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Abstract

In this paper, we propose a new paradigm for
the task of entity-relation extraction. We cast
the task as a multi-turn question answering
problem, i.e., the extraction of entities and re-
lations is transformed to the task of identifying
answer spans from the context. This multi-turn
QA formalization comes with several key ad-
vantages: firstly, the question query encodes
important information for the entity/relation
class we want to identify; secondly, QA pro-
vides a natural way of jointly modeling entity
and relation; and thirdly, it allows us to exploit
the well developed machine reading compre-
hension (MRC) models.

Experiments on the ACE and the CoNLL04
corpora demonstrate that the proposed
paradigm significantly outperforms previous
best models. We are able to obtain the state-
of-the-art results on all of the ACE04, ACE05
and CoNLL04 datasets, increasing the SOTA
results on the three datasets to 49.4 (+1.0),
60.2 (+0.6) and 68.9 (+2.1), respectively.

Additionally, we construct a newly developed
dataset RESUME in Chinese, which requires
multi-step reasoning to construct entity depen-
dencies, as opposed to the single-step depen-
dency extraction in the triplet exaction in pre-
vious datasets. The proposed multi-turn QA
model also achieves the best performance on
the RESUME dataset. 1

1 Introduction

Identifying entities and their relations is the pre-
requisite of extracting structured knowledge from
unstructured raw texts, which has recieved growing
interest these years. Given a chunk of natural lan-
guage text, the goal of entity-relation extraction is
to transform it to a structural knowledge base. For
example, given the following text:

1* indicates equal contribution.

Person Corp Time Position
Musk SpaceX 2002 CEO

Musk Tesla 2003 CEO&
product architect

Musk SolarCity 2006 chairman
Musk Neuralink 2016 CEO
Musk The Boring Company 2016 -

Table 1: An illustration of an extracted structural table.

In 2002, Musk founded SpaceX, an aerospace
manufacturer and space transport services Com-
pany, of which he is CEO and lead designer. He
helped fund Tesla, Inc., an electric vehicle and so-
lar panel manufacturer, in 2003, and became its
CEO and product architect. In 2006, he inspired
the creation of SolarCity, a solar energy services
Company, and operates as its chairman. In 2016,
he co-founded Neuralink, a neurotechnology Com-
pany focused on developing brain–computer in-
terfaces, and is its CEO. In 2016, Musk founded
The Boring Company, an infrastructure and tunnel-
construction Company.

We need to extract four different types of entities,
i.e., Person, Company, Time and Position, and three
types of relations, FOUND, FOUNDING-TIME and
SERVING-ROLE. The text is to be transformed into
a structural dataset shown in Table 1.

Most existing models approach this task by
extracting a list of triples from the text, i.e.,
REL(e1, e2), which denotes that relation REL holds
between entity e1 and entity e2. Previous models
fall into two major categories: the pipelined ap-
proach, which first uses tagging models to identify
entities, and then uses relation extraction models
to identify the relation between each entity pair;
and the joint approach, which combines the entity
model and the relation model throught different
strategies, such as constraints or parameters shar-
ing.

There are several key issues with current ap-
proaches, both in terms of the task formalization
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and the algorithm. At the formalization level, the
REL(e1, e2) triplet structure is not enough to fully
express the data structure behind the text. Take
the Musk case as an example, there is a hierarchi-
cal dependency between the tags: the extraction
of Time depends on Position since a Person can
hold multiple Positions in a Company during dif-
ferent Time periods. The extraction of Position
also depends on Company since a Person can work
for multiple companies. At the algorithm level, for
most existing relation extraction models (Miwa and
Bansal, 2016; Wang et al., 2016a; Ye et al., 2016),
the input to the model is a raw sentence with two
marked mentions, and the output is whether a rela-
tion holds between the two mentions. As pointed
out in Wang et al. (2016a); Zeng et al. (2018), it
is hard for neural models to capture all the lexical,
semantic and syntactic cues in this formalization,
especially when (1) entities are far away; (2) one
entity is involved in multiple triplets; or (3) relation
spans have overlaps2.

