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Abstract

Unsupervised bilingual word embedding
(UBWE), together with other technologies
such as back-translation and denoising,
has helped unsupervised neural machine
translation (UNMT) achieve remarkable
results in several language pairs. In previous
methods, UBWE is first trained using non-
parallel monolingual corpora and then this
pre-trained UBWE is used to initialize the
word embedding in the encoder and decoder
of UNMT. That is, the training of UBWE
and UNMT are separate. In this paper, we
first empirically investigate the relationship
between UBWE and UNMT. The empirical
findings show that the performance of UNMT
is significantly affected by the performance
of UBWE. Thus, we propose two methods
that train UNMT with UBWE agreement.
Empirical results on several language pairs
show that the proposed methods significantly
outperform conventional UNMT.

1 Introduction

Since 2013, neural network based bilingual word
embedding (BWE) has been applied to several
natural language processing tasks (Mikolov et al.,
2013; Faruqui and Dyer, 2014; Xing et al.,
2015; Dinu et al., 2015; Lu et al., 2015;
Wang et al., 2016; Artetxe et al., 2016; Smith
et al., 2017; Wang et al., 2018). Recently,
researchers have found that supervision is not
always necessary (Cao et al., 2016; Zhang
et al., 2017). Several unsupervised BWE
(UBWE) methods (Conneau et al., 2018; Artetxe
et al., 2018a) have been proposed and these
have achieved impressive performance in word-
translation tasks. The success of UBWE makes
unsupervised neural machine translation (UNMT)
possible. The combination of UBWE with
denoising autoencoder and back-translation has

∗Haipeng Sun was an internship research fellow at NICT
when conducting this work.

led to UNMT that relies solely on monolingual
corpora, with remarkable results reported for
several language pairs such as English-French and
English-German (Artetxe et al., 2018c; Lample
et al., 2018a).

In previous methods, UBWE is first trained
using non-parallel monolingual corpora. This pre-
trained UBWE is then used to initialize the word
embedding in the encoder and decoder of UNMT.
That is, the training of UBWE and UNMT take
place in separate steps. In this paper, we first
empirically investigate the relationship between
UBWE and UNMT. Our empirical results show
that:

• 1) There is a positive correlation between
the quality of the pre-trained UBWE and the
performance of UNMT.

• 2) The UBWE quality significantly decreases
during UNMT training.

Based on these two findings, we hypothesize
that the learning of UNMT with UBWE agreement
would enhance UNMT performance. In detail,
we propose two approaches, UBWE agreement
regularization and UBWE adversarial training,
to maintain the quality of UBWE during NMT
training. Empirical results on several language
pairs show that the proposed methods significantly
outperform the original UNMT. The remainder of
this paper is organized as follows. In Section
2, we introduce the background of UNMT. The
results of preliminary experiments are presented
and analyzed in Section 3. In Section 4, we
propose methods to jointly train UNMT with
UBWE agreement. In Sections 5 and 6 , we
describe experiments to evaluate the performance
of our approach and analyze the results. Section
7 introduces some related work and Section 8
concludes the paper.
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2 Background of UNMT

There are three primary components of UNMT:
UBWE initialization, denoising auto-encoder, and
back-translation.

Consider a sentence X in language L1 and a
sentence Y in another language L2. The data
spaces of the L1 sentence X and the L2 sentence
Y are denoted by φL1 and φL2 , respectively.

After initialization by UBWE, the encoders and
decoders of L1, L2 are trained through denoising
and back-translation. The objective function Lall
of the entire UNMT model would be optimized as:

Lall = Lauto + Lbt, (1)

where Lauto is the objective function for auto-
denoising, and Lbt is the objective function for
back-translation.

2.1 Bilingual Word Embedding Initialization

Unlike supervised NMT (Bahdanau et al., 2015;
Chen et al., 2017a,b, 2018a; Vaswani et al.,
2017), there are no bilingual supervised signals
in UNMT. Fortunately, UBWE (Zhang et al.,
2017; Artetxe et al., 2018a; Conneau et al., 2018)
successfully learned translation equivalences
between word pairs from two monolingual
corpora. Typically, UBWE initializes the
embedding of the vocabulary for the encoder
and decoder of UNMT. The pre-trained UBWE
provides naive translation knowledge to enable the
back-translation to generate pseudo-supervised
bilingual signals (Artetxe et al., 2018c; Lample
et al., 2018a). The embeddings of the encoder and
decoder change independently during the UNMT
training process.

