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Abstract

While word embeddings are now a de facto
standard representation of words in most NLP
tasks, recently the attention has been shifting
towards vector representations which capture
the different meanings, i.e., senses, of words.
In this paper we explore the capabilities of a
bidirectional LSTM model to learn represen-
tations of word senses from semantically an-
notated corpora. We show that the utilization
of an architecture that is aware of word or-
der, like an LSTM, enables us to create bet-
ter representations. We assess our proposed
model on various standard benchmarks for
evaluating semantic representations, reaching
state-of-the-art performance on the SemEval-
2014 word-to-sense similarity task. We re-
lease the code and the resulting word and sense
embeddings at http://lcl.uniroma1.
it/LSTMEmbed.

1 Introduction

Natural Language is inherently ambiguous, for
reasons of communicative efficiency (Piantadosi
et al., 2012). For us humans, ambiguity is not
a problem, since we use common knowledge to
fill in the gaps and understand each other. There-
fore, a computational model suited to understand-
ing natural language and working side by side with
humans should be capable of dealing with ambi-
guity to a certain extent (Navigli, 2018). A neces-
sary step towards creating such computer systems
is to build formal representations of words and
their meanings, either in the form of large reposi-
tories of knowledge, e.g., semantic networks, or as
vectors in a geometric space (Navigli and Martelli,
2019).

In fact, Representation Learning (Bengio et al.,
2013) has been a major research area in NLP over

∗ Ignacio Iacobacci’s work was mainly done at the
Sapienza University of Rome.

the years, and latent vector-based representations,
called embeddings, seem to be a good candidate
for coping with ambiguity. Embeddings encode
lexical and semantic items in a low-dimensional
continuous space. These vector representations
capture useful syntactic and semantic information
of words and senses, such as regularities in the nat-
ural language, and relationships between them, in
the form of relation-specific vector offsets. Recent
approaches, such as word2vec (Mikolov et al.,
2013), and GloVe (Pennington et al., 2014), are ca-
pable of learning efficient word embeddings from
large unannotated corpora. But while word em-
beddings have paved the way for improvements in
numerous NLP tasks (Goldberg, 2017), they still
conflate the various meanings of each word and let
its predominant sense prevail over all others in the
resulting representation. Instead, when these em-
bedding learning approaches are applied to sense-
annotated data, they are able to produce embed-
dings for word senses (Iacobacci et al., 2015).

A strand of work aimed at tackling the lexi-
cal polysemy issue has proposed the creation of
sense embeddings, i.e. embeddings which sepa-
rate the various senses of each word in the vocab-
ulary (Huang et al., 2012; Chen et al., 2014; Ia-
cobacci et al., 2015; Flekova and Gurevych, 2016;
Pilehvar and Collier, 2016; Mancini et al., 2017,
among others). One of the weaknesses of these
approaches, however, is that they do not take word
ordering into account during the learning pro-
cess. On the other hand, word-based approaches
based on RNNs that consider sequence informa-
tion have been presented, but they are not competi-
tive in terms of speed or quality of the embeddings
(Mikolov et al., 2010; Mikolov and Zweig, 2012;
Mesnil et al., 2013).

For example, in Figure 1 we show an excerpt
of a t-SNE (Maaten and Hinton, 2008) projection
of word and sense embeddings in the literature:

http://lcl.uniroma1.it/LSTMEmbed
http://lcl.uniroma1.it/LSTMEmbed
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Figure 1: An example joint space where word vec-
tors (squares) and sense vectors (dots and crosses)
appear separated.

Figure 2: A shared space of words (squares) dis-
tributed across the space and two sense clusters
(dots and crosses).

as can be seen, first, the ambiguous word bank
is located close to words which co-occur with it
(squares in the Figure), and, second, the closest
senses of bank (dots for the financial institution
meaning and crosses for its geographical meaning)
appear clustered in two separated regions without
a clear correlation with (potentially ambiguous)
words which are relevant to them. A more accu-
rate representation would be to have word vectors
distributed across all the space with defined clus-
ters for each set of vectors related to each sense of
a target word (Figure 2).