In the paper, we propose a new paradigm to han-
dle the task of entity-relation extraction. We for-
malize the task as a multi-turn question answering
task: each entity type and relation type is character-
ized by a question answering template, and entities
and relations are extracted by answering template
questions. Answers are text spans, extracted using
the now standard machine reading comprehension
(MRC) framework: predicting answer spans given
context (Seo et al., 2016; Wang and Jiang, 2016;
Xiong et al., 2017; Wang et al., 2016b). To ex-
tract structural data like Table 1, the model need to
answer the following questions sequentially:
• Q: who is mentioned in the text? A: Musk;
• Q: which Company / companies did Musk

work for? A: SpaceX, Tesla, SolarCity, Neu-
ralink and The Boring Company;
• Q: when did Musk join SpaceX? A: 2002;
• Q: what was Musk’s Position in SpaceX? A:

CEO.
Treating the entity-relation extraction task as a

multi-turn QA task has the following key advan-
tages: (1) the multi-turn QA setting provides an
elegant way to capture the hierarchical dependency
of tags. As the multi-turn QA proceeds, we pro-
gressively obtain the entities we need for the next
turn. This is closely akin to the multi-turn slot fill-
ing dialogue system (Williams and Young, 2005;
Lemon et al., 2006); (2) the question query en-
codes important prior information for the relation

2e.g., in text A B C D, (A, C) is a pair and (B, D) is a pair.

class we want to identify. This informativeness can
potentially solve the issues that existing relation
extraction models fail to solve, such as distantly-
separated entity pairs, relation span overlap, etc; (3)
the QA framework provides a natural way to simul-
taneously extract entities and relations: most MRC
models support outputting special NONE tokens,
indicating that there is no answer to the question.
Throught this, the original two tasks, entity extrac-
tion and relation extraction can be merged to a
single QA task: a relation holds if the returned an-
swer to the question corresponding to that relation
is not NONE, and this returned answer is the entity
that we wish to extract.

In this paper, we show that the proposed
paradigm, which transforms the entity-relation ex-
traction task to a multi-turn QA task, introduces sig-
nificant performance boost over existing systems.
It achieves state-of-the-art (SOTA) performance on
the ACE and the CoNLL04 datasets. The tasks on
these datasets are formalized as triplet extraction
problems, in which two turns of QA suffice. We
thus build a more complicated and more difficult
dataset called RESUME which requires to extract
biographical information of individuals from raw
texts. The construction of structural knowledge
base from RESUME requires four or five turns of
QA. We also show that this multi-turn QA setting
could easilty integrate reinforcement learning (just
as in multi-turn dialog systems) to gain additional
performance boost.

The rest of this paper is organized as follows:
Section 2 details related work. We describe the
dataset and setting in Section 3, the proposed model
in Section 4, and experimental results in Section 5.
We conclude this paper in Section 6.

2 Related Work

2.1 Extracting Entities and Relations

Many earlier entity-relation extraction systems are
pipelined (Zelenko et al., 2003; Miwa et al., 2009;
Chan and Roth, 2011; Lin et al., 2016): an entity
extraction model first identifies entities of interest
and a relation extraction model then constructs re-
lations between the extracted entities. Although
pipelined systems has the flexibility of integrating
different data sources and learning algorithms, they
suffer significantly from error propagation.