2.2 Denoising Auto-encoder

The auto-encoder is difficult to learn useful
knowledge for UNMT without some constraints.
Otherwise, it would become a copying task that
learned to copy the input words one by one
(Lample et al., 2018a). To alleviate this problem,
we utilize the same strategy of denoising auto-
encoder (Vincent et al., 2010), and noise in the
form of random token swaps is introduced in
this input sentence to improve the model learning
ability (Hill et al., 2016; He et al., 2016). The
denoising auto-encoder, which encodes a noisy
version and reconstructs it with the decoder in the
same language, is optimized by minimizing the

objective function:

Lauto = EX∼φL1
[−logPL1→L1(X|C(X)]

+ EY∼φL2
[−logPL2→L2(Y |C(Y )],

(2)

where C(X) and C(Y ) are noisy versions of
sentences X and Y , PL1→L1 (PL2→L2) denotes
the reconstruction probability in the language L1

(L2).

2.3 Back-translation
The denoising auto-encoder acts as a language
model that has been trained in one language and
does not consider the final goal of translating
between two languages. Therefore, back-
translation (Sennrich et al., 2016) was adapted
to train translation systems in a true translation
setting based on monolingual corpora. Formally,
given the sentences X and Y , the sentences
YP (X) and XP (Y ) would be produced by
the model at the previous iteration. The
pseudo-parallel sentence pair (YP (X), X) and
(XP (Y ), Y ) would be obtained to train the new
translation model. Finally, the back-translation
process is optimized by minimizing the following
objective function:

Lbt = EX∼φL1
[−logPL2→L1(X|YP (X)]

+ EY∼φL2
[−logPL1→L2(Y |XP (Y )],

(3)

where PL1→L2 (PL2→L1) denotes the translation
probability across two languages.

3 Preliminary Experiments

To investigate the relationship between UBWE
and UNMT, we empirically choose one similar
language pair (English-French which are in the
same language family) and one distant language
pair (English-Japanese which are in the different
language families) as the corpora. The detailed
experimental settings for UBWE and UNMT are
given in Section 5.

3.1 Effect of UBWE Quality on UNMT
Performance

Figure 1 shows the UNMT performance using
UBWE with different levels of accuracy. To obtain
UBWE with different accuracy levels, we used
the VecMap (Artetxe et al., 2018a) embedding
at different checkpoints to pre-train UNMT.1

1Accuracy “0” indicates only monolingual embeddings
were used on each language before VecMap training started.
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Figure 1: UNMT performance using UBWE with
different levels of accuracy.

Precision@1 indicates the accuracy of word
translation using the top-1 predicted candidate in
the MUSE test set2.

As the UBWE accuracy increased, the NMT
performance of both language pairs increased.
This indicates that the quality of pre-trained
UBWE is important for UNMT.

3.2 Trend of UBWE Quality during UNMT
Training

Figure 2 shows the trend in UBWE accuracy
and BLEU score as UNMT proceeds through the
training stage. VecMap was used to pre-train the
word embedding for the encoder and decoder of
UNMT. We used source embedding of encoder
and target embedding of decoder to calculate the
word translation accuracy on the MUSE test set
during UNMT training.
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Figure 2: UBWE accuracy and BLEU score over the
course of UNMT training.

2https://github.com/facebookresearch/
MUSE

Regardless of the language, the UBWE
performance decreased significantly over the
course of UNMT training, as shown in Figure 2.

3.3 Analysis

The empirical results in this section show that
the quality of pre-trained UBWE is important
to UNMT. However, the quality of UBWE
decreases significantly during UNMT training.
We hypothesize that maintaining the quality of
UBWE may enhance the performance of UNMT.
In this subsection, we analyze some possible
solutions to this issue.
Use fixed embedding? As Figure 2 shows,
the UBWE performance decreases significantly
during the UNMT training process. Therefore,
we try to fix the embedding of the encoder and
decoder on the basis of the original baseline
system (Baseline-fix). Table 1 shows that the
performance of the Baseline-fix system is quite
similar to that of the original baseline system. In
other words, Baseline-fix prevents the degradation
of UBWE accuracy; however, the fixed embedding
also prevents UBWE from further improving
UNMT training. Therefore, the fixed UBWE does
not enhance the performance of UNMT.

