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Abstract

For unsegmented languages such as Japanese
and Chinese, tokenization of a sentence has
a significant impact on the performance of
text classification. Sentences are usually seg-
mented with words or subwords by a morpho-
logical analyzer or byte pair encoding and then
encoded with word (or subword) representa-
tions for neural networks. However, segmenta-
tion is potentially ambiguous, and it is unclear
whether the segmented tokens achieve the best
performance for the target task. In this pa-
per, we propose a method to simultaneously
learn tokenization and text classification to ad-
dress these problems. Our model incorporates
a language model for unsupervised tokeniza-
tion into a text classifier and then trains both
models simultaneously. To make the model
robust against infrequent tokens, we sampled
segmentation for each sentence stochastically
during training, which resulted in improved
performance of text classification. We con-
ducted experiments on sentiment analysis as
a text classification task and show that our
method achieves better performance than pre-
vious methods.

1 Introduction

Tokenization is a fundamental problem in text
classification such as sentiment analysis (Tang
et al., 2014; Kim, 2014; dos Santos and Gatti,
2014), topic detection (Lai et al., 2015; Zhang
et al., 2015), and spam detection (Liu and Jia,
2012; Liu et al., 2016). In text classification with
neural networks, sentence representation is cal-
culated based on tokens that compose the sen-
tence. Specifically, a sentence is first tokenized
into meaningful units such as characters, words,
and subwords (Zhang et al., 2015; Joulin et al.,
2017). Then, the token embeddings are looked up
and fed into a neural network encoder such as a
feed-forward neural network (Iyyer et al., 2015), a

convolutional neural network (CNN) (Kim, 2014;
Kalchbrenner et al., 2014), or a long short-term
memory (LSTM) network (Wang et al., 2016a,b).

For English and other languages that use the
Latin alphabet, the whitespace is a good indica-
tor of word segmentation. However, tokenization
is a non-trivial problem in unsegmented languages
such as Chinese and Japanese since they have no
explicit word boundaries. For these languages,
tokenizers based on supervised machine learning
with a dictionary (Zhang et al., 2003; Kudo, 2006)
have been used to segment a sentence into units
(Lai et al., 2015). In addition, we use a neural
network-based word segmenter to tokenize a raw
corpus in Chinese text classification (Zhou et al.,
2016; Zhang and Yang, 2018). In machine trans-
lation, subword tokenization with byte pair en-
coding (BPE) addresses the problem of unknown
words and improves performance (Sennrich et al.,
2016).

However, segmentation is potentially ambigu-
ous, and it is unclear whether preset tokeniza-
tion offers the best performance for target tasks.
To address this problem, in this paper, we pro-
pose a new tokenization strategy that segments a
sentence stochastically and trains a classification
model with various segmentations. During train-
ing, our model first segments sentences into to-
kens stochastically with the language model and
then feeds the tokenized sentences into a neural
text classifier. The text classifier is trained to de-
crease the cross-entropy loss for true labels, and
the language model is also learned with the sam-
pled tokenization. This enables the model to seg-
ment the test dataset by taking into account recent
tokenization in training. We find that sampling the
tokens of a sentence stochastically renders the text
classifier more robust to tokenization. Addition-
ally, updating the language model improves the
performance of the test set.
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Figure 1: (Top) Schematic of the previous classification model with deterministic tokenization, and (bottom) our
proposed model, which tokenizes a raw sentence stochastically with a language model and updates it by sampled
tokens in the training phase. < and > in the lattice are special tokens indicating the beginning and end of a
sentence, respectively. We input a tokenized sentence into the neural text classifier, and it is trained with its gold
label.

2 Neural Text Classification

Text classification refers to the classifying of a
sentence into a corresponding label. Typically, a
neural network text classifier represents the sen-
tence s = t1...tn...tN as a vector vs and predicts
the distribution of labels by transforming the vec-
tor. For example, vs is given by a forward LSTM
as

ctokenn ,htoken
n = LSTM(ctokenn−1 ,h

token
n−1 ,vtn)

vs = htoken
N

(1)

where tn is the n-th token composing a sentence
of length N , and vtn is the vector for token tn. h
and c are output vectors and cell states of LSTM,
respectively. The N -th output vector htoken

N of
LSTM is assigned to the token vector vs.