To tackle this issue, joint learning models have
been proposed. Earlier joint learning approaches
connect the two models through various dependen-
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cies, including constraints solved by integer lin-
ear programming (Yang and Cardie, 2013; Roth
and Yih, 2007), card-pyramid parsing (Kate and
Mooney, 2010), and global probabilistic graphical
models (Yu and Lam, 2010; Singh et al., 2013). In
later studies, Li and Ji (2014) extract entity men-
tions and relations using structured perceptron with
efficient beam-search, which is significantly more
efficient and less Time-consuming than constraint-
based approaches. Miwa and Sasaki (2014); Gupta
et al. (2016); Zhang et al. (2017) proposed the table-
filling approach, which provides an opportunity to
incorporating more sophisticated features and al-
gorithms into the model, such as search orders in
decoding and global features. Neural network mod-
els have been widely used in the literature as well.
Miwa and Bansal (2016) introduced an end-to-end
approach that extract entities and their relations
using neural network models with shared parame-
ters, i.e., extracting entities using a neural tagging
model and extracting relations using a neural multi-
class classification model based on tree LSTMs
(Tai et al., 2015). Wang et al. (2016a) extract re-
lations using multi-level attention CNNs. Zeng
et al. (2018) proposed a new framework that uses
sequence-to-sequence models to generate entity-
relation triples, naturally combining entity detec-
tion and relation detection.

Another way to bind the entity and the relation
extraction models is to use reinforcement learning
or Minimum Risk Training, in which the training
signals are given based on the joint decision by the
two models. Sun et al. (2018) optimized a global
loss function to jointly train the two models under
the framework work of Minimum Risk Training.
Takanobu et al. (2018) used hierarchical reinforce-
ment learning to extract entities and relations in a
hierarchical manner.

2.2 Machine Reading Comprehension

Main-stream MRC models (Seo et al., 2016; Wang
and Jiang, 2016; Xiong et al., 2017; Wang et al.,
2016b) extract text spans in passages given queries.
Text span extraction can be simplified to two multi-
class classification tasks, i.e., predicting the start-
ing and the ending positions of the answer. Similar
strategy can be extended to multi-passage MRC
(Joshi et al., 2017; Dunn et al., 2017) where the an-
swer needs to be selected from multiple passages.
Multi-passage MRC tasks can be easily simplified
to single-passage MRC tasks by concatenating pas-
sages (Shen et al., 2017; Wang et al., 2017b). Wang

et al. (2017a) first rank the passages and then run
single-passage MRC on the selected passage. Tan
et al. (2017) train the passage ranking model jointly
with the reading comprehension model. Pretraining
methods like BERT (Devlin et al., 2018) or Elmo
(Peters et al., 2018) have proved to be extremely
helpful in MRC tasks.

There has been a tendency of casting non-QA
NLP tasks as QA tasks (McCann et al., 2018). Our
work is highly inspired by Levy et al. (2017). Levy
et al. (2017) and McCann et al. (2018) focus on
identifying the relation between two pre-defined en-
tities and the authors formalize the task of relation
extraction as a single-turn QA task. In the current
paper we study a more complicated scenario, where
hierarchical tag dependency needs to be modeled
and single-turn QA approach no longer suffices.
We show that our multi-turn QA method is able to
solve this challenge and obtain new state-of-the-art
results.

3 Datasets and Tasks

3.1 ACE04, ACE05 and CoNLL04

We use ACE04, ACE05 and CoNLL04 (Roth and
Yih, 2004), the widely used entity-relation ex-
traction benchmarks for evaluation. ACE04 de-
fines 7 entity types, including Person (PER), Or-
ganization (ORG), Geographical Entities (GPE),
Location (loc), Facility (FAC), Weapon (WEA)
and Vehicle (VEH). For each pair of entities, it
defines 7 relation categories, including Physical
(PHYS), Person-Social (PER-SOC), Employment-
Organization (EMP-ORG), Agent-Artifact (ART),
PER/ORG Affiliation (OTHER-AFF), GPE- Affil-
iation (GPE-AFF) and Discourse (DISC). ACE05
was built upon ACE04. It kept the PER-SOC, ART

and GPE-AFF categories from ACE04 but split
PHYS into PHYS and a new relation category PART-
WHOLE. It also deleted DISC and merged EMP-
ORG and OTHER-AFF into a new category EMP-
ORG. As for CoNLL04, it defines four entity types
(LOC, ORG, PERand OTHERS) and five relation cate-
gories (LOCATED IN, WORK FOR, ORGBASED IN,
LIVE IN ]and KILL).