Recently, the much celebrated Long-Short Term
Memory (LSTM) neural network model has
emerged as a successful model to learn represen-
tations of sequences, thus providing an ideal solu-
tion for many Natural Language Processing tasks
whose input is sequence-based, e.g., sentences and
phrases (Hill et al., 2016; Melamud et al., 2016;
Peters et al., 2018). However, to date LSTMs have
not been applied to the effective creation of sense
embeddings linked to an explicit inventory.

In this paper, we explore the capabilities of
the architecture of LSTMs using sense-labeled
corpora for learning semantic representations of
words and senses. We present four main contri-
butions:

• We introduce LSTMEmbed, an RNN model
based on a bidirectional LSTM for learning
word and sense embeddings in the same se-
mantic space, which – in contrast to the most
popular approaches to the task – takes word
ordering into account.

• We present an innovative idea for taking ad-
vantage of pretrained embeddings by using

them as an objective during training.

• We show that LSTM-based models are suit-
able for learning not only contextual informa-
tion, as is usually done, but also representa-
tions of individual words and senses.

• By linking our representations to a knowl-
edge resource, we take advantage of the pre-
existing semantic information.

2 Embeddings for words and senses

Machine-interpretable representations of the
meanings of words are key for a number of NLP
tasks, and therefore obtaining good representa-
tions is an important research goal in the field, as
shown by the surge of recent work on this topic.

2.1 Word Embeddings
In recent years, we have seen an exponen-
tial growth in the popularity of word embed-
dings. Models for learning embeddings, typi-
cally based on neural networks, represent individ-
ual words as low-dimensional vectors. Mikolov
et al. (2013, word2vec) showed that word repre-
sentations learned with a neural network trained
on raw text geometrically encode highly latent
relationships. The canonical example is the
vector resulting from king − man + woman
found to be very close to the induced vector of
queen. GloVe (Pennington et al., 2014), an al-
ternative approach trained on aggregated global
word-word co-occurrences, obtained similar re-
sults. While these embeddings are surprisingly
good for monosemous words, they fail to rep-
resent the non-dominant senses of words prop-
erly. For instance, the representations of bar
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and pub should be similar, as well as those of
bar and stick, but having similar representations
for pub and stick is undesirable. Several ap-
proaches were proposed to mitigate this issue: Yu
and Dredze (2014) presented an alternative way
to train word embeddings by using, in addition
to common features, words having some relation
in a semantic resource, like PPDB (Ganitkevitch
et al., 2013) or WordNet (Miller, 1995). Faruqui
et al. (2015) presented a technique applicable to
pre-processed embeddings, in which vectors are
updated (“retrofitted”) in order to make them more
similar to those which share a word type and less
similar to those which do not. The word types
were extracted from diverse semantic resources
such as PPDB, WordNet and FrameNet (Baker
et al., 1998). Melamud et al. (2016) introduced
context2vec, a model based on a bidirectional
LSTM for learning sentence and word embed-
dings. This model uses large raw text corpora to
train a neural model that embeds entire senten-
tial contexts and target words in the same low-
dimensional space. Finally, Press and Wolf (2017)
introduced a model, based on word2vec, where the
embeddings are extracted from the output topmost
weight matrix, instead of the input one, showing
that those representations are also valid word em-
beddings.

2.2 Sense Embeddings

In contrast to the above approaches, each of
which aims to learn representations of lexi-
cal items, sense embeddings represent individual
word senses as separate vectors. One of the main
approaches for learning sense embeddings is the
so-called knowledge-based approach, which relies
on a predefined sense inventory such as Word-
Net, BabelNet1 (Navigli and Ponzetto, 2012) or
Freebase2. SensEmbed3 (Iacobacci et al., 2015)
uses Babelfy4, a state-of-the-art tool for Word
Sense Disambiguation and Entity Linking, to build
a sense-annotated corpus which, in turn, is used
to train a vector space model for word senses
with word2vec. SensEmbed exploits the struc-
tured knowledge of BabelNet’s sense inventory
along with the distributional information gathered
from text corpora. Since this approach is based on
word2vec, the model suffers from the lack of word

