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Abstract

This paper focuses on the end-to-end abstrac-
tive summarization of a single product review
without supervision. We assume that a review
can be described as a discourse tree, in which
the summary is the root, and the child sen-
tences explain their parent in detail. By re-
cursively estimating a parent from its children,
our model learns the latent discourse tree with-
out an external parser and generates a concise
summary. We also introduce an architecture
that ranks the importance of each sentence on
the tree to support summary generation focus-
ing on the main review point. The experimen-
tal results demonstrate that our model is com-
petitive with or outperforms other unsuper-
vised approaches. In particular, for relatively
long reviews, it achieves a competitive or bet-
ter performance than supervised models. The
induced tree shows that the child sentences
provide additional information about their par-
ent, and the generated summary abstracts the
entire review.

1 Introduction

The need for automatic document summarization
is widely increasing because of the vast amounts
of online textual data that continue to grow. As
for product reviews on E-commerce websites,
succinct summaries allow both customers and
manufacturers to obtain large numbers of opin-
ions (Liu and Zhang, 2012). Under these cir-
cumstances, supervised neural network models
have achieved wide success, using a large number
of reference summaries (Wang and Ling, 2016;
Ma et al., 2018). However, a model trained on
these summaries cannot be adopted in other do-
mains, as salient phrases are not common across
domains. It requires a significant cost to pre-
pare large volumes of references for each domain
(Isonuma et al., 2017).

An unsupervised approach is a possible solu-
tion to such a problem. Previously, unsupervised
learning has been widely applied to extractive ap-
proaches (Radev et al., 2004; Mihalcea and Tarau,
2004). As mentioned in (Carenini et al., 2013;
Gerani et al., 2014), extractive approaches often
fail to provide an overview of the reviews, while
abstractive ones successfully condense an entire
review via paraphrasing and generalization. Our
work focuses on the one-sentence abstractive sum-
marization of a single-review without supervision.

The difficulties of unsupervised abstractive
summarization are two-fold: obtaining the repre-
sentation of the summaries, and learning a lan-
guage model to decode them. As an unsuper-
vised approach for multiple reviews, Chu and Liu
(2018) regarded the mean of the document embed-
dings as the summary, while learning a language
model via the reconstruction of each review. By
contrast, such an approach cannot be extended to
a single-review directly, because it also condenses
including trivial or redundant sentences (its perfor-
mance is demonstrated in Section 4.4).

To overcome these problems, we apply the dis-
course tree framework. Extractive summariza-
tion and document classification techniques some-
times use a discourse parser to gain a concise
representation of documents (Hirao et al., 2013;
Bhatia et al., 2015; Ji and Smith, 2017); however,
Ji and Smith (2017) pointed out the limitations of
using external discourse parsers. In this context,
Liu and Lapata (2018) proposed a framework to
induce a latent discourse tree without a parser.
While their model constructed the tree via a su-
pervised document classification task, our model
induces it by identifying and reconstructing a par-
ent sentence from its children. Consequently, we
gain the representation of a summary as the root of
the induced latent discourse tree, while learning a
language model through reconstruction.
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Good quality floor puzzle

(1) This floor puzzle is a nice size 
not huge but larger 
than normal kid puzzles

(2) The pieces are thick and 
lock together well even on carpet

(5) My son put it together on berber
carpet without having any issues 
with pieces not staying together

(3) The pieces are cardboard but 
are very dense almost like wood
but not quite that solid

Summary:

Body:

(4) I bought this puzzle for my son 
for his first birthday at the store

…… … …

……

Figure 1: Example of the discourse tree of a jigsaw puzzle review. StrSum induces the latent tree and generates
the summary from the children of a root, while DiscourseRank supports it to focus on the main review point.

Figure 1 shows an example of a jigsaw puz-
zle review and its dependency-based discourse
tree. The summary describes its quality. The
child sentences provide an explanation in terms
of the size (1st) and thickness (2nd), or provide
the background (4th). Thus, we assume that re-
views can generally be described as a multi-root
non-projective discourse tree, in which the sum-
mary is the root, and the sentences construct each
node. The child sentences present additional in-
formation about the parent sentence.

