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Abstract
Training neural sequence-to-sequence models
with simple token-level log-likelihood is now
a standard approach to historical text normal-
ization, albeit often outperformed by phrase-
based models. Policy gradient training enables
direct optimization for exact matches, and
while the small datasets in historical text nor-
malization are prohibitive of from-scratch re-
inforcement learning, we show that policy gra-
dient fine-tuning leads to significant improve-
ments across the board. Policy gradient train-
ing, in particular, leads to more accurate nor-
malizations for long or unseen words.

1 Introduction

Historical text normalization is a common ap-
proach to making historical documents accessible
and searchable. It is a challenging problem, since
most historical texts were written without fixed
spelling conventions, and spelling is therefore at
times idiosyncratic (Piotrowski, 2012).

Traditional approaches to historical text nor-
malization relied on hand-written rules, but re-
cently, several authors have proposed neural mod-
els for historical text normalization (Bollmann
and Søgaard, 2016; Bollmann, 2018; Tang et al.,
2018). Such models are trained using character-
level maximum-likelihood training, which is in-
consistent with the objective of historical text
normalization; namely, transduction into modern,
searchable word forms. The discrepancy between
character-level loss and our word-level objective
means that model decision costs are biased. Our
objective, however, is reflected by the standard
evaluation metric, which is computed as the frac-
tion of benchmark words that are translated cor-
rectly.

In order to mitigate the discrepancy between
the optimization method and the task objective,
work has been carried out on using reinforcement

learning to optimize directly for the evaluation
metric (Ranzato et al., 2016; Shen et al., 2016).
Reinforcement learning enables direct optimiza-
tion of exact matches or other non-decomposable
metrics, computing updates based on delayed re-
wards rather than token-level error signals. This
paper contrasts maximum likelihood training and
training with delayed rewards, in the context of
sequence-to-sequence historical text normaliza-
tion (Bollmann et al., 2017).

Contributions We show that training with de-
layed rewards achieves better performance than
maximum likelihood training across six different
historical text normalization benchmarks; and that
training with delayed rewards is particularly help-
ful for long words, words where maximum likeli-
hood training leads to predicting long words, and
for unseen words. We note that our approach dif-
fers from other applications in the NLP literature
in using the mean reward as our baseline, and
in comparing different reward functions; we also
fine-tune relying only on rewards, rather than a
mixture of cross entropy loss and rewards.

2 Historical text normalization datasets

Historical text normalization datasets are rare and
typically rather small. Most of them are based on
collections of medieval documents. In our experi-
ments, we include six historical text normalization
datasets: the English, Hungarian, Icelandic, and
Swedish datasets from Pettersson (2016); the Ger-
man dataset introduced in Bollmann et al. (2017);
and the Slovene “Bohorič” dataset from Ljubešić
et al. (2016). We use these datasets in the form
provided by Bollmann (2019), i.e., preprocessed
to remove punctuation, perform Unicode normal-
ization, replace digits that do not require normal-
ization with a dummy symbol, and lowercase all
tokens. Table 1 gives an overview of the datasets.



1615

Language Time Period Train IAT

EN English 1386–1698 148k 75%
DE German 14th–16th c. 234k 30%
HU Hungarian 1440–1541 134k 18%
IS Icelandic 15th c. 50k 47%
SL Slovene 1750–1840s 50k 41%
SV Swedish 1527–1812 24k 60%

Table 1: Historical datasets with the time period they
represent, the size of their training sets (in tokens), and
the approximate percentage of tokens that are invariant
across time (IAT), i.e. where the historical and normal-
ized forms are identical.

Note the differences in the number of words that
are invariant across time, i.e., where the original
input word form is the correct prediction accord-
ing to the manual annotations. The differences are
reasons to expect performance to be higher on En-
glish, but lower on Hungarian, for example; since
it is easier to learn to memorize the input than
to learn abstract transduction patterns. In practice,
we see differences being relatively small. Perfor-
mance on English, however, is significantly higher
than for the other languages (see Table 2).

3 Normalization models

Our baseline model is an LSTM-based encoder-
decoder model with attention. The model re-
ceives as input a sequence of characters from the
source vocabulary (i1, . . . , iN ). Each character it
is mapped to the corresponding randomly initial-
ized embedding, which is then given as input to
the bi-LSTM encoder. The decoder then uses the
Bahdanau attention mechanism (Bahdanau et al.,
2014) over the encoded representation to output
a sequence of characters from the target vocabu-
lary (o1, ..., oM ). Note that the input and output
sequences may differ in length. Both the encoder
and decoder is composed of three layers with di-
mensionality 256. The character embeddings have
128 dimensions.

For training our maximum likelihood baseline,
we use the Adam optimiser initialized with a
learning rate of 0.001 and default decay rates. In
addition, we use a dropout probability of 20%.
The model is trained with batch size 16 for 10
epochs with early stopping. All hyper-parameters
were tuned on English development data.

