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Abstract

Multi-passage reading comprehension re-

quires the ability to combine cross-passage in-

formation and reason over multiple passages

to infer the answer. In this paper, we introduce

the Dynamic Self-attention Network (Dyn-

SAN) for multi-passage reading comprehen-

sion task, which processes cross-passage in-

formation at token-level and meanwhile avoids

substantial computational costs. The core

module of the dynamic self-attention is a pro-

posed gated token selection mechanism, which

dynamically selects important tokens from a

sequence. These chosen tokens will attend to

each other via a self-attention mechanism to

model long-range dependencies. Besides, con-

volutional layers are combined with the dy-

namic self-attention to enhance the model’s

capacity of extracting local semantic. The

experimental results show that the proposed

DynSAN achieves new state-of-the-art perfor-

mance on the SearchQA, Quasar-T and Wiki-

Hop datasets. Further ablation study also val-

idates the effectiveness of our model compo-

nents.

1 Introduction

As a critical approach for evaluating the ability

of an intelligent agent to understand natural lan-

guage, reading comprehension (RC) is a chal-

lenging research direction, attracting many re-

searchers’ interest. In real application scenarios,

such as web search, the passages may be multiple

and extended, and may be comprised of relevant

and irrelevant contents. It involves the problem of

multi-passage reading comprehension.

In multi-passage setting, cross-passage infor-

mation interaction is vital for modeling long-range

dependencies, co-references between entities in

different passages (Dhingra et al., 2018), cross-

passage answer verification (Wang et al., 2018b),

and multihop reasoning (Welbl et al., 2018), etc.

Great efforts have been made to develop mod-

els for multi-passage task, such as Wang et al.

(2018b); Zhong et al. (2019); Dehghani et al.

(2019a); Dhingra et al. (2018); De Cao et al.

(2019); Song et al. (2018). The common prac-

tice of these approaches is that all the embed-

dings in a passage or a span are integrated into

a single vector and the cross-passage information

interactions are based on these coarse-grain se-

mantic representations. However, it may cause

potential issues. As is pointed out in Bahdanau

et al. (2015); Cho et al. (2014), compressing all

the necessary information into a single vector may

lead to “sacrifice” some critical information due to

the allocated capacity to remember other informa-

tion. This problem is prevalent in Neural Machine

Translation (NMT), the recent models, such as the

Transformer (Vaswani et al., 2017), workaround

this issue by decoding on token-level context en-

codings of the source text. As such, we hypothe-

size that fine-grain representations may keep pre-

cise semantic information, and may be beneficial

to cross-passage information interactions in RC

tasks. In this paper, we focus on an architecture

which deals with the cross-passage information at

token-level.

The proposed architecture is a variant of the

Self-attention Network (SAN) (Vaswani et al.,

2017; Shen et al., 2018a). Our model employs

a self-attention mechanism to combine token-

level supportive information from all passages

in a multi-step process. Directly applying self-

attention over all tokens is computationally ex-

pensive. Instead, in each step, the most impor-

tant tokens are dynamically selected from all pas-

sages, and information interaction only happens

over these chosen tokens via the self-attention

mechanism. The motivation behind it is an ob-

servation that the information used to answer the

question is usually concentrated on a few words.
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Our experiments verify this observation to a cer-

tain extent. We expect that our model can auto-

matically find out these important tokens. Thus we

propose a gated token selection mechanism and

equip it with the self-attention module.

We intend the model to achieve a balance in

speed, memory, and accuracy. While the self-

attention mechanism is widely used in end-to-end

models to capture long-range dependency, it is in-

trinsically inefficient in memory usage. Shen et al.

(2018b) elaborates the memory issue. The mem-

ory required to store the attention matrix grows

quadratically with the sequence length. Consid-

ering real scenarios, such as web search, in which

the retrieval system returns hundreds of articles,

and each contains hundreds or thousands of words,

thus applying self-attention on all tokens in the

supporting passages is computationally expensive.