To construct the tree and generate the summary,
we propose a novel architecture; StrSum. It recon-
structs a parent from its children recursively and
induces a latent discourse tree without a parser. As
a result, our model generates a summary from the
surrounding sentences of the root while learning a
language model through reconstruction in an end-
to-end manner. We also introduce DiscourseRank,
which ranks the importance of each sentence in
terms of the number of descendants. It supports
StrSum to generate a summary that focuses on the
main review point.

The contributions of this work are three-fold:
• We propose a novel unsupervised end-to-end

model to generate an abstractive summary of
a single product review while inducing a la-
tent discourse tree

• The experimental results demonstrate that
our model is competitive with or outperforms
other unsupervised models. In particular, for
long reviews, it achieves a competitive or bet-
ter performance than the supervised models.

• The induced tree shows that the child sen-
tences present additional information about
their parent, and the generated summary ab-
stracts for the entire review.

2 Proposed Model

In this section, we present our unsupervised end-
to-end summarization model with descriptions of
StrSum and DiscourseRank.

2.1 StrSum: Structured Summarization
Model Training: The outline of StrSum is pre-
sented in Figure 2. yi and si ∈ Rd indicate the
i-th sentence and its embedding in a document
D = {y1, . . . , yn}, respectively. wt

i is the t-th
word in a sentence yi = {w1

i , . . . , w
l
i}. si is com-

puted via a max-pooling operation across hidden
states ht

i ∈ Rd of the Bi-directional Gated Recur-
rent Units (Bi-GRU):

−→
h t

i =
−−−→
GRU(

−→
h t−1

i , wt
i) (1)

←−
h t

i =
←−−−
GRU(

←−
h t+1

i , wt
i) (2)

ht
i = [
−→
h t

i,
←−
h t

i] (3)

∀m ∈ {1, . . . , d}, si,m = max
t

ht
i,m (4)

Here, we assume that a document D and its
summary compose a discourse tree, in which the
root is the summary, and all sentences are the
nodes. We denote aij as the marginal probabil-
ity of dependency where the i-th sentence is the
parent node of the j-th sentence. In particular,
a0j denotes the probability that a root node is the
parent (see Figure 2). We define the probability
distribution aij (i ∈ {0, . . . , n}, j ∈ {1, . . . , n})
as the posterior marginal distributions of a non-
projective dependency tree. The calculation of the
marginal probability is explained later.

Similar to (Liu and Lapata, 2018), to prevent
overload of the sentence embeddings, we decom-
pose them into two parts:

[sei , s
f
i ] = si (5)
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Figure 2: Outline of StrSum.

where the semantic vector sei ∈ Rde encodes
the semantic information, and the structure vector
sfi ∈ Rdf is used to calculate the marginal proba-
bility of dependencies.

The embedding of the parent sentence ŝi and
that of the summary ŝ0 are defined with parame-
ters Ws ∈ Rde∗de and bs ∈ Rde as:

ŝi = tanh
{
Ws(

n∑
j=1

aijs
e
j) + bs

}
(6)

Using ŝi, the GRU-decoder learns to recon-
struct the i-th sentence, i.e., to obtain the parame-
ters θ that maximize the following log likelihood:

n∑
i=1

l∑
t=1

logP (wt
i |w<t

i , ŝi,θ) (7)

Summary Generation: An explanation of how
the training contributes to the learning of a lan-
guage model and the gaining of the summary em-
bedding is provided here. As for the former, the
decoder learns a language model to generate gram-
matical sentences by reconstructing the document
sentences. Therefore, the model can appropriately
decode the summary embedding to ŷ0.

As for the latter, if the j-th sentence contributes
to generating the i-th one, aij get to be higher.
This mechanism models our assumption that child
sentences can generate their parent sentence, but
not vice versa, because the children present addi-
tional information about their parent. Hence, the
most concise k-th sentences (e.g., the 1st, 2nd, and
4th in Figure 1), provide less of a contribution to
the reconstruction of any other sentences. Thus,
aik get to be lower for ∀i : i ̸= 0. Because aik sat-
isfies the constraint

∑n
i=0 aik=1, a0k is expected

to be larger, and thus the k-th sentence contributes
to the construction of the summary embedding ŝ0.