For ACE04 and ACE05, we followed the train-
ing/dev/test split in Li and Ji (2014) and Miwa
and Bansal (2016)3. For the CoNLL04 dataset, we
followed Miwa and Sasaki (2014).

3https://github.com/tticoin/LSTM-ER/.

https://github.com/tticoin/LSTM-ER/.
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3.2 RESUME: A newly constructed dataset
The ACE and the CoNLL-04 datasets are intended
for triplet extraction, and two turns of QA is suffi-
cient to extract the triplet (one turn for head-entities
and another for joint extraction of tail-entities and
relations). These datasets do not involve hierarchi-
cal entity relations as in our previous Musk exam-
ple, which are prevalent in real life applications.

Therefore, we construct a new dataset called RE-
SUME. We extracted 841 paragraphs from chapters
describing management teams in IPO prospectuses.
Each paragraph describes some work history of an
executive. We wish to extract the structural data
from the resume. The dataset is in Chinese. The
following shows an examples:
郑强先生，本公司监事，1973年出生，中
国国籍，无境外永久居留权。1995年，毕业
于南京大学经济管理专业；1995年至1998年，
就职于江苏常州公路运输有限公司，任主办
会计；1998年至2000年，就职于越秀会计师事
务所，任项目经理；2000年至2010年，就职于
国富浩华会计师事务所有限公司广东分所，
历任项目经理、部门经理、合伙人及副主任
会计师；2010年至2011年，就职于广东中科
招商创业投资管理有限责任公司，任副总经
理；2011年至今，任广东中广投资管理有限公
司董事、总经理；2016年至今，任湛江中广创
业投资有限公司董事、总经理；2016年3月至
今，担任本公司监事.

Mr. Zheng Qiang, a supervisor of the Company.
He was born in 1973. His nationality is Chinese
with no permanent residency abroad. He gradu-
ated from Nanjing University with a major in eco-
nomic management in 1995. From 1995 to 1998, he
worked for Jiangsu Changzhou Road Transporta-
tion Co., Ltd. as an organizer of accounting. From
1998 to 2000, he worked as a project manager in
Yuexiu Certified Public Accountants. In 2010, he
worked in the Guangdong branch of Guofu Hao-
hua Certified Public Accountants Co., Ltd., and
served as a project manager, department manager,
partner and deputy chief accountant. From 2010
to 2011, he worked for Guangdong Zhongke Invest-
ment Venture Capital Management Co., Ltd. as a
deputy general manager; since 2011, he has served
as thedirector and general manager of Guangdong
Zhongguang Investment Management Co., Ltd.;
since 2016, he has served as director and general
manager of Zhanjiang Zhongguang Venture Capi-
tal Co., Ltd.; since March 2016, he has served as
the supervisor of the Company.

We identify four types of entities: Person (the

Total # Average # per passage
Person 961 1.09
Company 1988 2.13
Position 2687 1.33
Time 1275 1.01

Table 2: Statistics for the RESUME dataset.

name of the executive), Company (the company
that the executive works/worked for), Position (the
position that he/she holds/held) and Time (the time
period that the executive occupies/occupied that
position). It is worth noting that one person can
work for different companies during different peri-
ods of time and that one person can hold different
positions in different periods of time for the same
company.

We recruited crowdworkers to fill the slots in
Table 1. Each passage is labeled by two different
crowdworkers. If labels from the two annotators
disagree, one or more annotators were asked to
label the sentence and a majority vote was taken
as the final decision. Since the wording of the
text is usually very explicit and formal, the inter-
agreement between annotators is very high, achiev-
ing a value of 93.5% for all slots. Some statistics of
the dataset are shown in Table 2. We randomly split
the dataset into training (80%), validation(10%)
and test set (10%).

4 Model

4.1 System Overview
The overview of the algorithm is shown in Algo-
rithm 1. The algorithm contains two stages:

(1) The head-entity extraction stage (line 4-9):
each episode of multi-turn QA is triggered by an
entity. To extract this starting entity, we transform
each entity type to a question using EntityQuesTem-
plates (line 4) and the entity e is extracted by an-
swering the question (line 5). If the system outputs
the special NONE token, then it means s does not
contain any entity of that type.