Compared to recurrent neural networks, such as

LSTM (Hochreiter and Schmidhuber, 1997), SAN

is highly parallelizable and usually faster on long

sequence (Vaswani et al., 2017). The proposed

method accomplishes necessary cross-passage in-

formation interaction with a time/memory com-

plexity linear in the length of the sequence and do

not add much extra calculation burden.

Our contributions in this work are as follows:

(1) We propose Dynamic Self-attention (DynSA)

for information interaction in a long sequence.

(2) Token-level cross-passage information inter-

action is implemented through the application of

the proposed DynSA at relatively less computa-

tional costs. (3) Our Dynamic Self-attention Net-

work (DynSAN) achieves new state-of-the-art per-

formance compared with previously published re-

sults on SearchQA, Quasar-T and WikiHop bench-

marks.

2 Dynamic Self-attention Block

This section introduces the Dynamic Self-

Attention Block (DynSA Block), which is central

to the proposed architecture. The overall architec-

ture is depicted in Figure 1.

The core idea of this module is a gated token

selection mechanism and a self-attention. We ex-

pect that a gate can acquire the estimation of each

token’s importance in an input sequence, and use

this estimated importance to extract the most im-

portant K tokens. Then we run a self-attention,

instead of computing the full self-attention matrix

over all the tokens, only the chosen K tokens are
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Figure 1: Architecture of the Dynamic Self-Attention

Block.

taken into account. This module results in lower

memory consumption and makes the self-attention

focus on the active part of a long input sequence.

The above idea is implemented through stacking

two structures: a local encoder and a dynamic self-

attention module.

2.1 Local Encoder

In the architecture, a local encoder is used to en-

code local information, such as short-range con-

text, which is useful for disambiguation. The rea-

sons for the local encoder are that (1) only comput-

ing self-attention over a few tokens among a long

sequence may lead the self-attention to lose the ca-

pability of modeling short-range context for every

position in the sequence, and (2) after a position

receives the attended information from long-range

positions, the local encoder is needed to spread

this information to its neighboring positions, and

(3) previous works have proven that combining a

local encoder with self-attention is beneficial in

some tasks (Yu et al., 2018).

A natural candidate for the local encoder is lo-

cal convolution, which is widely used as local fea-

ture extractors. Besides, restricted self-attention

(Vaswani et al., 2017) is also a choice. In this

work, we adopt 1D convolution as the local en-

coder. Specifically, let X ∈ R
D×L be the in-
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put matrix of an L-token sequence, and each to-

ken embedding is D-dimensional. The output of

a convolutional layer is calculated with a residual

connection: Conv(LN(X)) + X , where LN is

the layer normalization (Ba et al., 2016), Conv
denotes a convolutional layer. For less computa-

tional costs, we adopt depth-wise separable convo-

lutions (Chollet, 2017) throughout this paper. The

local encoder consists of a stack of 2 convolutional

layers.

2.2 Dynamic Self-attention

Since our self-attention is performed over a set of

tokens which are determined dynamically, we call

it Dynamic Self-Attention (DynSA). The DynSA

is based on the hypothesis that the number of

important tokens is much less than the sequence

length in a long sequence. Here, to say a token is

important means that the token contains the neces-

sary information to enable the model to predict the

answer, or the token is non-negligible for model-

ing long-range semantic dependency. DynSA in-

tends to find out the most important tokens by a

token selection mechanism and then performs a

self-attention only over these chosen tokens.

In DynSA, we use a gate to control how much

of the output, which includes non-linear transfor-

mations and attended vectors, to pass this layer. A

large gate activation value implies that the corre-

sponding output is important in this layer. Thus,

we use the gate activation as the basis of token

selection. Given the output of the local encoder

U ∈ R
D×L, the gate activation is computed via:

G = F
G(FU (U)) (1)

where F
U denotes a non-linear fully connected

layer, FG denotes an affine transformation with

sigmoid activation function. In our work, we al-

low to use multi-head attention (Vaswani et al.,

2017). Equation 1 outputs G ∈ R
H×L, which

contains H heads. And we use gh ∈ R
L (the h-th

row in G) to represent the gate output of the h-th

head. The element gh,i in gh is the gate activation

corresponding to the token at the i-th position.