Marginal Probability of Dependency: The
calculation of the marginal probability of depen-
dency, aij , is explained here. We first define
the weighted adjacency matrix F = (fij) ∈
R(n+1)∗(n+1), where the indices of the first col-
umn and row are 0, denoting the root node. fij
denotes the un-normalized weight of an edge be-
tween a parent sentence i and its child j. We
define it as a pair-wise attention score following
(Liu and Lapata, 2018). By assuming a multi-root
discourse tree, fij is defined as:

fij =


exp(w⊤

r s
f
j ) (i = 0 ∧ j ≥ 1)

exp(p⊤
i Wfcj) (i ≥ 1 ∧ j ≥ 1 ∧ i ̸= j)

0 (j = 0 ∨ i = j)

(8)

pi = tanh(Wps
f
i + bp) (9)

cj = tanh(Wcs
f
j + bc) (10)

where Wf ∈ Rdf∗df and wr ∈ Rdf are param-
eters for the transformation. Wp ∈ Rdf∗df and
bp ∈ Rdf are the weight and bias respectively,
for constructing the representation of the parent
nodes. Wc ∈ Rdf∗df and bc ∈ Rdf correspond to
those of the child nodes.

We normalize fij into aij based on (Koo et al.,
2007). aij corresponds to the proportion of the
total weight of the spanning trees containing an
edge (i, j):

aij(F ) =

∑
t∈T :(i,j)∈t v(t|F )∑

t∈T v(t|F )
(11)

=
∂ logZ(F )

∂fij
(12)

v(t|F ) =
∏

(i,j)∈t

fij (13)

Z(F ) =
∑
t∈T

v(t|F ) (14)
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where T denotes the set of all spanning trees in a
document D. v(t|F ) is the weight of a tree t ∈ T ,
and Z(F ) denotes the sum of the weights of all
trees in T . From the Matrix-Tree Theorem (Tutte,
1984), Z(F ) can be rephrased as:

Z(F ) = |L0(F )| (15)

where L(F ) ∈ R(n+1)∗(n+1) and L0(F ) ∈ Rn∗n

are the Laplacian matrix of F and its principal
submatrix formed by deleting row 0 and column
0, respectively. By solving Eq. 12, aij is given by:

a0j = f0j
[
L−1
0 (F )

]
jj

(16)

aij = fij
[
L−1
0 (F )

]
jj
− fij

[
L−1
0 (F )

]
ji

(17)

2.2 DiscourseRank
StrSum generates the summary under the large in-
fluence of the child sentences of the root. There-
fore, sentences that are not related to the rating
(e.g., the 4th in Figure 1) also affect the sum-
mary and can be considered noise. Here, we as-
sume that meaningful sentences (e.g., the 1st and
2nd in Figure 1) typically have more descendants,
because many sentences provide the explanation
of them. Hence, we introduce the DiscourseR-
ank to rank the importance of the sentences in
terms of the number of descendants. Inspired by
PageRank (Page et al., 1999), the DiscourseRank
of the root and n sentences at the t-th iteration
rt = [r0, . . . , rn] ∈ R(n+1) is defined as:

rt+1 = λÂrt + (1− λ)v (18)

âij =


0 (i = 0 ∧ j = 0)
1
n (i ≥ 1 ∧ j = 0)

aij (j ≥ 1)

(19)

where Â = (âij) ∈ R(n+1)∗(n+1) denotes the
stochastic matrix for each dependency, λ is a
damping factor, and v ∈ R(n+1) is a vector with
all elements equal to 1/(n + 1). Eq.18 implies
that ri reflects rj more if the i-th sentence is more
likely to be the parent of the j-th sentence. The
r solution and updated score of the edge (0, j)
ā0j (j ∈ {1, . . . , n}) are calculated by:

r = (1− λ)(I − λÂ)−1v (20)

ā0j = a0jrj (21)

The updated score ā0j is used to calculate the sum-
mary embedding ŝ0 instead of Eq.16. As a result,
the generated summary reflects the sentences with
a higher marginal probability of dependency on
the root, while focusing on the main review point.