1https://babelnet.org
2http://developers.google.com/freebase
3http://lcl.uniroma1.it/sensembed/
4http://babelfy.org

ordering while learning embeddings. An alterna-
tive way of learning sense embeddings is to start
from a set of pretrained word embeddings and split
the vectors into their respective senses. This idea
was implemented by Rothe and Schütze (2015) in
AutoExtend, a system which learns embeddings
for lexemes, senses and synsets from WordNet in a
shared space. The synset/lexeme embeddings live
in the same vector space as the word embeddings,
given the constraint that words are sums of their
lexemes and synsets are sums of their lexemes.
AutoExtend is based on an auto-encoder, a neu-
ral network that mimics the input and output vec-
tors. However, Mancini et al. (2017) pointed out
that, by constraining the representations of senses,
we cannot learn much about the relation between
words and senses. They introduced SW2V, a
model which extends word2vec to learn embed-
dings for both words and senses in the same vec-
tor space as an emerging feature, rather than via
constraints on both representations. The model
was built by exploiting large corpora and knowl-
edge obtained from WordNet and BabelNet. Their
basic idea was to extend the CBOW architecture
of word2vec to represent both words and senses
as different inputs and train the model in order to
predict the word and its sense in the middle. Nev-
ertheless, being based on word2vec, SW2V also
lacks a notion of word ordering.

Other approaches in the literature avoid the
use of a predefined sense inventory. The vec-
tors learned by such approaches are identified as
multi-prototype embeddings rather than senses,
due to the fact that these vectors are only identi-
fied as different from one another, while there is
no clear identification of their inherent sense. Sev-
eral approaches have used this idea: Huang et al.
(2012) introduced a model which learned multi
vectors per word by clustering word context rep-
resentations. Neelakantan et al. (2014) extended
word2vec and included a module which induced
new sense vectors if the context in which a word
occurred was too different from the previously
seen contexts for the same word. A similar ap-
proach was introduced by Li and Jurafsky (2015),
which used a Chinese Restaurant Process as a way
to induce new senses. Finally, Peters et al. (2018)
presented ELMo, a word-in-context representa-
tion model based on a deep bidirectional language
model. In contrast to the other related approaches,
ELMo does not have a token dictionary, but rather

https://babelnet.org
http://developers.google.com/freebase
http://lcl.uniroma1.it/sensembed/
http://babelfy.org
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each token is represented by three vectors, two of
which are contextual. These models are, in gen-
eral, difficult to evaluate, due to their lack of link-
age to a lexical-semantic resource.

In marked contrast, LSTMEmbed, the neural ar-
chitecture we present in this paper, aims to learn
individual representations for word senses, linked
to a multilingual lexical-semantic resource like
BabelNet, while at the same time handling word
ordering, and using pretrained embeddings as ob-
jective.

3 LSTMEmbed

Many approaches for learning embeddings are
based on feed-forward neural networks (Sec-
tion 2). However, recently LSTMs have gained
popularity in the NLP community as a new de
facto standard model to process natural language,
by virtue of their context and word-order aware-
ness. In this section we introduce LSTMEmbed, a
novel method to learn word and sense embeddings
jointly and which is based on the LSTM architec-
ture.

3.1 Model Overview

At the core of LSTMEmbed is a bidirectional
Long Short Term Memory (BiLSTM), a kind
of recurrent neural network (RNN) which uses
a set of gates especially designed for handling
long-range dependencies. The bidirectional LSTM
(BiLSTM) is a variant of the original LSTM
(Hochreiter and Schmidhuber, 1997) that is partic-
ularly suited for temporal problems when access
to the complete context is needed. In our case,
we use an architecture similar to Kawakami and
Dyer (2015), Kågebäck and Salomonsson (2016)
and Melamud et al. (2016), where the state at each
time step in the BiLSTM consists of the states of
two LSTMs, centered in a particular timestep, ac-
cepting the input from previous timesteps in one
LSTM, and the future timesteps in another LSTM.
This is particularly suitable when the output cor-
responds to the analyzed timestep and not to the
whole context.

