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Abstract

In this paper, we investigate the importance of
social network information compared to con-
tent information in the prediction of a Twitter
user’s occupational class. We show that the
content information of a user’s tweets, the pro-
file descriptions of a user’s follower/following
community, and the user’s social network pro-
vide useful information for classifying a user’s
occupational group. In our study, we ex-
tend an existing dataset for this problem, and
we achieve significantly better performance by
using social network homophily that has not
been fully exploited in previous work. In our
analysis, we found that by using the graph
convolutional network to exploit social ho-
mophily, we can achieve competitive perfor-
mance on this dataset with just a small fraction
of the training data.

1 Introduction

Twitter (http://twitter.com) is a microblogging ser-
vice launched in 2006, where, a user can pub-
lish messages with up to 280 characters, called
“tweets”. Unlike many other social networking
platforms, such as Facebook and LinkedIn, Twitter
does not provide structured fields for users to fill
in personal information. However, a user can write
a 160-character-long small public summary about
itself called a “Bio”. Besides linguistic informa-
tion from tweets and Bios, online social media is
a rich source of network information. People’s
personal networks are homogeneous, i.e., friends
share more attributes such as race, ethnicity, re-
ligion, and occupation–known as the homophily
principle (McPherson et al., 2001). Such network
information has been utilized in friend recommen-
dation (Guy et al., 2010), community detection
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Figure 1: User and Network information on Twitter Mi-
croblog.

(Yang and Leskovec, 2013), etc. Figure 1 shows
two users connected on Twitter. By looking at
their Bio and tweets, it can be inferred that these
users share the same occupational interest.

Profiling users can enhance service quality and
improve product recommendation, and hence is a
widely studied problem. User occupational class
prediction is an important component of user pro-
filing and a sub-task of user demographic fea-
ture prediction. Existing approaches to predicting
Twitter users’ demographic attributes explore, se-
lect, and combine various features generated from
text and network to achieve the best predictive per-
formances in respective classification tasks (Han
et al., 2013; Miller et al., 2012; Preoţiuc-Pietro
et al., 2015; Huang et al., 2015; Aletras and Cham-
berlain, 2018). The three categories of features
are: account level features, tweet text features, and
network based features. Past research have shown
the distinctive usage of language across gender,
age, location, etc. in tweets (Sloan et al., 2015;
Cheng et al., 2010; Burger et al., 2011; Rao et al.,
2010), which makes content based prediction ef-
fective.

As for user occupational class prediction,
Preoţiuc-Pietro et al. (2015) built a dataset where
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users are assigned to hierarchical job categories.
They used word cluster distribution features of
content information to predict a user’s occupa-
tional group. Aletras and Chamberlain (2018)
constructed a user’s followings connections to
learn the user embedding as a feature input to the
classification models. Considering the regional
disparities of economic development stages, the
major job categories may vary significantly across
regions. Sloan et al. (2015) summarized occu-
pation distribution of Twitter users in the UK by
looking into their profiles.

In this paper, we analyze the usefulness of a
user’s network information over the user’s tweets
for predicting its occupational group. We ex-
tend the existing dataset for occupation classifi-
cation (Preoţiuc-Pietro et al. (2015)) by introduc-
ing the network information about a user, i.e. fol-
lower/following IDs together with their Bio de-
scriptions, and we construct a user-centric network
to extract useful community and text based fea-
tures. The acquired features from the network are
then exploited using a graph neural network. The
obtained results show the importance of a network
information over tweet information from a user for
such a task.

2 Graph Convolutional Network

A Graph Convolutional Network (GCN) (Kipf
and Welling, 2017) defines a graph-based neural
network model f(X,A) with layer-wise propaga-
tion rules:

Â = D̃−1/2(A+ λI)D̃−1/2 (1)

X(l+1) = σ(ÂX(l)W (l) + b(l)) (2)

where X is the feature matrix for all the nodes
with X(0) being the initial feature input of size
dnodes × dfeatures, A is the adjacency matrix of
dimension dnodes × dnodes, D̃ is the degree ma-
trix of A + λI , λ is a hyperparameter controlling
the weight of a node against its neighbourhood,
and W (l) and b(l) are trainable weights and bias
for the l-th layer, respectively. In each layer of
GCN, a node aggregates its direct neighbours’ fea-
tures according to Â and linearly transforms the
representation using W and b. A nonlinear activa-
tion function σ (e.g., ReLu) is then applied. The
number of layers of GCN decides the number of
hops away that the neighbours’ features will be
smoothed over for each node.