3 Related work

3.1 Supervised Review Summary Generation
Several previous studies have addressed ab-
stractive summarization for product reviews
(Carenini et al., 2013; Di Fabbrizio et al., 2014;
Bing et al., 2015; Yu et al., 2016); however, their
output summaries are not guaranteed to be gram-
matical (Wang and Ling, 2016). Neural sequence-
to-sequence models have improved the quality of
abstractive summarization. Beginning with the
adaptation to sentence summarization (Rush et al.,
2015; Chopra et al., 2016), several studies have
tackled the generation of an abstractive summary
of news articles (Nallapati et al., 2016; See et al.,
2017; Tan et al., 2017; Paulus et al., 2018). With
regard to product reviews, the neural sequence-
to-sequence based model (Wang and Ling, 2016)
and joint learning with sentiment classification
(Ma et al., 2018; Wang and Ren, 2018) have im-
proved the performance of one-sentence summa-
rization. Our work is also based on the neu-
ral sequence-to-sequence model, while introduc-
ing the new concept of generating the summary by
recursively reconstructing a parent sentence from
its children.

3.2 Unsupervised Summary Generation
Although supervised abstractive summarization
has been successfully improved, unsupervised
techniques have still not similarly matured.
Ganesan et al. (2010) proposed Opinosis, a graph-
based method for generating review summaries.
Their method is word-extractive, rather than
abstractive, because the generated summary
only contains words that appear in the source
document. With the recently increasing number of
neural summarization models, Miao and Blunsom
(2016) applied a variational auto-encoder
for semi-supervised sentence compression.
Chu and Liu (2018) proposed MeanSum, an un-
supervised neural multi-document summarization
model for reviews. However, their model is not
aimed at generating a summary from a single
document and could not directly be extended. Al-
though several previous studies (Fang et al., 2016;
Dohare et al., 2018) have used external parsers
for unsupervised abstractive summarization, our
work, to the best of our knowledge, proposes
the first unsupervised abstractive summarization
method for a single product review that does not
require an external parser.
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3.3 Discourse Parsing and its Applications

Discourse parsing has been extensively re-
searched and used for various applications.
Hirao et al. (2013); Kikuchi et al. (2014);
Yoshida et al. (2014) transformed a rhetorical
structure theory-based discourse tree (RST-DT;
Mann and Thompson, 1988) into a dependency-
based discourse tree and regarded the root and the
surrounding elementary discourse units as a sum-
mary. Gerani et al. (2014) constructed a discourse
tree and ranked the aspects of reviews for summa-
rization. Bhatia et al. (2015); Ji and Smith (2017)
also constructed a dependency-based discourse
tree for document classification. Ji and Smith
(2017) pointed out the limitations of using exter-
nal parsers, demonstrating that the performance
depends on the amount of the RST-DT and the
domain of the documents.

Against such a background, Liu and Lapata
(2018) proposed a model that induces a latent
discourse tree without an external corpus. In-
spired by structure bias (Cheng and Lapata, 2016;
Kim et al., 2017), they introduced Structured At-
tention, which normalizes attention scores as
the posterior marginal probabilities of a non-
projective discourse tree. The probability distri-
bution of Structured Attention implicitly repre-
sents a discourse tree, in which the child sentences
present additional information about their parent.
We extend it to the unsupervised summarization,
i.e., obtaining a summary as the root sentence of a
latent discourse tree. While Liu and Lapata (2018)
introduce a virtual root sentence and induce a la-
tent discourse tree via supervised document clas-
sification, we generate a root sentence via recon-
structing a parent sentence from its children with-
out supervision.

4 Experiments

In this section, we present our experiments for the
evalation of the summary generation performance
of online reviews. The following section provides
the details of the experiments and results. 1

4.1 Dataset

Our experiments use the Amazon product review
dataset (McAuley et al., 2015; He and McAuley,
2016), which contains Amazon online reviews and
their one-sentence summaries. It includes 142.8

1The code to reproduce the results is available at:
https://github.com/misonuma/strsum

Domains Train Valid Eval
Toys & Games 27,037 498 512
Sports & Outdoors 37,445 511 466
Movies & TV 408,827 564 512

Table 1: Number of reviews for training (Train), vali-
dation (Valid) and evaluation (Eval).

million reviews spanning May 1996 - July 2014.
Ma et al. (2018); Wang and Ren (2018) used this
dataset for the evaluation of their supervised sum-
mary generation model. The same domains con-
sidered in their previous work are selected for this
study; Toys & Games, Sports & Outdoors, and
Movies & TV.