Figure 3 illustrates our model architecture.
In marked contrast to the other LSTM-based
approaches in the literature, we use sense-
tagged text to provide input contexts of the
kind si−W , . . . , si−1 (the preceding context) and
si+1, . . . , si+W (the posterior context), where sj
(j ∈ [i−W, . . . , i+W ]) is either a word or a sense

Figure 3: The LSTMEmbed architecture.

tag from an existing inventory (see Section 4.1 for
details). Each token is represented by its corre-
sponding embedding vector v(sj) ∈ Rn, given by
a shared look-up table, which enables representa-
tions to be learned taking into account the contex-
tual information on both sides. Next, the BiLSTM
reads both sequences, i.e., the preceding context,
from left to right, and the posterior context, from
right to left:

ol = lstml(v(si−W ), ...,v(si−1))

or = lstmr(v(si+1), ...,v(si+W ))
(1)

The model has one extra layer. The concatenation
of the output of both LSTMs is projected linearly
via a dense layer:

outLSTMEmbed = Wo(ol ⊕ or) (2)

where Wo ∈ R2m×m is the weights matrix of
the dense layer with m being the dimension of the
LSTM.

Then, the model compares outLSTMEmbed with
emb(si), where emb(si) is a pretrained embed-
ding vector of the target token (see Section 4.1 for
an illustration of the pretrained embeddings that
we use in our experiments), and, depending on the
annotation and the pretrained set of embeddings
used, this could be either a word, or a sense. At
training time, the weights of the network are mod-
ified in order to maximize the similarity between
outLSTMEmbed and emb(si). The loss function
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is calculated in terms of cosine similarity:

loss = 1− S(~v1, ~v2) = 1− ~v1 · ~v2
‖~v1‖‖~v2‖

(3)

Once the training is over, we obtain latent se-
mantic representations of words and senses jointly
in the same vector space from the look-up table,
i.e., the embedding matrix between the input and
the LSTM, with the embedding vector of an item
s given by v(s).

In comparison to a standard BiLSTM, the nov-
elties of LSTMEmbed can be summarized as fol-
lows:

• Using a sense-annotated corpus which in-
cludes both words and senses for learning the
embeddings.

• Learning representations of both words and
senses, extracted from a single look-up table,
shared between both left and right LSTMs.

• A new learning method, which uses a set
of pretrained embeddings as the objective,
which enables us to learn embeddings for a
large vocabulary.

4 Evaluation

We now present an experimental evaluation of the
representations learned with LSTMEmbed. We
first provide implementation details (Section 4.1),
and then, to show the effectiveness of our model
on a broad range of tasks, report on two sets of ex-
periments: those involving sense-level tasks (Sec-
tion 4.2) and those concerned with the word level
(Section 4.3).

4.1 Implementation Details
Training data. We chose BabelNet (Navigli and
Ponzetto, 2012) as our sense inventory.5 Babel-
Net is a large multilingual encyclopedic dictionary
and semantic network, comprising approximately
16 million entries for concepts and named entities
linked by semantic relations. As training corpus
we used the English portion of BabelWiki,6 a mul-
tilingual corpus comprising the English Wikipedia
(Scozzafava et al., 2015). The corpus was auto-
matically annotated with named entities and con-
cepts using Babelfy (Moro et al., 2014), a state-of-
the-art disambiguation and entity linking system,

5We used version 4.0 as available from the website.
6http://lcl.uniroma1.it/

babelfied-wikipedia/

based on the BabelNet semantic network. The En-
glish section of BabelWiki contains 3 billion to-
kens and around 3 million unique tokens.

Learning embeddings. LSTMEmbed was built
with the Keras7 library using Theano8 as backend.
We trained our models with an Nvidia Titan X Pas-
cal GPU. We set the dimensionality of the look-up
table to 200 due to memory constraints. We dis-
carded the 1,000 most frequent tokens and set the
batch size to 2048. The training was performed
for one epoch. As optimizer function we used
Adaptive Moment Estimation or Adam (Kingma
and Ba, 2014).

As regards the objective embeddings emb(si)
used for training, we chose 400-dimension sense
embeddings trained using word2vec’s SkipGram
architecture with negative sampling on the Babel-
Wiki corpus and recommended parameters for the
SkipGram architecture: window size of 10, nega-
tive sampling set on 10, sub-sampling of frequent
words set to 103.

4.2 Sense-based Evaluation

Our first set of experiments was aimed at showing
the impact of our joint word and sense model in
tasks where semantic, and not just lexical, related-
ness is needed. We analyzed two tasks, namely
Cross-Level Semantic Similarity and Most Fre-
quent Sense Induction.