Gr SOC Users
1 Managers, Directors, Senior Officials 461
2 Professional Occ. 1,611
3 Associate Profess., Technical Occ. 926
4 Administrative Secretarial Occ. 162
5 Skilled Trades Occ. 768
6 Caring, Leisure, Other Service Occ. 259
7 Sales and Customer Service Occ. 58
8 Process, Plant, Machine Operatives 188
9 Elementary Occ. 124

Table 1: The table shows the major groups (left col-
umn) and categorized jobs with different sub-major
groups (middle column) by SOC. The right-most col-
umn shows the number of main users in the data.

3 Experimental Setup

3.1 Data
We base our work on a publicly available Twitter
dataset that maps 5,191 users to 9 major occupa-
tional classes (Preoţiuc-Pietro et al., 2015). The
dataset contains user IDs (we call these users the
main users henceforth) and the bag-of-words from
tweets. The hierarchical structure of occupational
classes in the data was defined based on the Stan-
dard Occupation Classification (SOC) from the
UK1.

To explore the role of network information
in occupational class prediction, we extend the
above dataset by crawling follower/following IDs
(henceforth referred to as follow IDs) for each
main ID (IDs corresponding to main users). For
the crawled follow IDs, we further crawl their Bio
descriptions. We refer to the extended dataset as
ED. ED contains 4,557 main users with both fol-
lowers and followings information. The remaining
Twitter accounts could not be scrapped because of
various reasons such as account suspension and
protected tweets.

Table 1 shows the occupational class distri-
bution of the main users in the ED. In all our
work, we discard the Bio information of the main
users as these were used to annotate this dataset.
We tokenize the Bio text of the follow IDs us-
ing the Glove Twitter pre-processing guidelines2.
As for social network construction, we consider
each follower/following relationship as an undi-
rected edge. Based on the reasoning that the social
network information is passed between main IDs

1http://www.ons.gov.uk/
2https://nlp.stanford.edu/projects/

glove/preprocess-twitter.rb

http://www.ons.gov.uk/
https://nlp.stanford.edu/projects/glove/preprocess-twitter.rb
https://nlp.stanford.edu/projects/glove/preprocess-twitter.rb
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mainly through some common follow IDs, the fol-
low IDs that only connect to very few main IDs
will have minimum functionality in information
flow.

Thus, we decide to filter the graph by keep-
ing the follow IDs with more than 10 connec-
tions to the main IDs. All connections between
main IDs are retained. The filtering step results
in 29 main IDs losing all their connections. For
all such isolated main IDs, we retrieve all its fol-
low IDs having at least one other main ID con-
nection. After all these operations, we are able to
construct an un-weighted graph in which all the
main IDs are connected. The filtered graph con-
tains 34,630 unique users (including 4,557 main
IDs) and 586,303 edges. Although the main users
are not collected to be connected to each other –
only 2,550 main IDs have at least one direct con-
nection to another main ID, we find that they often
share common follow IDs which allows us to re-
trieve their social representations.

To compare with previous works, we also con-
struct a partial network dataset that contains only
following IDs of all the 4,557 main IDs. We re-
fer to this partial dataset as PD. PD adheres to the
same network construction methodology as ED.

We divide the dataset into training, develop-
ment, and test sets using stratified split with the
splitting ratio of 80%, 10%, and 10%. All the
experimental results are reported on the same
test set. The split information and the pro-
cessed dataset ED can be found together with code
on github: https://github.com/jqnap/
Twitter-Occupation-Prediction.

3.2 Features and Models

Node Embeddings: To encode user-user social
relationship of main IDs with the follow network,
we learn latent representations of all IDs (node
embedding) which can be easily exploited for the
prediction task. The embeddings are learned by
forming node sequences using Deep Walk (Per-
ozzi et al., 2014).

Based on the network processing strategy used
in Aletras and Chamberlain (2018), we construct
unweighted bipartite graphs using our filtered net-
work. The two sides of a bipartite graph are follow
IDs and main IDs respectively. Note that the main
ID-main ID connections will break the bipartite-
ness. To resolve this, we duplicate the main ID
nodes to the follow IDs’ side and then link con-

nections within main IDs. We construct for both
ED and PD, and obtain a full graph (fG) and a par-
tial graph (pG) respectively.