The token vector vt is obtained by concate-
nating a token-level representation vtoken and a
character-level representation vchar as follows:

vt = W cat(vtoken
t ;vchar

t ) + bcat (2)

where vtoken
t is extracted from a lookup table, and

vchar
t is calculated by a single-layered and uni-

directional LSTM from embeddings of the charac-
ters composing the token as well as the token-level
LSTM (1). W cat and bcat are parameters.

The probability p(ys = u|vs) that the sentence
class ys is a u-th class is calculated by a decoder

with a linear layer as

p(ys = u|vs) = softmax(W decvs + bdec)u (3)

where W dec and bdec are the parameters, and
softmax(·) refers to the softmax function. (·)u
is the u-th element of a vector. The neural text
classifier is trained with the optimizer to minimize
cross-entropy loss for gold labels.

3 Proposed Model

3.1 Model Outline
We focus on the tokenization of neural text clas-
sification. During the training phase of text clas-
sification, the proposed model tokenizes an input
sentence stochastically in every epoch with a lan-
guage model. A neural text classifier takes the to-
kenized sentence and predicts a label for the sen-
tence. In the evaluation, our model tokenizes the
test set by the Viterbi algorithm with a language
model.

When sampling tokenization in training, we
consider that the model can achieve higher perfor-
mance by tokenizing test data under the same cri-
terion used in training. For example, when a clas-
sification model is trained with the word “anthro-
pology” tokenized as “an/thro/polo/gy,” the simi-
lar word “anthropological” in the test data should
be tokenized as “an/thro/polo/gical” rather than
“anthro/polo/g/ical.” To realize this, our model
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updates its language model depending on the cur-
rently sampled tokens in the training phase.

Algorithm 1 outlines our model. After set-
ting the initial language model and a classifier
model, every sentence in a mini-batch for train-
ing is tokenized stochastically, and the language
model is updated based on the tokenized sentence.
An example of our model’s processing is illus-
trated at the bottom of figure 1. Compared with
conventional text classification with determinis-
tic tokenization, our model incorporates a lan-
guage model into the training process and trains
in both tokenization and text classification simul-
taneously.

Algorithm 1 Learning Algorithm
1: set/train a language model LM
2: set a classifier model CM
3: while epoch < maxEpoch do
4: for each miniBatch do
5: for each sentence s in miniBatch do
6: ts = tokenize s with LM
7: update LM with ts
8: end for
9: update CM with miniBatch

10: end for
11: end while

3.2 Nested Unigram Language Model

To sample tokens for a sentence, we employed a
nested unigram language model, which was pro-
posed as a Bayesian framework for word segmen-
tation (Goldwater et al., 2009). When a token t
consists ofM characters; that is, t = c1...cm...cM ,
its unigram probability p(t) in a text data is given
as

p(t) =
count(t) + αpbase(t)∑

t̂ count(t̂) + α
(4)

where count(t) is a function that returns the num-
ber of tokens t in the text data. pbase(t) gives the
basic probability of the token t with a character-
level language model:

pbase(t : c1...cM ) = puni(c1)
M∏

m=2

pbi(cm|cm−1)

(5)
To deal with a token that includes an unknown

character, both puni(cm) and pbi(cm|cm−1) are
also calculated by a smoothed language model. A
smoothed character unigram probability puni(cm)

is given as

puni(cm) =
count(cm) + β( 1

Y )

Y + β

Y =
∑
ĉ

count(ĉ)
(6)

A smoothed character bigram probability
pbi(cm|cm−1) is also given as

pbi(cm|cm−1) =
count(cm|cm−1) + γpuni(cm)

count(cm−1) + γ
(7)

where Y is the total number of characters, and
count(cm|cm−1) is the number of character bi-
grams. 1/Y in (6) and puni(cm) in (7) are base
probabilities of the character unigram and the
character bigram, respectively. α, β, and γ are
hyperparameters for smoothing language models.
By setting higher values for these hyperparame-
ters, the model associates a higher probability to
out-of-vocabulary (OOV) tokens. The result of
this association is that the model selects OOV to-
kens more frequently when sampling.

We use a dictionary-based morphological ana-
lyzer or unsupervised word segmentation to tok-
enize a corpus initially, and the language model is
initialized with the tokenized corpus.