Comparison systems. We compared the per-
formance of LSTMEmbed against alternative ap-
proaches to sense embeddings: SensEmbed (Ia-
cobacci et al., 2015), which obtained seman-
tic representations by applying word2vec to the
English Wikipedia disambiguated with Babelfy;
Nasari (Camacho-Collados et al., 2015), a tech-
nique for rich semantic representation of arbi-
trary concepts present in WordNet and Wikipedia
pages; AutoExtend (Rothe and Schütze, 2015)
which, starting from the word2vec word embed-
dings learned from GoogleNews9, infers the rep-
resentation of senses and synsets from WordNet;
DeConf, an approach introduced by Pilehvar and
Collier (2016) that decomposes a given word rep-
resentation into its constituent sense representa-
tions by exploiting WordNet.

7https://keras.io
8http://deeplearning.net/software/

theano/index.html
9https://code.google.com/archive/p/

word2vec/

http://lcl.uniroma1.it/babelfied-wikipedia/
http://lcl.uniroma1.it/babelfied-wikipedia/
https://keras.io
http://deeplearning.net/software/theano/index.html
http://deeplearning.net/software/theano/index.html
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
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Model Pearson Spearman

MeerkatMafia 0.389* 0.380
SemantiKLU 0.314 0.327
SimCompass 0.356 0.344

AutoExtend 0.362 0.364
SensEmbed 0.316 0.333
SW2V 0.311 0.308
Nasari 0.244 0.220
DeConf 0.349 0.356

LSTMEmbed 0.380* 0.400

Table 1: Pearson and Spearman correlations on the
CLSS word-to-sense similarity task. * Not statistically
significant difference (χ2, p < 0.05).

Experiment 1: Cross-Level Semantic Similar-
ity. To best evaluate the ability of embeddings
to discriminate between the various senses of a
word, we opted for the SemEval-2014 task on
Cross-Level Semantic Similarity (Jurgens et al.,
2014, CLSS), which includes word-to-sense simi-
larity as one of its sub-tasks. The CLSS word-to-
sense similarity dataset comprises 500 instances of
words, each paired with a short list of candidate
senses from WordNet with human ratings for their
word-sense relatedness. To compute the word-to-
sense similarity we used our shared vector space
of words and senses, and calculated the similarity
using the cosine distance.

We included not only alternative sense-based
representations but also the best performing ap-
proaches on this task: MeerkatMafia (Kashyap
et al., 2014), which uses Latent Semantic Analy-
sis (Deerwester et al., 1990) and WordNet glosses
to get word-sense similarity measurements; Se-
mantiKLU (Proisl et al., 2014), an approach based
on a distributional semantic model trained on a
large Web corpus from different sources; Sim-
Compass (Banea et al., 2014), which combines
word2vec with information from WordNet.

The results are given as Pearson and Spear-
man correlation scores in Table 1. LSTMEmbed
achieves the state of the art by surpassing, in terms
of Spearman correlation, alternative sense embed-
ding approaches, as well as the best systems built
specifically for the CLSS word-to-sense similarity
task. In terms of Pearson, LSTMEmbed is on a par
with the current state of the art, i.e., MeerkatMafia.

Model P@1 P@3 P@5

AutoExtend 22.8 52.0 56.6
SensEmbed 38.4 56.1 63.0
SW2V 39.7 60.3 67.5
Nasari 27.4 40.2 44.6
DeConf 30.1 55.8 64.3

LSTMEmbed 39.0 59.2 66.0

Table 2: Precision on the MFS task (percentages).

Experiment 2: Most Frequent Sense Induc-
tion. In a second experiment, we employed our
representations to induce the most frequent sense
(MFS) of the input words, which is known to be a
hard-to-beat baseline for Word Sense Disambigua-
tion systems (Navigli, 2009). The MFS is typi-
cally computed by counting the word sense pairs
in an annotated corpus such as SemCor (Miller
et al., 1993).

To induce a MFS using sense embeddings, we
identified – among all the sense embeddings of an
ambiguous word – the sense which was closest to
the word in terms of cosine similarity in the vec-
tor space. We evaluated all the sense embedding
approaches on this task by comparing the induced
most frequent senses against the MFS computed
for all those words in SemCor which have a mini-
mum number of 5 sense annotations (3731 words
in total, that we release with the paper), so as to
exclude words with insufficient gold-standard data
for the estimates. We carried out our evaluation by
calculating precision@K (K ∈ {1, 3, 5}). Table 2
shows that, across all the models, SW2V performs
the best, leaving LSTMEmbed as the best runner-
up approach.