Because our model is trained by identifying and
reconstructing a parent sentence from its children,
it sometimes fails to construct an appropriate tree
for relatively short reviews. It also has a negative
influence on summary generation. Therefore, we
use reviews with 10 or more sentences for training,
and those with 5 or more sentences for validation
and evaluation. Table 1 indicates the number of
reviews in each domain.

4.2 Experimental Details

The source sentences and the summaries share the
same vocabularies, which are extracted from the
training sources of each domain. We limit a vo-
cabulary to the 50, 000 most frequent words ap-
pearing in training sets.

The hyper-parameters are tuned based on the
performance using the reference summaries in val-
idation sets. We set 300-dimensional word em-
beddings and initialize them with pre-trained Fast-
Text vectors (Joulin et al., 2017). The encoder is
a single-layer Bi-GRU with 256-dimensional hid-
den states for each direction and the decoder is a
uni-directional GRU with 256-dimensional hidden
states.　 The damping factor of DiscourseRank is
0.9. We train the model using Ada-grad with a
learning rate of 10−1, an initial accumulator value
of 10−1, and a batch size of 16. At the evaluation
time, a beam search with a beam size of 10 is used.

Similar to (See et al., 2017; Ma et al., 2018),
our evaluation metric is the ROUGE-F1 score
(Lin, 2004), computed by the pyrouge package.
We use ROUGE-1, ROUGE-2, and ROUGE-L,
which measure the word-overlap, bigram-overlap,
and longest common sequence between the refer-
ence and generated summaries, respectively.
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Domain Toys & Games Sports & Outdoors Movies & TV
Metric R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Unuspervised approaches
TextRank 8.63 1.24 7.26 7.16 0.89 6.39 8.27 1.44 7.35
Opinosis 8.25 1.51 7.52 7.04 1.42 6.45 7.80 1.20 7.11
MeanSum-single 8.12 0.58 7.30 5.42 0.47 4.97 6.96 0.35 6.08
StrSum 11.61 1.56 11.04 9.15 1.38 8.79 7.38 1.03 6.94
StrSum+DiscourseRank 11.87 1.63 11.40 9.62 1.58 9.28 8.15 1.33 7.62

Supervised baselines
Seq-Seq 13.50 2.10 13.31 10.69 2.02 10.61 7.71 2.18 7.08
Seq-Seq-att 16.28 3.13 16.13 11.49 2.39 11.47 9.05 2.99 8.46

Table 2: ROUGE F1 score of the evaluation set (%). R-1, R-2 and R-L denote ROUGE-1, ROUGE-2, and
ROUGE-L, respectively. The best performing model among unsupervised approaches is shown in boldface.

4.3 Baseline

For the comparisons, two unsupervised baseline
models are employed. A graph-based unsuper-
vised sentence extraction method, TextRank is em-
ployed (Mihalcea and Tarau, 2004), where sen-
tence embeddings are used instead of bag-of-
words representations, based on (Rossiello et al.,
2017). As an unsupervised word-level extractive
approach, we employ Opinosis (Ganesan et al.,
2010), which detects salient phrases in terms of
their redundancy. Because we observe repetitive
expressions in the dataset, Opinosis is added as a
baseline. Both methods extract or generate a one-
sentence summary.

Furthermore, a third, novel unsupervised
baseline model MeanSum-single is introduced,
which is an extended version of the unsu-
pervised neural multi-document summarization
model (Chu and Liu, 2018). While it decodes the
mean of multiple document embeddings to gen-
erate the summary, MeanSum-single generates a
single-document summary by decoding the mean
of the sentence embeddings in a document. It
learns a language model through reconstruction
of each sentence. By comparing with MeanSum-
single, we verify that our model focuses on the
main review points, and does not simply take the
average of the entire document.

As supervised baselines, we employ vanilla
neural sequence-to-sequence models for abstrac-
tive summarization (Hu et al., 2015), following
previous studies (Ma et al., 2018; Wang and Ren,
2018). We denote the model as Seq-Seq and that
with the attention mechanism as Seq-Seq-att. The
encoder and decoder used are the same as those
used in our model.
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Figure 3: ROUGE-L F1 score on evaluation set with
various numbers of sentences.