Methods Fr-En En-Fr Ja-En En-Ja
Baseline 24.50 25.37 14.09 21.63
Baseline-fix 24.22 25.26 13.88 21.93

Table 1: Results of UNMT

Use byte pair encoding (BPE) to increase
shared subwords? For English-French and
English-German UNMT, Lample et al. (2018b)
concatenated two bilingual corpora into a single
monolingual corpus. They adopted BPE to
enlarge the number of shared subwords in the
two languages. The pre-trained monolingual
subword embedding was used as the initialization
for UNMT. Because there are many shared
subwords in these similar language pairs, this
method achieves better performance than other
UBWE methods. However, this initialization
does not work for distant language pairs such
as English-Japanese and English-Chinese, where
there are few shared subwords. Using word-
based embedding in UNMT is more universal.
In addition, word-based embedding are easy to
combine with UBWE technology. Therefore, we
do not adopt BPE in the proposed method.

https://github.com/facebookresearch/MUSE
https://github.com/facebookresearch/MUSE
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Figure 3: (a) Architecture of UNMT with UBWE Agreement Regularization; (b) Architecture of UNMT with
UBWE Adversarial Training.

4 Train UNMT with UBWE Agreement

Based on previous empirical findings and
analyses, we propose two joint agreement
mechanisms, i.e., UBWE agreement
regularization and UBWE adversarial training,
that enable UBWE and UNMT to interact during
the training process, resulting in improved
translation performance. Figure 3 illustrates
the architecture of UNMT and the proposed
agreement mechanisms.

Generally, during UNMT training, an objective
function LBWE is added to ensure UBWE
agreement. The general UNMT objective function
can be reformulated as follows:

Lall = Lauto + Lbt + λLBWE . (4)

4.1 UBWE Agreement Regularization
On the basis of the existing architecture of UNMT,
we induce UBWE agreement regularization
during back-translation to maintain the UBWE
accuracy in the encoder and the decoder during
UNMT training. The similarity function
Similarity(L1, L2) of the encoder and decoder
embeddings is used to measure the UBWE
accuracy and the objective function LBWE is

LBWE , Lagreement
= Similarity(L1, L2)

= Similarity(encL1 , decL2)

+ Similarity(encL2 , decL1)

(5)

where encL1 and encL2 denote all word
embeddings of encoders L1 and L2, respectively,

decL1 and decL2 denote all word embeddings of
decoders L1 and L2, respectively.

As there is no test or development data set
that can be employed as a bilingual dictionary in
UNMT, before computing Similarity(L1, L2), we
need to generate a synthetic word-pair dictionary
to measure the UBWE accuracy during NMT
training. Motivated by Conneau et al. (2018),
we use the cross-domain similarity local scaling
(CSLS) to measure the UBWE accuracy. This can
also be viewed as the similarity between the source
word embedding and the target word embedding.

CSLS(xi, yi) = 2 · cos(encxi , decyi)
− r(xi)− r(yi),

(6)

r(xi) =
1

K

∑
y∈N (xi)

cos(encxi , decy), (7)

r(yi) =
1

K

∑
x∈N (yi)

cos(encx, decyi), (8)

where y ∈ N (xi) denotes the K nearest
neighborhood of the source word xi, and similarly
for x ∈ N (yi). encxi denotes the embedding of
word xi in encoder L1 and decyi denotes the word
embedding of yi in decoder L2.

As the size of the entire vocabulary is large,
we select a subset as the synthetic word-pair
dictionary. By ranking the CSLS, we can select the
most accurate word pairs {xi, yi} as the synthetic
dictionary Dictx−>y. The opposite word pairs
Dicty−>x = {yj , xj} could be obtained by the
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same method. encyj denotes the embedding of
word yj by encoder L2 and decxj denotes the
embedding of word xj by decoder L1. Both
dictionary sizes are set to |Dict|. Therefore, the
similarity between the word embeddings in the
encoder and decoder is measured as

Similarity(encL1 , decL2)

≈ 1

|Dict|

|Dict|∑
i

(1− cos(encxi , decyi)).
(9)

Similarity(encL2 , decL1)

≈ 1

|Dict|

|Dict|∑
j

(1− cos(encyj , decxj )).
(10)

The above similarity between word pairs in
Dict is used for UBWE agreement regularization
during back-translation. Note that the synthetic
word-pair dictionary is dynamically selected in
each epoch of UNMT training.