4.3 Word-based Evaluation

While our primary goal was to show the effective-
ness of LSTMEmbed on tasks in need of sense
information, we also carried out a second set of
experiments focused on word-based evaluations
with the objective of demonstrating the ability of
our joint word and sense embedding model to
tackle tasks traditionally approached with word-
based models.

Experiment 3: Synonym Recognition. We first
experimented with synonym recognition: given a
target word and a set of alternative words, the ob-
jective of this task was to select the member from
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Model
Accuracy

TOEFL-80 ESL-50

word2vec 87.00 62.00
GloVe 88.75 60.00

Jauhar et al. (2015) 80.00 73.33*
MSSG 78.26 57.14
Li and Jurafsky (2015) 82.61 50.00
MUSE 88.41 64.29

LSTMEmbed 92.50 72.00*

Table 3: Synonym Recognition: accuracy (percent-
ages). * Not statistically significant difference (χ2,
p < 0.05).

the set which was most similar in meaning to the
target word. The most likely synonym for a word
w given the set of candidatesAw is calculated as:

Syn (w,Aw) = arg max
v∈Aw

Sim (w, v) (4)

where Sim is the pairwise word similarity:

Sim (w1, w2) = max
s1∈Sw1
s2∈Sw2

cosine (~s1, ~s2) (5)

where Swi is the set of words and senses associ-
ated with the word wi. We consider all the in-
flected forms of every word, with and without all
its possible senses.

In order to evaluate the performance of
LSTMEmbed on this task, we carried out exper-
iments on two datasets. The first one, introduced
by Landauer and Dumais (1997), is extracted di-
rectly from the synonym questions of the TOEFL
(Test of English as a Foreign Language) question-
naire. The test comprises 80 multiple-choice syn-
onym questions with four choices per question.
The second one, introduced by Turney (2001),
provides a set of questions extracted from the syn-
onym questions of the ESL test (English as a Sec-
ond Language). Similarly to TOEFL, it comprises
50 multiple-choice synonym questions with four
choices per question.

Several related efforts used this kind of metric
to evaluate their representations. We compare our
approach with the following:

• Multi-Sense Skip-gram (Neelakantan et al.,
2014, MGGS), an extension of the Skip-gram
model of word2vec capable of learning multi-
ple embeddings for a single word. The model

makes no assumption about the number of
prototypes.

• Li and Jurafsky (2015), a multi-sense embed-
dings model based on the Chinese Restaurant
Process.

• Jauhar et al. (2015), a multi-sense approach
based on expectation-maximization style al-
gorithms for inferring word sense choices
in the training corpus and learning sense
embeddings while incorporating ontological
sources of information.

• Modularizing Unsupervised Sense Embed-
dings (Lee and Chen, 2017, MUSE), an un-
supervised approach that introduces a modu-
larized framework to create sense-level rep-
resentation learned with linear-time sense se-
lection.

In addition, we included in the comparison two
off-the-shelf popular word embedding models:
GoogleNews, a set of word embeddings trained
with word2vec, from a corpus of newspaper arti-
cles, and Glove.6B10, a set of word embeddings
trained on a merge of 2014 English Wikipedia
dump and the corpus from Gigaword 5, for a to-
tal of 6 billion tokens.

In Table 3 we report the performance of
LSTMEmbed together with the alternative ap-
proaches (the latter obtained from the respective
publications). We can see that, on the TOEFL task,
LSTMEmbed outperforms all other approaches,
including the word-based models. On the ESL
task, LSTMEmbed is the runner-up approach
across systems and only by a small margin. The
performance of the remaining models is consider-
ably below ours.