Algorithm 1: Reinforcement learning for the
neural encoder-decoder model
Input : Parallel Corpus, PC; MLE pretrained

parameters, θ
Output: Model parameters θ̂

1 for (X,Y ) ∈ PC do
2 (Ŷ1, ...Ŷk), (P (Ŷ1), ...P (Ŷk)) =

sample(X, k, θ̂);
3 Q(Ŷ ) = normalise(P (Ŷ ));
4 r̄ = 0 ; // expected reward

5 for Ŷi ∈ Ŷ do
6 r̄+ = Q(Ŷi) ·A(Ŷi);
7 end
8 backprop(θ̂, r̄) ; // policy gradient

9 end
10 return θ̂

Policy gradient fine-tuning We use policy gra-
dient training with delayed rewards for fine-tuning
our models: We use maximum likelihood pretrain-
ing for 10 epochs (see above) and update our
model based on policy gradients computed us-
ing the REINFORCE algorithm (Williams, 1992;
Sutton et al., 1999). This enables us to optimize
for delayed rewards that are non-decomposable.
Specifically, we directly minimize a distance func-
tion between strings, e.g., Levenshtein distance,
by using negative distance as a delayed reward:1

R(Ŷ ) = −Levenshtein(Y, Ŷ ).
REINFORCE maximizes the expected reward,

under some probability distribution P (Ŷ |θ), pa-
rameterized by some θ. This way, the cost func-
tion, J(θ), is defined as the negative expected re-
ward: J(θ) = −EŶ∼P (Ŷ |θ)[R(Ŷ )]. From this cost
function, the PG can be derived as:

PG = ∇θJ(θ) (1)

= −EŶ∼P (Ŷ |θ)[∇θ log P (Ŷ ) ·R(Ŷ )] (2)

We refer the reader to prior work for the full
derivation (Williams, 1992; Karpathy, 2016). In
Equation (2), there is no need to differentiate
R(Ŷ ), and policy gradient training therefore is
possible with non-differentiable reward functions
(Karpathy, 2016). To explore the search space,
we use a stochastic sampling function S(X) that,
given an input sequence X , produces k sample

1In §4, we compare using Levenshtein, Hamming, and
Jaro-Winkler distance, with Levenshtein being consistently
superior.
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hypotheses Ŷ1, . . . , Ŷk. The hypotheses are gener-
ated by, at each time step, sampling actions based
on the multinomial probability distribution of the
policy. In order to reduce the search space, we
sample only from the ten most likely actions at
each time step. Furthermore, duplicate samples are
filtered.

In practice, we do not optimize directly for the
reward R(Ŷ ). Instead we replace it with the ad-
vantage score (Weaver and Tao, 2001; Mnih and
Gregor, 2014): A(Ŷ ) = R(Ŷ ) − b, where b is
a baseline reward (Weaver and Tao, 2001), intro-
duced to reduce the variance in the gradients. We
use the mean reward over the samples as our base-
line reward. This way, the advantage scores of the
samples will be centered around 0, meaning that
about half of the produced samples will be encour-
aged and about half will be discouraged (Karpa-
thy, 2016).

We also found it necessary to normalize the
probability distribution P (Ŷ |X; θ) over the sam-
ples from S(X). We follow Shen et al. (2016)
and define a probability distributionQ(Ŷ |X; θ, α)
over the subspace of S(X).

Q(Ŷ |X; θ, α) =
P (Ŷ |X; θ)α∑

Ŷ
′∈S(X) P (Ŷ ′ |X; θ)α

(3)

This function is essentially a smoothing func-
tion over the sample probabilities, with a hyper-
parameter α that controls the level of smoothing.
We follow Shen et al. (2016) and set α = 0.005.
With these alterations, our cost function and gra-
dients can be defined as:

J(θ) = −EŶ ∈S(X)[A(Ŷ )] (4)

PG = −EŶ ∈S(X)[∇θ log Q(Ŷ ) ·A(Ŷ )] (5)

The algorithm is described in pseudocode in
Algorithm 1. We optimized hyper-parameters the
same way we optimized our baseline model hyper-
parameters. Compared to the baseline, the policy
gradient model’s optimal batch size is bigger (64),
and the learning rate is smaller (0.00001). Both
strategies are known to increase generalization, by
increasing the scale of random fluctuations in the
SGD dynamics (Smith and Le, 2018; Balles et al.,
2017).

4 Experiments

Our experiments compare maximum likelihood
training and policy gradient training across six his-
torical text normalization datasets (cf. Table 1).

Figure 1: Different reward functions on Icelandic (dev)

MLE MLE+PG Error red.

EN 92.76 94.18 20%
DE 87.36 88.42 8%
HU 86.68 88.15 11%
IS 85.03 86.05 7%
SL 91.16 93.92 31%
SV 92.99 93.74 11%

Table 2: Comparison of maximum likelihood training
(MLE) and policy gradient fine-tuning (MLE+PG),
given in word-level accuracy in percent, as well as the
error reduction between MLE and MLE+PG.