(2) The relation and the tail-entity extraction
stage (line 10-24): ChainOfRelTemplates defines
a chain of relations, the order of which we need
to follow to run multi-turn QA. The reason is that
the extraction of some entities depends on the ex-
traction of others. For example, in the RESUME
dataset, the position held by an executive relies on
the company he works for. Also the extraction of
the Time entity relies on the extraction of both the
Company and the Position. The extraction order is
manually pre-defined. ChainOfRelTemplates also
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Relation Type head-e tail-e Natural Language Question & Template Question
GEN-AFF FAC GPE find a geo-political entity that connects to XXX

XXX; has affiliation; geo-political entity
PART-WHOLE FAC FAC find a facility that geographically relates to XXX

XXX; part whole; facility
PART-WHOLE FAC GPE find a geo-political entity that geographically relates to XXX

XXX; part whole; geo-political entity
PART-WHOLE FAC VEH find a vehicle that belongs to XXX

XXX; part whole; vehicle
PHYS FAC FAC find a facility near XXX?

XXX; physical; facility
ART GPE FAC find a facility which is made by XXX

XXX; agent artifact; facility
ART GPE VEH find a vehicle which is owned or used by XXX

XXX; agent artifact; vehicle
ART GPE WEA find a weapon which is owned or used by XXX

XXX; agent artifact; weapon
ORG-AFF GPE ORG find an organization which is invested by XXX

XXX; organization affiliation; organization
PART-WHOLE GPE GPE find a geo political entity which is controlled by XXX

XXX; part whole; geo-political entity
PART-WHOLE GPE LOC find a location geographically related to XXX

XXX; part whole; location

Table 3: Some of the question templates for different relation types in AEC.

Q1 Person: who is mentioned in the text? A: e1
Q2 Company: which companies did e1 work for? A: e2
Q3 Position: what was e1’s position in e2? A: e3
Q4 Time: During which period did e1 work for e2 as e3 A: e4

Table 4: Question templates for the RESUME dataset.

defines the template for each relation. Each tem-
plate contains some slots to be filled. To generate a
question (line 14), we insert previously extracted
entity/entities to the slot/slots in a template. The
relation REL and tail-entity e will be jointly ex-
tracted by answering the generated question (line
15). A returned NONE token indicates that there is
no answer in the given sentence.

It is worth noting that entities extracted from the
head-entity extraction stage may not all be head
entities. In the subsequent relation and tail-entity
extraction stage, extracted entities from the first
stage are initially assumed to be head entities, and
are fed to the templates to generate questions. If
an entity e extracted from the first stage is indeed a
head-entity of a relation, then the QA model will
extract the tail-entity by answering the correspond-
ing question. Otherwise, the answer will be NONE

and thus ignored.

For ACE04, ACE05 and CoNLL04 datasets,
only two QA turns are needed. ChainOfRelTem-
plates thus only contain chains of 1. For RESUME,
we need to extract 4 entities, so ChainOfRelTem-
plates contain chains of 3.

4.2 Generating Questions using Templates

Each entity type is associated with a type-specific
question generated by the templates. There are two
ways to generate questions based on templates: nat-
ural language questions or pseudo-questions. A
pseudo-question is not necessarily grammatical.
For example, the natural language question for the
Facility type could be Which facility is mentioned
in the text, and the pseudo-question could just be
entity: facility.

At the relation and the tail-entity joint extrac-
tion stage, a question is generated by combing a
relation-specific template with the extracted head-
entity. The question could be either a natural lan-
guage question or a pseudo-question. Examples
are shown in Table 3 and Table 4.