Then, in each head we select the top K to-

kens according to their corresponding gate acti-

vations in gh, in which K is a hyper-parameter.

In case of the actual sequence length being

less than K, we select all the tokens. We

get the chosen tokens’ embeddings Uh =
[uih,1 , · · · ,uih,j , · · · ,uih,K ] ∈ R

D×K , where

ih,j ∈ {1, 2, · · · , L} is the position index of the

chosen token in the input sequence. We consider

this as a gated token selection mechanism.

Scaled dot-product attention is adopted over the

chosen tokens:

Ah = softmax(
QhK

T
h

√

D/H
) · Vh (2)

where Qh ∈ R
D
H
×K , Kh ∈ R

D
H
×K , and Vh ∈

R
D
H
×K are query, key, and value respectively, they

are linear projections of the input Uh. Ah ∈

R
D
H
×K is the attended output matrix of the h-th

head.

Next, we pad those unchosen positions with

zero embeddings to complete the sequence length.

Having A∗
h = Pad(Ah) ∈ R

D
H
×L. The output

of the h-th head Zh ∈ R
D
H
×L is calculated as fol-

lows,

Zh = (Fh +A∗
h) ·

gh

max(gh)
(3)

Fh = F
H
h (FU (U)) (4)

where F
H
h is an affine layer. Equation 4 pro-

duces a non-linear transformation Fh ∈ R
D
H
×L

of the input embeddings. Since zero embeddings

are padded at unchosen positions, by adding Fh

gradient vanishing can be avoided when updating

the parameters of the gate in training phase. In

Equation 3, the maximum operation aims to select

the maximum element in vector gh, and the divi-

sion operation normalizes these elements so that

the maximum activation is always one.

Finally, the output Y ∈ R
D×L of a DynSA

block is the fusion of all heads.

Y = F
Y ([Z1; · · · ;ZH ]) +U (5)

in which, FY denotes a linear projection, [·; ·] is

the concatenation of the outputs of all heads.

Optionally, we suggest adding a regularization

on the gate activation to make it more sparse, so

that those unimportant tokens’ activation values

are almost zero and let the model generate more

discriminative gate activation. Experiments show

that the regularization can produce small gains in

performance. Specifically, we jointly optimize the

following regularization term when training the

model.

L∗ = β · ||G||1 (6)

where G represents the gate activation, || · ||1 de-

notes 1-norm. β is a small hyper-parameter, which

is set to 10−5 in our experiments.
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Figure 2: Architecture of Dynamic Self-Attention Network (DynSAN) for multi-passage reading comprehension.

3 Token-level Dynamic Self-attention

Network

This section introduces the application of our

proposed Dynamic Self-attention Network (Dyn-

SAN) on the multi-passage RC task. Given a ques-

tion and M passages, it requires the model to pre-

dict a span from the passages to answer the ques-

tion. Figure 2 illustrates the architecture of Dyn-

SAN.

3.1 Input Encoding

At the bottom of DynSAN, the input texts are first

converted into distributional representations. We

use the concatenation of word embeddings and

character encodings for every single token. For

word embedding, we adopt the pre-trained 300-

dimensional fasttext Mikolov et al. (2018) word

embeddings and fix them during training. Char-

acter encodings are obtained by performing con-

volution and max-pooling on 15-dimensional ran-

domly initialized character embeddings following

(Kim, 2014). Character embeddings are trainable

while word embeddings are fixed in the training

phase. On top of the embeddings, we adopt a 2-

layer highway network (Srivastava et al., 2015) for

deep transformation. The output of the highway

network is immediately mapped to D dimensions

through a linear projection, and we add sinusoidal

positional embeddings (Vaswani et al., 2017) to

the vectors for each token to expose position in-

formation to the model. Then, the vectors are

fed into a layer of DynSA blocks. These DynSA

Blocks are in charge of independently encoding

context information inside the question and every

passage, in which the parameters of DynSA blocks

are shared in the layer. We use DynSA rather than

the full multi-head self-attention to avoid mas-

sive memory consumption caused by exception-

ally long passages.