3.3 Sampling Tokenization
With the nested unigram language model intro-
duced above, the tokenization of a sentence is
sampled from the distribution P (t|s) where t is
possible tokenization for the sentence. A proba-
bility of tokenization is obtained by a nested lan-
guage model (4) as p(t|s) =

∏
t∈t p(t).

Following (Kudo, 2018) and (Mochihashi et al.,
2009), we employ a dynamic programming (DP)
technique called forward filtering backward sam-
pling (FFBS) (Scott, 2002) to sample tokens
stochastically. With FFBS, we can sample tokens
in a sentence from a distribution considering all
possible tokenizations within the limit of the max-
imum token length l. In the forward calculation of
FFBS, a DP Table D is calculated as follows:

D[i][j] = p(si−j:i)

min(i−j,l)∑
k=1

D[i− j][k]

D[0][1] = 1

(8)

where i is the index of a character in a sentence s
composed of c1...ci−j ...ci...cI , and j is the length
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of a token. si−j:i is a token that consists of
ci−j ...ci, and p(si−j:i) is given by (4). D[i][j] is
the marginalized probability that the token si−j:i
appears in the sentence.

An example of the forward calculation is illus-
trated in Figure 2. In the figure, the probability of
a two-length token that ends with the sixth char-
acter is calculated recursively when the maximum
length of a word is 3.

After completing Table D, we can sample to-
kenization from the tail of a sentence with D.
Note that our model uses the whitespaces in the
sentence as the token boundaries when processing
languages indicating word boundaries such as En-
glish.

Figure 2: An example of forward calculation of for-
ward filtering backward sampling for a Chinese sen-
tence used in figure 1 with maximum length 3. In this
figure, we illustrate the calculation of D[6][2].

3.4 Updating of the Language Model

To update the language model with a tokenized
sentence, we follow the updating method of
blocked Gibbs sampling for unsupervised word
segmentation (Mochihashi et al., 2009). Before
sampling tokenization, the token counts of the sen-
tence are removed from the language model (4)
and the new tokenization is sampled with the lan-
guage model. After sampling, the language model
is updated by adding the token counts in a cur-
rently tokenized sentence.

Specifically, count(t) in (4) is reduced for every
token t included in a sentence. count(c) is also re-
duced for all character cs included by t. We handle
the adding process in the same way.

By updating the language model, when evalu-
ating the classifier on validation and test datasets,
our model can reproduce the segmentation sam-
pled in the training phase. This updating method
ensures that the tokenization is consistent between

training and evaluation, particularly for a sentence
containing a low frequency phrase.

3.5 Embedding for Unfixed Vocabulary
Since our model does not limit the vocabulary,
there are many ways to tokenize a single sen-
tence. To use token-level representations, we typ-
ically employ a lookup embedding mechanism,
which requires a fixed vocabulary. In our model,
however, the vocabulary changes as the language
model is updated.

We, therefore, introduce word embeddings with
continuous cache inspired by (Grave et al., 2016;
Kawakami et al., 2017; Cai et al., 2017). This
method enables the proposed model to assign
token-level representations to recently sampled to-
kens. Although embeddings of older tokens are
discarded from the cache memory, we assume that
meaningful tokens to solve the task appear fre-
quently, and they remain in the cache during train-
ing if the size of the cache is large enough. By
updating representations in the cache, the model
can use token-level information adequately.

In our embedding mechanism with a cache
component, the model has a list Q that stores
|Q| elements of recent tokenization history. The
model also keeps a lookup table V cache com-
posed of token-level vectors corresponding to to-
kens cached in Q. A token t is stored in Q, and
each element in Q has a unique index q to extract
the representation from V cache.

A token-level embedding of the token vtoken
t

is obtained by extracting a vector vcache
q from

V cache. q is an index corresponding to the token t
if t is in the list Q; otherwise, the oldest token in Q
drops from the list, and we assign its index q to the
new token t. The representation for the new token
vcache
q is initialized with vchar

t mentioned in sec-
tion 2, and the vector for the old token that drops
from the list is discarded. This embedding process
is described as:

vtoken
t =

{
V cachekt (t ∈ Q)

vchar
t (otherwise)

(9)

where kt is a one-hot vector whose q-th element
indicating t is 1 and 0 otherwise.