Next, we performed 10 random walks starting
from each main ID, alternating between main ID
and followers/followings with a walk length of
80. For each node, the walk sequence is used to
generate embeddings using a similar approach to
word2vec (Mikolov et al., 2013). We use the same
hyper-parameters as in Aletras and Chamberlain
(2018).

Text Features: To have a valid comparison with
existing approaches, we construct two sets of text
features: (1) bag-of-clusters (Preoţiuc-Pietro et al.,
2015): we assign each word that appears in each
main ID’s concatenated tweets document to its
corresponding word cluster, where the word clus-
ters are obtained by applying spectral clustering
(Ng et al., 2002; Shi and Malik, 2000) to word em-
beddings. Next, we calculate the cluster assigning
frequencies for each main ID. (2) bag-of-words
(BOW): since the initial dataset used the Bio infor-
mation of the main users to annotate their occupa-
tions, we remove all the Bio information of main
users. We kept only the most frequent 5,000 words
from the Bio (of other users) and another 5,000
words from tweets text as the dictionary of sepa-
rate BOW vectors to the model. We feed the ob-
tained text features and node embedding features
to both the Logistic Regression (LR) classifier and
the Support Vector Machine (SVM) classifier 3.
Both classifiers are trained following the one-vs-
all approach for the 9-way classification task. `2
regularization is used for LR, whose coefficient is
tuned based on the development set. We use the
RBF kernel for SVM, normalize the features be-
fore feeding them to SVM as inputs, and tune the
regularization coefficientC using the development
set.

GCN: In the case of GCN (as shown in Fig-
ure 2), we use its transductive semi-supervised set-
ting. The inputs are the adjacency matrix of all the
network IDs and a feature matrix of the Bio’s bag-
of-words. Specifically, we keep the input feature
vectors corresponding to the main IDs as null (all
zeros), since their Bios were discarded. We ex-
periment GCN with 2, 3 and 4 convolutional lay-
ers. The 3-layer GCN slightly outperformed the

3We use the scikit-learn implementations of LR and SVM
classifiers: https://scikit-learn.org/

https://github.com/jqnap/Twitter-Occupation-Prediction
https://github.com/jqnap/Twitter-Occupation-Prediction
https://scikit-learn.org/
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Figure 2: GCN architecture for occupational class pre-
diction. 2K is the best performing hidden size.

2-layer GCN and is on-par with the 4-layer GCN.
We also test another setting where we do not use
the Bio information: we keep the feature as a ma-
trix of one-hot encoded vectors corresponding to
all 34,630 IDs. For all the experiments, we set λ
to 1 in Equation 1.

4 Results and Discussion

4.1 Text Features and Node Embeddings

As shown in Table 2, we compare our results using
network information with existing methods: bag-
of-clusters (Preoţiuc-Pietro et al., 2015) and Deep-
walk on the followings graph concatenated with
bag-of-clusters (Aletras and Chamberlain, 2018).

We first conduct experiments on our collected
ED dataset with 4,557 main users using exist-
ing methods. The better accuracy among exist-
ing methods is given by the concatenated bag-of-
clusters and Deepwalk embeddings: 55.0%.

Next, we investigate the performance of bag-
of-words features from main ID tweets and fol-
low Bios using logistic regression (LR) and sup-
port vector machines (SVM). From the experi-
ments on tweets, we find that using the bag-of-
words features achieve comparable performance
to using the bag-of-clusters features. Thus we opt
for the bag-of-words representation in subsequent
experiments. The optimized model using Bio text
features outperforms using tweet content. It can
be inferred that the Bio descriptions of follow ac-
counts provide more useful information compared
to tweets. The reason could be the higher noise in
tweets, while people are comparatively more care-
ful while writing their Bios.