4.4 Evaluation of Summary Generation

Table 2 shows the ROUGE scores of our models
and the baselines for the evaluation sets.2 With
regards to Toys & Games and Sports & Out-
doors, our full model (StrSum + DiscourseRank)
achieves the best ROUGE-F1 scores among the
unsupervised approaches. As for ROUGE-1 and
ROUGE-L, two-tailed t-tests demonstrate that the

2As Yu et al. (2016); Ma et al. (2018) reported, the re-
views and their summaries are usually colloquial and contain
more noise than news articles. Therefore, the ROUGE scores
on the Amazon review dataset are lower than those obtained
for other summarization datasets, such as DUC.
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• Reference: 
love this game

• Seq-Seq-att: 
fun game

• Our Model (Full): 
i love this game

• Reference: 
good value

• Seq-Seq-att: 
good for the price

• Our Model (Full) : 
this is a great product for 
the price

Generated Summary

(a)

(b)

• Reference: 
disappointing

• Seq-Seq-att: 
great dvd

• Our Model (Full) : 
this is a great movie

(c)

1. I love this game
2. It is so much fun
3. I’m all about new and different games 
4. I love to play this with my brother because he is very bad at keeping score 

so I win most of the time and he loves to tell each characters story 
5. And he loves to tell each characters story and to tell why each person got 

what fate
6. It’s a must buy if you want a fun and fast card game 

1. have not used it yet at the campground but tested it at home and works fine
2. use a toothpick to hold the valve open so you can deflate it easily
3. if you sit on it and your butt just touches the ground your at the right pressure
4. for the price i would recommend it for occasional use
5. if your a hard core camper you may want a name brand
6. it suits my needs perfectly

Induced Discourse Tree Sentences in the Main Body

1. this had so much potential
2. my favorite 3 guitarist yet the sound is muddied
3. it should have been recorded in 5
4. the video is good
5. the sound is horrible though and that 's what makes this a travesty
6. i am so disappointed as for concert dvds audio is the most important factor
7. not even anamorphic

root
1 7

5
6

4
32

root
1 6

2
5

43

root
2 3

1
4

6

5

Figure 4: Examples of generated summaries and induced latent discourse trees.

difference between our models and the others are
statistically significant (p < 0.05). Because the
abstractive approach generates a concise summary
by omitting trivial phrases, it can lead to a bet-
ter performance than those of the extractive ones.
On the other hand, for Movies & TV, our model
is competitive with other unsupervised extractive
approaches; TextRank and Opinosis. One possible
explanation is that the summary typically includes
named entities, such as the names of characters,
actors and directors, which may lead to a better
performance of the extractive approaches. For all
datasets, our full model outperforms the one us-
ing only StrSum. Our models significantly outper-
form MeanSum-single, indicating that our model
focuses on the main review points, and does not
simply take the average of the entire document.

Figure 3 shows the ROUGE-L F1 scores of our
models on the evaluation sets with various num-
bers of sentences compared to the supervised base-
line model (Seq-Seq-att). For the case of a dataset
with less than 30 sentences, the performance of
our models is inferior to that of the supervised
baseline model. Because our full model generates
summaries via learning the latent discourse tree,
it sometimes fails to construct a tree, and thus ex-
periences a decline in performance for relatively
short reviews. On the other hand, for datasets with
the number of sentences exceeding 30, our model
achieves competitive or better performance than
the supervised model.

5 Discussion

5.1 Analysis of the Induced Structure

Figure 4 presents the generated summary and the
latent discourse tree induced by our full model.
We obtained the maximum spanning tree from
the probability distribution of dependency, us-
ing Chu–Liu–Edmonds algorithm (Chu, 1965;
Edmonds, 1967).

Figure 4(a) shows the summary and the latent
discourse tree for a board game review. Our model
generates the summary, ”i love this game”, which
is almost identical to the reference. The induced
tree shows that the 2nd sentence elaborates on the
generated summary, while the 3rd sentence pro-
vides its background. The 4th and 5th sentences
explain the 1st sentence in detail, i.e., describe
why the author loves the game.