We optimized hyper-parameters on the English
development data and used the same hyper-
parameters across the board (see above).

Distance metric We also treated the distance
metric used as our reward function as a hyper-
parameter. Figure 1 shows a comparison of three
reward functions on the Icelandic development
data: (i) the Levenshtein distance, which is the
number of character operations (substitute, insert,
delete) to transform one string into another; (ii) the
Hamming distance, which is the number of posi-
tions at which the corresponding characters of two
strings of equal length are different (we pad the
shorter of the two strings with spaces); and (iii) the
Jaro-Winkler distance (Cohen et al., 2003), which
is a distance metric designed and best suited for
short strings such as person names. Levenshtein
outperforms Hamming and Jaro-Winkler distance
on the English development data, as well as on the
Icelandic development data. We therefore use the
Levenshtein distance as the reward function in our
experiments.
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GOLD LENGTH MLE LENGTH MLE BACKOFF IDENTICAL UNSEEN WORDS

EN ∗∗0.09 ∗∗0.14 ∗∗-0.20 ∗∗-0.07 ∗∗0.10
DE ∗∗0.11 ∗∗0.10 ∗∗-0.08 -0.05 ∗∗0.12
HU ∗∗0.09 ∗∗0.11 ∗∗-0.07 ∗∗-0.03 ∗∗0.10
IS ∗∗0.04 ∗∗0.05 0.02 ∗∗0.08 ∗∗0.05

Table 3: Correlations (Pearson’s r) between improvements with reinforcement learning and datapoint characteris-
tics; ** denotes significance with p < 0.001.

Results The results are presented in Table 2.2

Generally, we see that policy gradient fine-tuning
improves results across the board. For English, the
error reduction is 20%. For German, Hungarian,
Icelandic, Slovene, and Swedish, the error reduc-
tion is smaller (7–16%), but still considerable and
highly significant (p < 0.01). Tang et al. (2018)
do show, however, that multi-headed attention ar-
chitectures (Vaswani et al., 2017) generally seem
to outperform sequence-to-sequence models with
attention for historical text normalization. This is
orthogonal to the analysis presented here, and sim-
ilar improvements can likely be obtained by multi-
headed attention architectures.

Analysis To avoid bias from small, high vari-
ance datasets, we limit error analysis to English,
German, Hungarian, and Icelandic. In Table 3, we
present correlation scores between our observed
improvements and characteristics of the data.3 We
consider the following characteristics:

1. GOLD LENGTH: Reinforcement learning
with delayed rewards can potentially mitigate
error propagation, and we do observe that
gains from reinforcement learning, i.e., the
distribution of correct normalizations by rein-
forcement learning that our baseline architec-
ture classified wrongly, correlate significantly
with the length of the input across all four
languages.

2. MLE LENGTH: The correlations are even
stronger with the length of the output of

2Note that for the MLE baseline, we performed our own
hyperparameter tuning, which results in a different configura-
tion than used in previous work (e.g., Bollmann et al., 2017;
Tang et al., 2018). We observe that our baseline is weaker
than the models reported in Bollmann (2019), but even so,
the MLE+PG approach yields state-of-the-art performance
on the Slovene dataset.

3Correlations are Pearson’s r. Samples are big enough to
motivate a parametric test, but we obtain similar coefficients
and significance levels with Spearman’s ρ.

the MLE model. This suggests that rein-
forcement learning – or policy gradient train-
ing – is particularly effective on examples for
which maximum likelihood training tends to
predict long normalizations.

3. MLE BACKOFF: We also correlate gains
with the distribution of instances on which
the MLE backed off to predicting the origi-
nal input word form. Here, we see a negative
correlation, suggesting our baseline is good
at predicting when the word form is invariant
across time.

4. IDENTICAL: The three trends above are all
quite strong. Our fourth variable is when in-
put and output are identical (invariant across
time). Here, we see mixed results. Policy gra-
dient gains correlate negatively with invari-
ance in English, but positively in Icelandic.

5. UNSEEN WORDS: Finally, we correlate gains
with whether words had been previously seen
at training time. Our policy gradient fine-
tuned model performs much better on unseen
words, and especially for English, German,
and Hungarian, we see strong correlations be-
tween improvements and unseen words. Our
predictions also exhibit smaller Levenshtein
distances to the annotations compared to our
baseline model, e.g., 0.11 vs. 0.14 for En-
glish, respectively, and 0.20 vs. 0.23 for Ger-
man.

5 Conclusions

Our experiments show that across several lan-
guages, policy gradient fine-tuning outperforms
maximum likelihood training of sequence-to-
sequence models for historical text normalization.
Since historical text normalization is a character-
level transduction task, it is feasible to experi-
ment with reinforcement learning, and we believe



1618

our results are very promising. In our error anal-
ysis, we, in addition, observe that reinforcement
learning is particularly beneficial for long words
and unseen words, which are probably the hardest
challenges in historical text normalization.
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