3.2 Alignment

Alignment is a common and necessary step to gen-

erate question-aware context vectors for each pas-

sage, here, we adopt the strategy used in Yu et al.

(2018), in which it includes a trilinear co-attention

(Weissenborn et al., 2017) and a heuristic com-

bination with query-to-context (Seo et al., 2017).

Due to the limited space, we encourage reading the

references for detailed descriptions and omit the

repeated introduction. Then, the question-aware

context vectors are projected into the standard di-

mension D through a linear layer and are encoded

by a layer of DynSA blocks again to build seman-

tic representations inside each passage further.

3.3 Cross-Passage Attention

Thus far, each passage aligns with the question

independently, and DynSA blocks generate con-

textual embeddings inside each passage indepen-

dently, so there is no interaction between pas-

sages. For multi-passage reading comprehension,

cross-passage information interaction is beneficial

to solve the problems, such as multihop reasoning,

and multi-passage verification. Previous works

either omit the cross-passage interaction (Clark

and Gardner, 2018) or implement it at a relatively
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coarse granularity (Dehghani et al., 2019a). For

example, in Dehghani et al. (2019a), each passage

is encoded into a singular vector and self-attention

is performed over these passage vectors. Instead

of passage-level or block-level interaction (Shen

et al., 2018b), in this work, we focus on modeling

cross-passage long-range dependencies at token-

level through a cross-passage attention layer. We

expect that fine-grain self-attention may keep pre-

cise semantic information.

This layer consists of N stacked DynSA blocks.

Specifically, as is shown in Figure 2, we concate-

nate the vector sequences of all passages end to

end, and then stack N layers of DynSA blocks

on top of this long vector sequence. If these pas-

sages are given in order, for instance, the passages

have been ranked by a search engine, we add a

rank embedding to each passage before the con-

catenation. The rank embeddings are randomly

initialized, and the i-th rank embedding is added

to every token vector in the i-th ranked passage.

3.4 Prediction Layer

The prediction layer is used to extract the answer

span based on the output of previous layers. De-

pend on the type of tasks, different architectures

are chosen. In this work, we investigate extractive

QA and multiple choice QA.

3.4.1 Extractive QA

Extractive QA is challenging since we have to

extract the answer span from the passages with-

out any given candidate answer. In this paper,

we adopt the Hierarchical Answer Spans (HAS)

model (Pang et al., 2019) to solve this problem.

Details are included in Pang et al. (2019), and

we do not repeat it here due to limited space. In

our implementation, the differences to Pang et al.

(2019) are that the start/end probability distribu-

tion is calculated over all tokens as in Equation 7,

RNN is replaced with DynSA block, and the para-

graph quality estimator mentioned in Pang et al.

(2019) is not used.

3.4.2 Multiple Choice QA

In this type of task, a list of candidate answers is

provided. Here, we assume S ∈ R
D×L as the out-

put of the cross-passage attention layer, L repre-

sents the total length of the M passages, q denotes

the question, and P = {p1, · · · , pM} denotes the

set of passages. We first convert the token vectors

into a probability distribution r ∈ R
L over all to-

kens,

r = softmax(FS(S)) (7)

where F
S is a linear projection.

The probability of choosing a candidate c as the

answer is computed via:

P (c|q, P ) =
∑

i∈Tc

ri (8)

where Tc is a set of positions where the candidate

c’s mentions appear. During training, we optimize

the log-likelihood of choosing the correct answer’s

probability.

4 Experiments

4.1 Datasets

We conduct experiments to study the performance

of the proposed approach on three publicly avail-

able multi-passage RC datasets.