Figure 4(b) shows the summary and latent dis-
course tree of a camping mattress review. Al-
though there is no word-overlap between the ref-
erence and generated summary, our model focuses
on the positivity in terms of the price. On the in-
duced tree, the 1st to 3rd sentences provide a back-
ground of the summary and mention the high qual-
ity of the product. The 6th sentence indicates that
reviewer is satisfied, while the 4th sentence pro-
vides its explanation with regards to the price.

In Figure 4(c), we present a failure example of
a review of a concert DVD. The reviewer is disap-
pointed by the poor quality of the sound; however
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Toys & Games StrSum StrAtt
Projective 38.58% 66.07%
Height 3.06 2.42

Sports & Outdoors StrSum StrAtt
Projective 41.26% 58.85%
Height 2.72 2.50

Movies & TV StrSum StrAtt
Projective 36.31% 61.20%
Height 3.63 2.37

Table 3: Descriptive statistics for induced latent dis-
course trees. StrAtt denotes the Structured Attention
Model (Liu and Lapata, 2018).

our model generates a positive summary, ”this is
a great movie”. The induced tree shows that the
sentences describing the high potential (1st), qual-
ity of the video (4th), and preference to the pic-
ture (7th), all affect the summary generation. Our
model regards the sound quality as a secondary
factor to that of the video. Therefore, it fails to pri-
oritize the contrasting aspects; the sound and the
video, and generates an inappropriate summary.
DiscourseRank cannot work well on this exam-
ple, because the numbers of sentences mention-
ing each aspect are not significantly different. To
solve such a problem, the aspects of each product
must be ranked explicitly, such as in (Gerani et al.,
2014; Angelidis and Lapata, 2018).

Table 3 summarizes the characteristics of the in-
duced latent discourse trees. These are compared
with those obtained by the Structured Attention
model, StrAtt (Liu and Lapata, 2018). StrAtt in-
duces single-root trees via the document classifi-
cation task based on the review ratings. For each
domain, our model induces more non-projective
trees than StrAtt. Additionally, the height (the av-
erage maximum path length from a root to a leaf
node) is larger than that of StrAtt. Our model es-
timates the parent of all the sentences and can in-
duce deeper trees in which the edges connect triv-
ial sentences. On the other hand, StrAtt identi-
fies salient sentences required for the document
classification, and thus induces shallow trees that
connect the salient sentences and others. As our
model prevents the summary from focusing on
trivial or redundant sentences by inducing deep
and complex trees, it specifically achieves higher
performance when considering relatively long re-
views.

(a)

(b)

Figure 5: Visualization of DiscourseRank. The darker
the highlightning, the higher the rank score. The refer-
ences and generated summaries are also shown.

5.2 DiscourseRank Analysis

In this section, we demonstrate how DiscourseR-
ank affects the summary generation. Figure 5 vi-
sualizes the sentences in the main body and their
DiscourseRank scores. We highlight the sentences
that achieve a high DiscourseRank score with a
darker color.

A review of a car coloring book is presented
in Figure 5(a). As expected, the score of the 1st
sentence is low, which is not related to the re-
view evaluations, that is, DiscourseRank empha-
sizes the evaluative sentences, such as the 2nd and
6th sentences.

A review of swimming goggles is presented in
Figure 5(b). The reviewer is satisfied with the
quality of the product. The highlighting shows
that DiscourseRank focuses on the sentences that
mention leaking (e.g., the 2nd and 5th). While our
model (with only StrSum) emphasizes the price
sufficiency, DiscourseRank generates a summary
describing that there is no issue with the quality.

6 Conclusion

In this work, we proposed a novel unsupervised
end-to-end model to generate an abstractive sum-
mary of a single product review while inducing
a latent discourse tree. The experimental results
demonstrated that our model is competitive with
or outperforms other unsupervised approaches. In
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particular, for relatively long reviews, our model
achieved competitive or better performance com-
pared to supervised models. The induced tree
shows that the child sentences present additional
information about their parent, and the generated
summary abstracts the entire review.

Our model can also be applied to other appli-
cations, such as argument mining, because argu-
ments typically have the same discourse structure
as reviews. Our model can not only generates
the summary but also identifies the argumentative
structures. Unfortunately, we cannot directly com-
pare our induced trees with the output of a dis-
course parser, which typically splits sentences into
elementary discourse units. In future work, we
will make comparisons with those of a human-
annotated dataset.
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