A token representation obtained by cache-
embedding is used as a lookup representation
vtoken and transformed into a concatenated token
vector vt by (2). The lookup table V cache is dealt
with as a general lookup table, and we update it
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with gradients obtained by backward calculation
from the loss function. In the evaluation phase, Q
is not changed by unknown tokens in the valida-
tion and test set.

4 Experiments

4.1 Setup

Dataset: To evaluate the differences caused by to-
kenization and embedding, we conducted experi-
ments on short-text sentiment classification tasks.
We exploited formal and informal corpora in Chi-
nese, Japanese, and English.

The NTCIR-6 dataset (Seki et al., 2007) con-
tains newspaper articles on 32 topics in Chinese,
Japanese, and English. We extracted only the sen-
tences attached with three-class sentiment labels.
and 1 to 28 topics were used for training, 29 to 30
topics for validation, and 31 to 32 topics for test-
ing.

As a social short-text dataset, we used Twit-
ter datasets in the Japanese1 and English2 exper-
iments. These datasets were annotated with five-
class sentiment labels in Japanese and two-class
sentiment labels in English, and 21,000 sentences
were randomly selected in a well-balanced man-
ner. We split the corpus into 18,000 for training,
2,000 for validation, and 1,000 for testing in both
Japanese and English.

We used ChnSentiCorp (HOTEL)3 as another
dataset for Chinese sentiment classification on in-
formal texts. We did not use any other resource
except for the training datasets.
Model: To compare the results from different to-
kenization on text classification, we used the sim-
ple neural text classifier described in section 2 in
all the experiments 4. As the token vector vt men-
tioned in (1), we used representations by different
tokenization and embedding.

We initialized randomly and trained token-level
and character-level representations with a classi-
fication task. The sizes of a token representation
and a character representation were set as 512 and

1http://bigdata.naist.jp/˜ysuzuki/
data/twitter/

2https://www.kaggle.com/c/
twitter-sentiment-analysis2

3http://tjzhifei.github.io/resource.
html

4We conducted the same experiment with Deep Average
Network (DAN) (Iyyer et al., 2015) rather than LSTM and
obtained similar results. We report the experiment with the
LSTM classifier because the results are more significant than
the results with DAN.

128, respectively, and the size of a sentence repre-
sentation was 1,024. The sentence representation
was projected to a label-size vector depending on
the dataset, and probabilities for labels were ob-
tained using the softmax function.

The main results are shown in Table 1. We
compared the scores obtained by models trained
with different tokenization. In the table, “dictio-
nary” means the model trained with dictionary-
based tokenization. Chinese and Japanese datasets
are tokenized by Jieba5 and MeCab, respectively,
and the English dataset is tokenized by original
whitespaces. As a baseline model that samples
tokenization, we employed SentencePiece imple-
mentation6. We used SentencePiece in both op-
tions with/without sampling (“subword” / “sub-
word+samp”). We set the subword size as 6,000
for NTCIR in English and 8,000 for the others7.

Our model is denoted as “proposed” in the table.
“sp” represents the proposed method whose lan-
guage model is initialized with dictionary-based
tokenization, and “unsp” represents the model
initialized with unsupervised word segmentation.
The sizes of the cache for the proposed model
were the same as the sizes of the subword vocab-
ulary for SentencePiece. We set the maximum
length of the token for our method as eight for
every language. When initializing the language
model with a dictionary-based tokenization, the
corpus was retokenized into tokens shorter than
eight characters depending on the language model.
The hyperparameters for smoothing were set as
α = β = γ = 1 in both pretraining for unsu-
pervised word segmentation and training for clas-
sification.

Dropout layers were used for embedding and
sentence representations with a rate of 0.5. We
used the softmax cross-entropy loss for optimiza-
tion, and the parameters were optimized by Adam
(Kingma and Ba, 2014). We trained the models in
30 epochs, and the model with the highest score
on the validation dataset was selected and evalu-
ated on the test dataset. In this paper, we report
the average F1 score in five experiments.