SearchQA (Dunn et al., 2017) is an open do-

main QA dataset including about 140k questions

crawled from J! Archive, and about 50 web page

snippets, which are retrieved from the Google

search engine, as the supporting passages for each

question. The authors of SearchQA have provided

a processed version of this dataset, in which all

words are lower-cased, and tokenization has been

completed. Our experiments are based on this pro-

cessed version.

Quasar-T (Dhingra et al., 2017) is an open do-

main QA dataset including about 43k trivia ques-

tions collected from various internet sources, and

100 supporting passages for each question. These

supporting passages are given in an order ranked

by a search engine.

WikiHop (Welbl et al., 2018) is a multiple

choice QA dataset constructed using a structured

knowledge base. One has to submit the model and

work with the author to obtain the test score. For

this dataset, a binary feature is concatenated with

word embeddings and character embeddings to in-

dicate whether a token is belong to any candidate

answers.

The above three datasets have their official

train/dev/test sets, so we do not split them by

ourselves. Some of the above datasets provide

additional meta-data, we do not use this addi-

tional information in our experiments. We ob-

serve that those low-ranked passages play a crit-

ical role in improving the accuracy, thus we re-

main all supporting passages as the inputs of our
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Model
SearchQA Quasar-T

EM F1 EM F1

DrQA 41.9 48.7 37.7 44.5

R3 49.0 55.3 35.3 41.7

TraCRNet 52.9 65.1 43.2 54.0

Shared-Norm 59.8 67.1 38.6 45.4

HAS-QA 62.7 68.7 43.2 48.9

DynSAN 64.2 70.3 48.0 54.8

Human 43.9 – 51.5 60.6

Table 1: Performance of DynSAN and competing ap-

proaches on the test sets of two extractive QA tasks:

SearchQA and Quasar-T. Competing approaches in-

clude DrQA (Chen et al., 2017), R3 (Wang et al.,

2018a), TraCRNet (Dehghani et al., 2019a), Shared-

Norm (Clark and Gardner, 2018), HAS-QA (Pang

et al., 2019). Human performance is referenced from

the dataset paper.

model. The averages/medians of the total length

of the concatenation of all supporting passages for

each question are around 1.9k/2k, 2.4k/2.4k, and

1.2k/1k in SearchQA, Quasar-T, and WikiHop re-

spectively. Thus, we limit the maximum length not

to exceed 5k tokens and discard a few exception-

ally long cases. Tokenization is completed using

spaCy 1 during preprocessing.

4.2 Experimental Setup

In the DynSAN, the kernel size is 7 for all convo-

lutional layers, the standard dimension D is 128,

the number of heads H is 8, the number of chosen

tokens K is 256. In the cross-passage attention

layer, we stack N = 4 layers of DynSA blocks.

The mini-batch size is set to 32. For regulariza-

tion, we adopt dropout between every two layers

and the dropout rate is 0.1. Adam (Kingma and

Ba, 2015) with learning rate 0.001 is used for tun-

ing the model parameters. We use a learning rate

warm-up scheme in which the learning rate in-

creases linearly from 0 to 0.001 in the first 500
steps. The models for multi-passage reading com-

prehension are trained on four 12GB K80 GPUs

using synchronous SGD (Das et al., 2016). Ex-

ponential moving average is adopted with a decay

rate 0.9999.

4.3 Main Results

The performance of our model and competing ap-

proaches are summarized in Table 1 and Table 2.

For extractive QA, standard metrics are utilized:

1https://spacy.io

Model Dev Test

BiDAF (Seo et al., 2017) – 42.9

Coref GRU (Dhingra et al., 2018) 56.0 59.3

MHQA-GRN (Song et al., 2018) 62.8 65.4

Entity-GCN (De Cao et al., 2019) 64.8 67.6

CFC (Zhong et al., 2019) 66.4 70.6

DynSAN 70.1 71.4

Human (Welbl et al., 2018) – 74.1

Table 2: Performance of DynSAN and competing ap-

proaches on multiple choice QA dataset: WikiHop.

