to improve
the translation quality of NMT inspired by the
common human behaviors, paraphrasing and con-
sulting. The monolingual model simulates the
paraphrasing process by utilizing the global source
information while the bilingual model provides a
referable target word based on other sentence pairs
in the training corpus. We conduct experiments on
Chinese-English and English-German tasks, and
the experimental results manifest the effectiveness
and efficiency of our methods.

In the future, we would like to investigate
the feasibility of our methods on non-recurrent
NMT models such as Transformer (Vaswani et al.,
2017). Moreover, we are also interested in incor-
porating discourse-level relations into our models.
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