The next set of results uses follow network fea-
tures. Based on Aletras and Chamberlain (2018),
we perform deep walk with 32-dim learned node
representations, and used it as input to LR and

LR SVM

Word Clusters (200)∗ 49.8 52.6

Clusters+DeepWalk-pG (200 + 32)∗ 51.3 55.0

Main ID tweets BOW (5, 000) 53.7 54.6

F-Bio (5, 000) 56.6 56.3

DeepWalk-fG (32) 51.5 55.3

DeepWalk-fG + F-Bio (32 + 5, 000) 56.6 57.5

GCN

Bio BOW (34, 630× 5, 000) 59.9

Adjacency (34, 630× 34, 630) 61.0

Table 2: Performance in terms of accuracy percentage
comparison of logistic regression (LR), support vector
machines (SVM), and graph convolutional networks
(GCN). The first two rows (marked with ∗) are existing
approaches from Preoţiuc-Pietro et al. (2015) and Ale-
tras and Chamberlain (2018). The number in brackets
are the dimension of the feature space. pG and fG re-
fer to partial graph and full graph respectively. We use
F-Bio to denote “Follower Bio BOW”.

SVM. We achieve higher accuracy (55.3%) as
compared to tweets BOW (54.6%). However, the
model is less effective than using follow Bio BOW.
Combining both node representations and follow
Bio BOW features further boosts the accuracy to
57.5%.

4.2 GCN

To analyze the importance of Bios in conjunc-
tion with social network information, we exploit
graph convolutional networks. With an accuracy
of 59.9%, the model exceedingly outperforms ex-
isting approaches on tweets and partial network
information. Our best result 61.0% accuracy is
achieved by using GCN with one-hot encoding
for nodes, which is significantly higher than exist-
ing methods. This shows that GCN is able to ex-
ploit the rich topological information of network
to learn social representations for users. We pos-
tulate that the GCN with Bio did not do better
than just a one-hot encoding for nodes because the
main users do not have Bios: so all the labeled
nodes in the GCN have no Bios, which makes
learning difficult.

We visualize the GCN final layer representa-
tions of training set (big ovals) and test set (dark
colored dots) in Figure 3a. It can be observed
that many test data samples are mapped to the cor-
rect group of occupation, showing the capability of
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Figure 3: (a) A 2D t-SNE plot of final layer user represntations learned using GCN; (b) Confusion matrix of predic-
tion made by GCN (rows and columns represent actual and predicted group, respectively); (c) Model performance
vs fraction of training data used.

GCN utilizing Twitter network information for the
prediction task. To analyze wrongly mapped test
samples, we observed confusion matrix as shown
in Figure 3b. We see that group 4 is predicted as
belonging to group 1 or 2. When we compare
the jobs lying in groups 1, 2, and 4, we found
that they contain similar types of sub-occupations,
such as “financial account managers” and “finance
officers”, or “engineers” and “engineering techni-
cians”. The same phenomenon can be seen for
group 9 and group 5.

Figure 3c compares the performance of two
models, using tweet only features (LR–tweets)
and follow network features (GCN–Bio), based
on a fraction of training samples used for model
learning. Even with 10% of the labeled train-
ing data, GCN with Bio-BOW features achieves
comparable accuracy to existing models as well as
models trained on tweet BOW with all the training
set. This shows the significance of a user’s net-
work information.

We analyze the predictions on test samples
made by GCN with Bio feature input and GCN
with the one-hot encoded input. We find that 11%
of the test set’s main IDs are correctly classified
by only one of the two GCNs. This suggests that
Bio features provide complementary information
to the one-hot encoded input. In this work, the ac-
quired network is dense. In cases when network is
sparse, one-hot representation of an ID seems in-
feasible while BOW may generalize for the larger
graph.

While occupational class prediction could be
used to improve service quality, we note that the
use of network information might result in unin-
tended consequences such as racial and ethnicity

based segregation in online spaces. To alleviate
such concerns, it would be useful in future to in-
corporate explainable predictions with work such
as (Xie and Lu, 2019), to further mitigate such
risks involved.

5 Conclusion and Future Work

Previous works have used tweets or a fraction of
the network information to extract features for oc-
cupation classification. To analyze the importance
of network information, we extended an existing
Twitter dataset for a user’s social media connec-
tions (follow information). We showed that by us-
ing only follow information as an input to graph
convolutional networks, one can achieve a sig-
nificantly higher accuracy on the prediction task
as compared to the existing approaches utilizing
tweet-only information or partial network struc-
ture.

Directions of future research include adaptation
of our methods to a large scale, sparsely connected
social network. One might also want to inves-
tigate the inductive settings of GCN (Hamilton
et al., 2017) to predict demographic information
of a user from outside the black network.
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