Exact Match (EM) and F1 score (Rajpurkar et al.,

2016). The scores are evaluated by the official

script in Rajpurkar et al. (2016). For multiple

choice QA, the performance is evaluated by the

accuracy of choosing the correct answer. As we

can see, the proposed model clearly outperforms

all previously published approaches and achieves

new state-of-the-art performances on the three

datasets, which validates the effectiveness of the

dynamic self-attention network for multi-passage

RC. It is noteworthy that competing approaches

use coarse-grain representations for cross-passage

information interaction or omit cross-passage in-

formation interaction entirely.

Ablation EM F1

Full architecture 64.2 70.3

(a) − Cross-passage attention 55.1 60.9

(b) − Self-attention 59.5 65.6

(c) − Convolutional layers 61.0 67.4

(d) − Gated token selection 60.5 66.6

(e) − Gate 59.9 66.0

(f) − Regularization (β = 0) 63.7 69.8

(g) Replace with Bi-BloSA 60.5 67.1

(h) + Convolutional layers 61.3 67.6

Table 3: Ablation study on SearchQA test set. “−”/“+”

denotes removing/adding a model component, the in-

dent in (e) and (h) means removing/adding a model

component on the basis of the previous line.

4.4 Ablations

In order to evaluate the individual contribution of

each model component, we conduct an ablation

study. Explicitly, we remove or replace model

components and report the performance on the

SearchQA test set in Table 3. In (a), we remove

the cross-passage attention. In (b), we remove all

self-attention, i.e., the context information is mod-

eled by the convolutional layers only. In (c), we

https://spacy.io
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Question: Which vegetable is a Welsh emblem? 

Answer: leek    Prediction: leek 

Question: What gemstone was reputed to heal eye ailments? 

Answer: emerald    Prediction: pearl 

… A pungent vegetable is the national emblem of Wales ... 

… The leek (a vegetable) is a national emblem ... 

… The vegetable called leek is also considered to … 

... the reason why the daffodil is used as an emblem is ... 

... Lochcarron of Scotland has a new Welsh Emblem ... 

... air force emblem ferrari prancing ... 

... pearl was used therapeutically to heal eye ailments ... 

... The gemstone gets its name from its resemblance to the 

eye of a tiger ... 

... Copper is used by medical science for many ailments ... 

... Iris Agate: Use to heal burns ... 

... 9th December 2008 Crystal Healing ... 

  

Figure 3: Case study on the Quasar-T dev set to show which tokens are selected as important tokens by the gated

token selection mechanism in DynSA block. Important tokens are shaded.

remove all convolutional layers in DynSA blocks.

In (d), we remove the gated token selection mech-

anism in DynSA blocks; in other words, which

K tokens are selected is decided randomly rather

than by the gate activation. Further, we remove

the gate itself from (d) in (e). In (f), we re-

move regularization on gate activation by setting

β = 0. In (g), we replace the DynSA block with

Bi-BloSA (Shen et al., 2018b), which is proposed

for long-sequence modeling but a block-level self-

attention. The Bi-BloSA is implemented using the

author’s open source code. On the basis of (g),

we combine Bi-BloSA with convolutional layers

in (h).

As is shown in Table 3, cross-passage attention

is most critical to the performance (almost 10%
drop), the results prove the necessity of formation

interaction between passages. Since we set K =
256, and most singular passages are within 256 to-

kens, the DynSA models local context for every

position before the concatenation of all passages.

Therefore, removing convolutional layers does not

degrade the model entirely in (c). Self-attention

and convolutional layers account for 4.7% and

2.9% performance drop respectively, and it illus-

trates that self-attention plays a more critical role

than convolutional layers in modeling context in-

formation. In (d), the performance reduces sig-

nificantly, proving the effectiveness of the gated

token selection mechanism in the proposed archi-

tecture. Compare (e) to (d) and compare (f) to the

full architecture, it is concluded that the gate it-

self and the regularization also have slight benefits

to the model. From (g) and (h), we learn that the

token-level DynSA block outperforms the block-

level Bi-BloSA by a large margin, verifying the

superiority of fine-grain representation.