5https://github.com/fxsjy/jieba
6https://github.com/google/

sentencepiece
7Although we should have set the subword size for the

English NTCIR as 8,000 as well as the other datasets, we
had to use 6,000 because the English dataset was too small to
make more than 8,000 subwords with SentencePiece.

http://bigdata.naist.jp/~ysuzuki/data/twitter/
http://bigdata.naist.jp/~ysuzuki/data/twitter/
https://www.kaggle.com/c/twitter-sentiment-analysis2
https://www.kaggle.com/c/twitter-sentiment-analysis2
http://tjzhifei.github.io/resource.html
http://tjzhifei.github.io/resource.html
https://github.com/fxsjy/jieba
https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
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Chinese Japanese English
NTCIR HOTEL NTCIR TWITTER NTCIR TWITTER

dictionary 50.21 85.28 55.54 65.00 49.52 71.40
subword 50.95 86.45 52.87 66.25 52.19 72.65
subword+samp 51.32 87.61 51.36 66.25 53.90 73.15
proposed(sp) 50.91 86.62 58.27 66.50 56.73 73.66
proposed(unsp) 49.54 87.29 53.07 67.75 54.09 74.80

Table 1: F1 scores (%) from the models trained with different methods of tokenization. The highest scores among
all methods are highlighted by bold font, and the highest scores among unsupervised tokenization models are
highlighted with an underline.

4.2 Results
First, we analyzed the overall results of the ex-
periment. The highest scores among all tokeniza-
tion methods are highlighted by bold font in Table
1. As shown in the table, the proposed method
obtained the best scores in the Japanese and En-
glish datasets. SentencePiece with a sampling op-
tion, however, scored the highest in the Chinese
datasets. This is because the Chinese vocabulary
is larger than the Japanese and English vocabular-
ies. In other words, Chinese datasets have a larger
number of types of n-grams. We consider that the
cache size of the proposed method is not sufficient
to store meaningful words to solve the task of the
Chinese dataset.

Second, we focus on the results by the super-
vised methods (“dictionary” and “proposed(sp)”).
The language model of the proposed method “sp”
is initialized by corpus segmented by the “dictio-
nary” method and trained by sampled tokenization
while training a classifier. The table shows that the
scores from our method surpassed the dictionary-
based segmentation for all datasets. We conclude
that the proposed method is superior to the method
that trains a classifier with dictionary-based tok-
enization.

Third, we analyzed the scores obtained us-
ing unsupervised methods (“subword”, “sub-
word+samp”, and “proposed(unsp)”). The highest
scores among the unsupervised methods are em-
phasized by an underline. The proposed method
obtained the best scores for the Japanese and En-
glish datasets, but SentencePiece was superior for
the Chinese dataset as described in the overall
comparison.

Finally, we compare the proposed methods. The
proposed model whose language model is ini-
tialized by a dictionary (“sp”) obtained higher
scores on the NTCIR dataset in every language.
On the other hand, the model with unsupervised

initialization scored higher on SNS dataset for
all languages. From these results, we conclude
that the performance of our model improved with
dictionary-based segmentation for formal corpus
while unsupervised initialization improved the
performance of informal corpus when a generally
used dictionary was employed.

5 Discussion

5.1 Cache Size

In the main experiment described in the previous
section, we set the size of the cache for token-
level embedding to be the same as the vocabulary
of SentencePiece for a fair comparison. As ex-
plained, the scores of our model for the Chinese
dataset were lower than the scores for Sentence-
Piece with sampling. We consider that this result
was caused by the cache-overflow of the vocabu-
lary. Therefore, we conducted an additional exper-
iment where the size of the cache was increased.
The results are shown in table 2. The cache size
of the model denoted as “x2” is twice the size
(16,000) of the model used in Table 1. From the
result, we conclude that increasing the size of the
cache improves the performance of the proposed
model for the Chinese datasets. We also determine
that the size of the cache used in the main exper-
iment is sufficient to store meaningful words for
the task in Japanese and English.