Experiment 4: Outlier detection. Our second
word-based evaluation was focused on outlier de-
tection, a task intended to test the capability of
the learned embeddings to create semantic clus-
ters, that is, to test the assumption that the repre-
sentation of related words should be closer than
the representations of unrelated ones. We tested
our model on the 8-8-8 dataset introduced by
Camacho-Collados and Navigli (2016), contain-
ing eight clusters, each with eight words and eight
possible outliers. In our case, we extended the

10https://nlp.stanford.edu/projects/
glove/

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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Model Corpus Sense
8-8-8

OPP Acc.

word2vec*
UMBC - 92.6 73.4
Wikipedia - 93.8 70.3
GoogleNews - 94.7 70.3

GloVe* UMBC - 81.6 40.6
Wikipedia - 91.8 56.3

AutoExtend GoogleNews X 82.8 37.5
SensEmbed Wikipedia X 98.0 95.3
SW2V Wikipedia X 48.4 37.5
Nasari Wikipedia X 94.0 76.3
DeConf GoogleNews X 93.8 62.5

LSTMEmbed Wikipedia X 96.1 78.1

Table 4: Outlier detection task (* reported in
Camacho-Collados and Navigli (2016)).

similarity function used in the evaluation to con-
sider both the words in the dataset and their senses,
similarly to what we had done in the synonym
recognition task (cf. Equation 5). We can see
from Table 4 that LSTMEmbed ranks second be-
low SensEmbed in terms of both measures defined
in the task (accuracy, and outlier position percent-
age, which considers the position of the outlier
according to the proximity of the semantic clus-
ter), with both approaches outperforming all other
word-based and sense-based approaches.

5 Analysis

The objective embedding emb we used in our
work uses pretrained sense embeddings obtained
from word2vec trained on BabelWiki, as ex-
plained in Section 4.1. Our assumption was that
training with richer and meaningful objective em-
beddings would enhance the representation deliv-
ered by our model in comparison to using word-
based models. We put this hypothesis to the test
by comparing the performance of LSTMEmbed
equipped with five sets of pretrained embeddings
on a word similarity task. We used the WordSim-
353 (Finkelstein et al., 2002) dataset, which com-
prises 353 word pairs annotated by human subjects
with a pairwise relatedness score. We computed
the performance of LSTMEmbed with the differ-
ent pretrained embeddings in terms of Spearman
correlation between the cosine similarities of the

Model Objective Dim. WS353

word2vec - - 0.488
GloVe - - 0.557

LSTMEmbed

random (baseline) 50 0.161
word2vec 50 0.573
word2vec + retro 50 0.569
GoogleNews 300 0.574
GloVe.6B 300 0.577
SensEmbed 400 0.612

Table 5: Spearman correlation on the Word Similarity
Task.

LSTMEmbed word vectors and the WordSim-353
scores.

The first set of pretrained embeddings is a
50-dimension word space model, trained with
word2vec Skip-gram with the default configura-
tion. The second set consists of the same vectors,
retrofitted with PPDB using the default configura-
tion. The third is the GoogleNews set of pretrained
embeddings. The fourth is the GloVe.6B word
space model. Finally, we tested our model with
the pretrained embeddings of SensEmbed. As a
baseline we included a set of normalized random
vectors. As is shown in Table 5, using richer pre-
trained embeddings improves the resulting repre-
sentations given by our model. All the representa-
tions obtain better results compared to word2vec
and GloVe trained on the same corpus, with the
sense embeddings from SensEmbed, a priori the
richest set of pretrained embeddings, attaining the
best performance.

6 Conclusions

We presented LSTMEmbed, a new model based
on a bidirectional LSTM for learning embeddings
of words and senses jointly, and which is able to
learn semantic representations on a par with, or
better than, state-of-the-art approaches. We draw
three main findings. Firstly, we have shown that
our semantic representations are capable to prop-
erly reflect the similarity between word and sense
representations, showing state-of-the-art perfor-
mance in the sense-aware tasks of word-to-sense
similarity and most frequent sense induction. Sec-
ondly, our approach is also able to attain high per-
formance in standard word-based semantic eval-
uations, namely, synonym recognition and outlier
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detection. Finally, the introduction of an output
layer which predicts pretrained embeddings en-
ables us to use larger vocabularies instead of us-
ing the slower softmax. We release the word and
sense embeddings at the following URL: http:
//lcl.uniroma1.it/LSTMEmbed.

Our model shows potential for further applica-
tions. We did, in fact, explore alternative config-
urations, for instance, using several layers or re-
placing the LSTMs with Gated Recurrent Units
(Cho et al., 2014) or the Transformer architecture
(Vaswani et al., 2017). Trying more complex net-
works is also within our scope and is left as future
work.
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