4.5 Qualitative Analysis

We conduct a case study to show which tokens are

selected as important tokens by the gated token se-
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Figure 4: Quantitative analysis on the Quasar-T dev

set. Layers are indexed from the bottom up, the DynSA

blocks in the cross-passage attention layer are indexed

from layer 1 to layer 4, the two DynSA blocks below

the cross-passage attention layer are indexed as layer

-1 and layer 0 respectively. (a) The distribution of the

number of tokens of different activities in each layer.

Tokens are classified into three categories according to

its activity value g. (b) The average amount of active

tokens (g > 0.01) in each layer.

lection mechanism. In a DynSA block, we define

the maximum gate activation in all heads as a to-

ken’s activity. The activity reflects the estimated

importance of a token. In this subsection, all the

tokens are ranked according to the sum of a to-

ken’s activities in all DynSA blocks in the cross-

passage attention layer. In Figure 3, two question-

answering instances are given, and the top-ranked

tokens are shaded. As we can see, the model in-

clines to mark cue words and plausible answers as

the important tokens in DynSA blocks. We con-

jecture that information interactions between plau-

sible answers may play an answer verification role,
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SQuAD 1.1 Speedup Memory |θ| EM/F1

Bi-LSTM 1.0x/1.0x 4305 1.3M 70.5/79.8

Full SAN 3.5x/2.5x 8748 1.9M 70.6/80.1

Bi-BloSAN 3.4x/2.3x 6414 1.9M 66.7/76.8

DynSAN 4.3x/3.3x 4341 1.9M 69.9/79.5

Table 4: The time cost and memory consumption

on SQuAD. The time cost is shown through the

speedup rate with respect to Bi-LSTM. Both the train-

ing speedup rate and inference speedup rate are re-

ported. The memory usage is measured in Megabyte.

|θ| denotes the amount of trainable parameters in a

model. Accuracy is measured by EM and F1.

while information interactions between cue words

may be considered as multihop reasoning. We also

observe that in a lot of mispredicted instances the

correct answer never obtains large gate activations

in cross-passage attention layers. Perhaps this is a

reason for misprediction.

4.6 Quantitative Analysis

Figure 4(a) illustrates the distribution of the num-

ber of tokens of different activities in each layer.

Token’s activity is defined as in subsection 4.5. We

also count the average number of active tokens on

the Quasar-T dev set. We define a token is active

when its activity is greater than 0.01. Figure 4(b)

reports the statistics. In general, the activity values

tend to be polarized, i.e., either near zero or near

one. It is probably caused by the normalization

in Equation 3 and the regularization term in Equa-

tion 6. Besides, the intra-passage DynSA blocks

(layer -1 and layer 0) have more active tokens,

while the cross-passage blocks have less. It ex-

plains that more tokens take effect in understand-

ing a single passage, while only a few important

tokens are necessary for cross-passage informa-

tion interaction. The results verify our observation

mentioned in section 1.

4.7 Time Cost & Memory Consumption

We also conduct experiments to show the com-

putational costs of the proposed model and

other baseline models. Specifically, we replace

the DynSA blocks in Figure 2 with Bi-LSTM

(Hochreiter and Schmidhuber, 1997), full SAN,

and Bi-BloSAN (Shen et al., 2018b) respectively.

Note that the full SAN refers to the model encoder

block in QANet (Yu et al., 2018), which is a com-

bination of global multi-head self-attention and lo-

cal convolution. It is a strong baseline, and we use
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Figure 5: (a) Effects of choosing different values of the

hyper-parameter K in token selection. K is the number

of chosen tokens, and is set to a power of 2. (b) Perfor-

mance against the number of supporting passages.

it to show the situation of full self-attention over

all tokens.

To avoid the long running time of Bi-LSTM and

the out-of-memory issue of full SAN on multi-

passage RC tasks, we select SQuAD 1.1 (Ra-

jpurkar et al., 2016) as the benchmark dataset.