4.3 Extracting Answer Spans via MRC

Various MRC models have been proposed, such
as BiDAF (Seo et al., 2016) and QANet (Yu
et al., 2018). In the standard MRC setting, given
a question Q = {q1, q2, ..., qNq} where Nq de-
notes the number of words in Q, and context
C = {c1, c2, ..., cNc}, where Nc denotes the num-
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Input: sentence s, EntityQuesTemplates, ChainOfRelTem-
plates

Output: a list of list (table) M = []
1:
2: M ← ∅
3: HeadEntList← ∅
4: for entity question in EntityQuesTemplates do
5: e1 = Extract Answer(entity question, s)
6: if e1 6= NONE do
7: HeadEntList = HeadEntList + {e1}
8: endif
9: end for

10: for head entity in HeadEntList do
11: ent list = [head entity]
12: for [rel, rel temp] in ChainOfRelTemplates do
13: for (rel, rel temp) in List of [rel, rel temp] do
14: q = GenQues(rel temp, rel, ent list)
15: e = Extract Answer(rel question, s)
16: if e 6= NONE
17: ent list = ent list + e
18: endif
19: end for
20: end for
21: if len(ent list)=len([rel, rel temp])
22: M = M + ent list
23: endif
24: end for
25: return M

Algorithm 1: Transforming the entity-relation extrac-
tion task to a multi-turn QA task.

ber of words in C, we need to predict the answer
span. For the QA framework, we use BERT (De-
vlin et al., 2018) as a backbone. BERT performs
bidirectional language model pretraining on large-
scale datasets using transformers (Vaswani et al.,
2017) and achieves SOTA results on MRC datasets
like SQUAD (Rajpurkar et al., 2016). To align
with the BERT framework, the question Q and the
context C are combined by concatenating the list
[CLS, Q, SEP, C, SEP], where CLS and SEP are
special tokens, Q is the tokenized question and C
is the context. The representation of each context
token is obtained using multi-layer transformers.

Traditional MRC models (Wang and Jiang, 2016;
Xiong et al., 2017) predict the starting and end-
ing indices by applying two softmax layers to the
context tokens. This softmax-based span extrac-
tion strategy only fits for single-answer extrac-
tion tasks, but not for our task, since one sen-
tence/passage in our setting might contain multiple
answers. To tackle this issue, we formalize the task
as a query-based tagging problem (Lafferty et al.,
2001; Huang et al., 2015; Ma and Hovy, 2016).
Specially, we predict a BMEO (beginning, inside,
ending and outside) label for each token in the con-
text given the query. The representation of each
word is fed to a softmax layer to output a BMEO la-
bel. One can think that we are transforming two N-

class classification tasks of predicting the starting
and the ending indices (whereN denotes the length
of sentence) to N 5-class classification tasks4.

Training and Test At the training time, we
jointly train the objectives for the two stages:

L = (1− λ)L(head-entity) + λL(tail-entity, rel)
(1)

λ ∈ [0, 1] is the parameter controling the trade-off
between the two objectives. Its value is tuned on the
validation set. Both the two models are initialized
using the standard BERT model and they share
parameters during the training. At test time, head-
entities and tail-entities are extracted separately
based on the two objectives.

4.4 Reinforcement Learning
Note that in our setting, the extracted answer from
one turn not only affects its own accuracy, but also
determines how a question will be constructed for
the downstream turns, which in turn affect later ac-
curacies. We decide to use reinforcement learning
to tackle it, which has been proved to be success-
ful in multi-turn dialogue generation (Mrkšić et al.,
2015; Li et al., 2016a; Wen et al., 2016), a task that
has the same challenge as ours.