Figure 3 shows the performances of different
cache sizes on two Chinese datasets, and Table 3
shows the vocabulary sizes of the language mod-
els at the beginning of a classifier training on each
dataset. From the result of the experiment on the
Chinese dataset, we conclude that increasing the
cache size improves performance. We also con-
clude that we can use the size of vocabulary of
the initial language model as an indicator to set
the cache size. In the figure, the performance in-
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Chinese
NTCIR HOTEL

subword+samp 51.32 87.61
proposed(sp) 50.91 86.62
proposed(sp)x2 51.45 87.45
proposed(unsp) 49.54 87.29
proposed(unsp)x2 51.32 88.29

Table 2: F1 scores (%) by models with different cache
size for the proposed model on Chinese datasets. The
size of the cache of proposed models when “+x2” is
16,000 and 8,000 otherwise. The best model in table 1
“subword+samp” is quoted as a baseline model.
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Lanugage Dataset sp unsp
Chinese NTCIR 29,299 28,232

HOTEL 22,170 15,816
Japanese NTCIR 7,623 10,139

Twitter 33,831 17,013
English NTCIR 11,449 3,544

Twitter 50,733 6,859

Table 3: The volume of vocabulary of the language
model initialized by dictionary (sp) and unsupervised
word segmentation (unsp) for each dataset.

creases up to the cache size around the size of the
initial vocabulary. In addition, we consider from
the vocabulary sizes of the Japanese and English
Twitter dataset that it is important to select an ap-
propriate tokenizer for initialization. Although the
initial vocabulary is huge for the Japanese and En-
glish datasets, the cache size is sufficient to store
the useful words for classification. We consider
the reason is that there are many similar but dif-
ferent words in the vast vocabulary of the Twitter
dataset unlike the Chinese dataset, and the differ-
ence becomes small using the language model.

5.2 Sampling Option

Our model has two other options for sampling to-
kenization: a model without sampling in the train-
ing phase (“nosamp”) and a model that samples
tokenization without updating the language model
(“samp”). The former means that the model to-
kenizes a sentence into the one-best tokenization
with an initialized unigram language model while
the latter can be described as a vocabulary-free
version of SentencePiece. We tested this compari-
son on the models with dictionary-based initializa-
tion (“sp”) and the 500-epoch pretrained models
(“unsp”). Table 4 shows the results. Our proposed
model updating a language model is denoted as
“train.”

The results show that higher scores are given
by updating the language model (“train”) on all
the datasets. While we cannot determine com-
prehensively whether performance is improved
by sampling without updating a language model
(“samp”), from the results, we argue that the per-
formance of the classification task is improved by
sampling tokenization and updating its language
model.

5.3 Case Study

Figure 4 shows distributions for each label for dif-
ferent tokenizations for a sentence in a validation
set of a Japanese Twitter dataset. Each distribution
is calculated by the same model that samples tok-
enization and updates its language model. In the
figure, “INITIAL” means a prediction by a model
inputted into a sentence tokenized by an initial lan-
guage model. In other words, “INITIAL” shows
the prediction by the model without updating the
language model.

As shown in the figure, the model predicts dif-
ferent labels for each tokenization. The model
feeding tokenization by an updated language
model predicts a true label while the model with
tokenization by the initial language model predicts
a wrong label with a higher probability. In this ex-
ample, the difference of tokenization on “電源ボ
タン” and “ほしかった” has A significant effect
on the prediction. Although this example was re-
markable, there were many sentences where the
model predicted different labels by its tokeniza-
tion.
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Chinese Japanese English
NTCIR HOTEL NTCIR TWITTER NTCIR TWITTER

sp+nosamp 50.36 86.28 53.96 66.25 52.85 72.80
sp+samp 50.27 85.28 51.98 66.25 53.33 72.40
sp+train 50.91 86.62 58.27 66.50 56.73 73.66
unsp+nosamp 49.08 86.95 52.80 65.37 53.80 73.90
unsp+samp 48.95 85.95 48.35 66.37 53.80 73.60
unsp+train 49.54 87.29 53.07 67.75 54.09 74.80

Table 4: F1 scores (%) of the ablation study to compare the sampling options of the proposed model. “samp” rep-
resents a model that samples tokenization without updating its language model while “train” updates its language
model depending on the sampled tokenization.
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Figure 4: Label prediction by a trained model for a
sentence with different tokenization. “ ” denotes word
boundary, and the sentence means “I wish they had
made the button on the Xperia more responsive.” True
label for the sentence is “neg”. The sentence indicated
by “UPDATED” is tokenized by a language model up-
dated with sampled tokenization while “INITIAL” is
segmented by an initial language model.