Since SQuAD is a single-passage RC task, we

consider it as special multi-passage RC when the

number of passages M equals to 1. In this experi-

ment, top K = 32 tokens are chosen in DynSAN.

Models are trained on a single 12GB K80 GPU.

The results are shown in Table 4. Compared

with the full SAN and Bi-LSTM, DynSAN has a

slight accuracy drop while Bi-BloSAN degrades

significantly. In terms of time cost and memory

usage, DynSAN reaches 4.3x and 3.3x speedup

and has a similar memory consumption to Bi-

LSTM. Because of the characteristics of Bi-LSTM

and the full SAN, as the sequence length increases,

the advantage of DynSAN in speed and memory

consumption would be more significant. Although

DynSAN has a small accuracy drop to the full

SAN, it seems that DynSAN is a relatively bal-

anced model concerning speed, memory, and ac-

curacy.

4.8 Model Analysis

Effect of Token Selection Figure 5(a) shows the
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effects of the token selection. As the number of

chosen tokens increases, performance improves as

expected. When the number of chosen tokens is

large enough, the gain becomes marginal. The

choice of this hyper-parameter has an impact on

the balance in speed, memory, and accuracy.

Number of Passages Figure 5(b) answers fol-

lowing research question “How would the perfor-

mance change with respect to the number of pas-

sages?” As more supporting passages are taken

into consideration, both F1 and EM performance

of our model continuously increase. The results

verify that those low-ranked passages play a criti-

cal role in answering the questions.

5 Related Works

As far as multi-passage reading comprehension

be concerned, a lot of powerful deep learning ap-

proaches have been introduced to solve this prob-

lem. De Cao et al. (2019); Song et al. (2018) in-

troduce graph convolutional network (GCN) and

graph recurrent network (GRN) into this task.

Dhingra et al. (2018) use co-reference annotations

extracted from an external system to connect en-

tity mentions for multihop reasoning. Zhong et al.

(2019) propose an ensemble approach for coarse-

grain and fine-grain co-attention networks. Pang

et al. (2019) propose a hierarchical answer spans

model to tackle the problem of multiple answer

spans. Clark and Gardner (2018) uses a shared-

normalization objective to produce accurate per-

passage confidence scores and marginalize the

probability of an answer candidate over all pas-

sages. While it outperforms most single-passage

RC models by a large margin, it processes each

passage independently omitting the multi-passage

information interaction completely. In Wang et al.

(2018b), cross-passage answer verification is def-

initely proposed, in which all the word embed-

dings in a passage are summed through attention

mechanism to represent an answer candidate, and

then each answer candidate attends to other can-

didates to collect supportive information. In De-

hghani et al. (2019a), multihop reasoning is im-

plemented by a Universal Transformer (Dehghani

et al., 2019b) which is mainly based on Multi-head

Self-attention (Vaswani et al., 2017) and a transi-

tion function.

Our work is concerned with Self-attention Net-

work (SAN) (Vaswani et al., 2017; Shen et al.,

2018a). For the first time, Vaswani et al. (2017)

explore the possibilities of completely replacing

the recurrent neural network with self-attention to

model context dependencies. Some papers pro-

pose variants of self-attention mechanisms, such

as Shen et al. (2018c); Hu et al. (2018); Shaw et al.

(2018); Yang et al. (2019). Besides, Shen et al.

(2018b) explore reducing the computational com-

plexity of self-attention.

6 Conclusion

In this paper, we proposed a new Dynamic Self-

attention (DynSA) architecture, which dynami-

cally determinates what tokens are important for

constructing intra-passage or cross-passage token-

level semantic representations. The proposed ap-

proach has the advantages in remaining fine-grain

semantic information meanwhile reaching a bal-

ance between time, memory and accuracy. We

showed the effectiveness of the proposed method

in handling multi-passage reading comprehen-

sion using three benchmark datasets including

SearchQA, Quasar-T, and WikiHop. Experimen-

tal results showed state-of-the-art performance.
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