Action and Policy In a RL setting, we need to
define action and policy. In the multi-turn QA
setting, the action is selecting a text span in each
turn. The policy defines the probability of select-
ing a certain span given the question and the con-
text. As the algorithm relies on the BMEO tagging
output, the probability of selecting a certain span
{w1, w2, ..., wn} is the joint probability of w1 be-
ing assigned to B (beginning), w2, ..., wn−1 being
assigned to M (inside) and wn being assigned to
E (end), written as follows:

p(y(w1, ..., wn) = answer|question, s)

= p(w1 = B)× p(wn = E)
∏

i∈[2,n−1]

p(wi = M)

(2)

Reward For a given sentence s, we use the num-
ber of correctly retrieved triples as rewards. We
use the REINFORCE algorithm (Williams, 1992),
a kind of policy gradient method, to find the opti-
mal policy, which maximizes the expected reward

4 For some of the relations that we are interested in, their
corresponding questions have single answers. We tried the
strategy of predicting the starting and the ending index and
found the results no different from the ones in the multi-answer
QA-based tagging setting.
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Eπ[R(w)]. The expectation is approximated by
sampling from the policy π and the gradient is
computed using the likelihood ratio:

∇E(θ) ≈ [R(w)− b]∇ log π(y(w)|question s))
(3)

where b denotes a baseline value. For each turn in
the multi-turn QA setting, getting an answer correct
leads to a reward of +1 . The final reward is the ac-
cumulative reward of all turns. The baseline value
is set to the average of all previous rewards. We do
not initialize policy networks from scratch, but use
the pre-trained head-entity and tail-entity extrac-
tion model described in the previous section. We
also use the experience replay strategy (Mnih et al.,
2015): for each batch, half of the examples are
simulated and the other half is randomly selected
from previously generated examples.

For the RESUME dataset, we use the strategy of
curriculum learning (Bengio et al., 2009), i.e., we
gradually increase the number of turns from 2 to 4
at training.

5 Experimental Results

5.1 Results on RESUME
Answers are extracted according to the order of Per-
son (first-turn), Company (second-turn), Position
(third-turn) and Time (forth-turn), and the extrac-
tion of each answer depends on those prior to them.

For baselines, we first implement a joint model
in which entity extraction and relation extraction
are trained together (denoted by tagging+relation).
As in Zheng et al. (2017), entities are extracted
using BERT tagging models, and relations are ex-
tracted by applying a CNN to representations out-
put by BERT transformers.

Existing baselines which involve entity and rela-
tion identification stages (either pipelined or joint)
are well suited for triplet extractions, but not re-
ally tailored to our setting because in the third
and forth turn, we need more information to de-
cide the relation than just the two entities. For
instance, to extract Position, we need both Per-
son and Company, and to extract Time, we need
Person, Company and Position. This is akin to a
dependency parsing task, but at the tag-level rather
than the word-level (Dozat and Manning, 2016;
Chen and Manning, 2014). We thus proposed the
following baseline, which modifies the previous
entity+relation strategy to entity+dependency, de-
noted by tagging+dependency. We use the BERT
tagging model to assign tagging labels to each

word, and modify the current SOTA dependency
parsing model Biaffine (Dozat and Manning, 2016)
to construct dependencies between tags. The Bi-
affine dependency model and the entity-extraction
model are jointly trained.

Results are presented in Table 5. As can be
seen, the tagging+dependency model outperforms
the tagging+relation model. The proposed multi-
turn QA model performs the best, with RL adding
additional performance boost. Specially, for Person
extraction, which only requires single-turn QA, the
multi-turn QA+RL model performs the same as
the multi-turn QA model. It is also the case in
tagging+relation and tagging+dependency.

5.2 Results on ACE04, ACE05 and CoNLL04

For ACE04, ACE05 and CoNLL04, only two turns
of QA are required. For evaluation, we report
micro-F1 scores, precision and recall on entities
and relations (Tables 6, 7 and 8) as in Li and
Ji (2014); Miwa and Bansal (2016); Katiyar and
Cardie (2017); Zhang et al. (2017). For ACE04,
the proposed multi-turn QA model already outper-
forms previous SOTA by +1.8% for entity extrac-
tion and +1.0% for relation extraction. For ACE05,
the proposed multi-turn QA model outperforms
previous SOTA by +1.2% for entity extraction and
+0.6% for relation extraction. The proposed multi-
turn QA model leads to a +2.2% improvement on
entity F1 and +1.1% on relation F1.

6 Ablation Studies

6.1 Effect of Question Generation Strategy

In this subsection, we compare the effects of natural
language questions and pseudo-questions. Results
are shown in Table 9.