5.4 News-title Classification
In addition to sentiment analysis, we also evalu-
ated our model on other domains of text classifica-
tion, topic classification. We employed Japanese
web news corpus provided by Livedoor8 and a
model classified article titles into a label of nine
topics. The experiment was conducted under the
same condition as the sentiment analysis described
in section 4.

As shown in Table 5, the proposed method
with unsupervised initialization obtained the high-
est score. In addition to the result of sentiment
analysis, we also determined that the performance
improved by initializing the language model with
dictionary-based tokenization. From the result, we
conclude that our new tokenization strategy is ef-
fective on some classification tasks.

8https://www.rondhuit.com/download.
html#ldcc

F1-score
dictionary 80.31
subword 80.41
subword+samp 78.95
proposed(sp) 81.71
proposed(unsp) 80.46

Table 5: F1-scores (%) using the models with differ-
ent tokenizations on the news-title classification task
(Japanese).

6 Related Work

Our work is related to word segmentation for a
neural network encoder. To tokenize a sentence
into subwords without dictionary-based segmen-
tation, BPE is commonly used in neural machine
translation (NMT) (Sennrich et al., 2016). BPE
forces a merger of tokens without any exceptions,
and tokenization does not become natural.

The problem associate with BPE has been ad-
dressed using a language model to tokenize a sen-
tence. (Goldwater et al., 2006, 2009) proposed
unsupervised word segmentation by sampling to-
kenization and updating a language model with
Gibbs sampling. The language model for unsuper-
vised word segmentation is smoothed with base
probabilities of words to give a probability for
all possible words in a text. (Mochihashi et al.,
2009) extended this to the use of blocked Gibbs
sampling, which samples tokenization by a sen-
tence. The authors introduced a nested Bayesian
language model that calculates a probability of a
word by hierarchical language models.

Recently, (Kudo and Richardson, 2018) pro-
posed a subword generator for NMT, which tok-
enizes a sentence stochastically with a subword-
level language model while (Kudo, 2018) reports
improvement in performance of NMT by the idea

https://www.rondhuit.com/download.html#ldcc
https://www.rondhuit.com/download.html#ldcc
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of sampling tokenization. Considering multiple
subwords makes an NMT model robust against
noise and segmentation errors. This differs from
BPE in that it does not merge tokens uniquely by
its frequency and differs from unsupervised word
segmentation with a language model in that it lim-
its subword vocabulary. Our work is similar to this
line of research, but we focus on NLP tasks that
do not require decoding such as text classification.
The proposed model is different from this work in
some respects: the vocabulary is not fixed, and the
language model is updated by sampled tokeniza-
tion.

In this paper, we address the problem of tok-
enization for a neural network encoder by modi-
fying a tokenization strategy. Another approach
to address this problem alters the architecture of a
neural network. For example, (Zhang and Yang,
2018) employs lattice LSTM, which considers all
possible tokenizations of a sentence for named en-
tity recognition. Lattice structured RNNs are also
used for neural Chinese word segmentation such
as (Chen et al., 2017) and (Yang et al., 2018),
and they report improvement in performance. Our
work is different from these works from the per-
spective that we address the problem focusing on
the segmentation itself not the architecture of a
neural network as well as (Kudo, 2018).

We used a caching mechanism proposed to aug-
ment neural language models (Merity et al., 2016;
Grave et al., 2016). This is also exploited for
an open-vocabulary language model (Kawakami
et al., 2017). (Cai et al., 2017) proposed a similar
architecture to the caching mechanism for neural
Chinese word segmentation.

7 Conclusion

In this paper, we introduced stochastic tokeniza-
tion for text classification with a neural network.
Our model differs from previous methods in terms
of sampling tokenization that considers all pos-
sible words under the maximum length limita-
tion. To embed various tokens, we proposed the
cache mechanism for frequent words. Our model
also updates the language model depending on the
sampled tokenizations in the training phase. With
the updated language model, the proposed model
can tokenize the test dataset considering recently
used tokenization in the training phase. This re-
sults in improved performance for sentiment anal-
ysis tasks on Japanese and English datasets and

Chinese datasets with a larger cache. We find that
the proposed model of tokenization provides an
improvement in the performance of text classifi-
cation with a simple LSTM classifier. We expect
our model contributes to improved performance of
other complex state-of-the-art encoding architec-
tures for text classification.
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