We can see that natural language questions lead
to a strict F1 improvement across all datasets. This
is because natural language questions provide more
fine-grained semantic information and can help en-
tity/relation extraction. By contrast, the pseudo-
questions provide very coarse-grained, ambigu-
ous and implicit hints of entity and relation types,
which might even confuse the model.

6.2 Effect of Joint Training

In this paper, we decompose the entity-relation
extraction task into two subtasks: a multi-answer
task for head-entity extraction and a single-answer
task for joint relation and tail-entity extraction. We
jointly train two models with parameters shared.
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multi-turn QA multi-turn QA+RL tagging+dependency tagging+relation
p r f p r f p r f p r f

Person 98.1 99.0 98.6 98.1 99.0 98.6 97.0 97.2 97.1 97.0 97.2 97.1
Company 82.3 87.6 84.9 83.3 87.8 85.5 81.4 87.3 84.2 81.0 86.2 83.5
Position 97.1 98.5 97.8 97.3 98.9 98.1 96.3 98.0 97.0 94.4 97.8 96.0

Time 96.6 98.8 97.7 97.0 98.9 97.9 95.2 96.3 95.7 94.0 95.9 94.9
all 91.0 93.2 92.1 91.6 93.5 92.5 90.0 91.7 90.8 88.2 91.5 89.8

Table 5: Results for different models on the RESUME dataset.

Models Entity P Entity R Entity F Relation P Relation R Relation F
Li and Ji (2014) 83.5 76.2 79.7 60.8 36.1 49.3
Miwa and Bansal (2016) 80.8 82.9 81.8 48.7 48.1 48.4
Katiyar and Cardie (2017) 81.2 78.1 79.6 46.4 45.3 45.7
Bekoulis et al. (2018) - - 81.6 - - 47.5
Multi-turn QA 84.4 82.9 83.6 50.1 48.7 49.4 (+1.0)

Table 6: Results of different models on the ACE04 test set. Results for pipelined methods are omitted since they
consistently underperform joint models (see Li and Ji (2014) for details).

The parameter λ control the tradeoff between the
two subtasks:

L = (1−λ)L(head-entity)+λL(tail-entity) (4)

Results regarding different values of λ on the
ACE05 dataset are given as follows:

λ Entity F1 Relation F1
λ = 0 85.0 55.1
λ = 0.1 84.8 55.4
λ = 0.2 85.2 56.2
λ = 0.3 84.8 56.4
λ = 0.4 84.6 57.9
λ = 0.5 84.8 58.3
λ = 0.6 84.6 58.9
λ = 0.7 84.8 60.2
λ = 0.8 83.9 58.7
λ = 0.9 82.7 58.3
λ = 1.0 81.9 57.8

When λ is set to 0, the system is essentially only
trained on the head-entity prediction task. It is in-
teresting to see that λ = 0 does not lead to the best
entity-extraction performance. This demonstrates
that the second-stage relation extraction actually
helps the first-stage entity extraction, which again
confirms the necessity of considering these two
subtasks together. For the relation extraction task,
the best performance is obtained when λ is set to
0.7.

6.3 Case Study
Table 10 compares outputs from the proposed multi-
turn QA model with the ones of the previous SOTA
MRT model (Sun et al., 2018). In the first example,
MRT is not able to identify the relation between
john scottsdale and iraq because the two entities
are too far away, but our proposed QA model is
able to handle this issue. In the second example,
the sentence contains two pairs of the same relation.

The MRT model has a hard time identifying han-
dling this situation, not able to locate the ship entity
and the associative relation, which the multi-turn
QA model is able to handle this case.

7 Conclusion

In this paper, we propose a multi-turn question an-
swering paradigm for the task of entity-relation
extraction. We achieve new state-of-the-art results
on 3 benchmark datasets. We also construct a new
entity-relation extraction dataset that requires hier-
archical relation reasoning and the proposed model
achieves the best performance.
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