4.2 UBWE Adversarial Training

In UBWE, there is a transformation matrix to
project the source word embedding to the target
word embedding. Motivated by Conneau et al.
(2018), we induce a transformation matrix using
an adversarial approach . The generator is
estimated as:

G1 =W1encx, (11)

where encx is the L1 the encoder word
embedding, decy is the corresponding L2 decoder
word embedding, and W1 is the transformation
matrix that project the embedding space of encx
onto that of decy. The discriminatorD1 is a multi-
layer perceptron representing the probability that
the word embedding comes from this language.
It is trained to discriminate the language to
which the word embedding between W1encx
and decy belongs. W1 is trained to confuse
the discriminator D1 by making W1encx and
decy increasingly similar. In other words, we
train D1 to maximize the probability of choosing
the accurate language between the original word
embedding and samples from G1. The generator
G1 is trained to minimize log(1−D1(G1(encx))).
Thus, the two-player minimax game (Goodfellow
et al., 2014) with value function V (G1, D1) is

optimized as:

min
G1

max
D1

V (D1, G1) = Edecy [logD1(decy)]

+ Eencx [log(1−D1(G1(encx)))].
(12)

D2 and G2 are similar to D1 and G1. The
objective functions for the discriminator D1 and
generator G1 can be written as:

LD1 = Eencx [− log(1−D1(G1))]

+ Edecy [− log(D1(decy)],
(13)

LG1 = Eencx [− log(D1(G1))]

+ Edecy [− log(1−D1(decy)].
(14)

LD2 and LG2 are similar to LD1 and LG1 . After
inducing UBWE adversarial training into UNMT,
the LBWE objective function is minimized as

LBWE , Ladv = Ladv1 + Ladv2, (15)

where Ladv1 = LG1 + LD1 and Ladv2 = LG2 +
LD2 . The proposedLBWE (Lagreement orLadv) is
added to the Lall in Eq. 4 during back-translation
of UNMT training as shown in Figure 3.

5 Experiments

5.1 Datasets
The proposed methods were evaluated on three
language pairs: French-English (Fr-En), German-
English (De-En), and Japanese-English (Ja-En).
Fr-En and De-En are similar European language
pairs. We used 30 million sentences from the
WMT monolingual News Crawl datasets from
2007 to 2013. Ja-En is a distant languages pair
and so UBWE training is much more difficult
than for similar European language pairs (Søgaard
et al., 2018). In addition, Japanese and English
are different language families and their word
orderings are quite different. As a result, the
performance of Ja-En UNMT is too poor to further
empirical study if only pure monolingual data
are used. Therefore, we constructed simulated
experiments using shuffled parallel sentences, i.e.,
3.0M sentence pairs from the ASPEC corpus
for Ja-En. We reported the results on WMT
newstest2014 for Fr-En, WMT newstest2016 for
De-En, and WAT-2018 ASPEC testset for Ja-En.

5.2 UBWE Settings
For UBWE training, we first used the
monolingual corpora described above to train
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Figure 4: The trends of UBWE quality and BLEU score for baseline (Base), UBWE agreement regularization
(AR), and UBWE adversarial training (AT) during UNMT training on the Fr-En and Ja-En dataset

Methods De-En En-De Fr-En En-Fr Ja-En En-Ja
Artetxe et al. (2018c) n/a n/a 15.56 15.13 n/a n/a
Lample et al. (2018a) 13.33 9.64 14.31 15.05 n/a n/a
Yang et al. (2018) 14.62 10.86 15.58 16.97 n/a n/a
Lample et al. (2018b) 21.0 17.2 24.2 25.1 n/a n/a
UNMT Baseline 21.23 17.06 24.50 25.37 14.09 21.63
+ UBWE agreement regularization 22.38++ 18.04++ 25.21++ 27.86++ 16.36++ 23.01++
+ UBWE adversarial training 22.67++ 18.29++ 25.87++ 28.38++ 17.22++ 23.64++

Table 2: Performance (BLEU score) of UNMT. “++” after a score indicates that the proposed method was
significantly better than the UNMT baseline at significance level p <0.01.

the embeddings for each language independently
with fastText3(Bojanowski et al., 2017) (default
settings). The word embeddings were normalized
by length and mean centered before bilingual
projection. We then used VecMap4(Artetxe
et al., 2018a) (default settings) to project two
monolingual word embeddings into one space.

To evaluate the quality of UBWE, we selected
the accuracy of word translation using the top-1
predicted candidate in the MUSE test set as the
criterion.

5.3 UNMT Settings

In the training process for UNMT, we used the
transformer-based UNMT toolkit5 and the settings
of Lample et al. (2018b). That is, we used four

3https://github.com/facebookresearch/
fastText

4https://github.com/artetxem/vecmap
5https://github.com/facebookresearch/

UnsupervisedMT

layers in both the encoder and the decoder. Three
out of the four encoder and decoder layers were
shared between the source and target languages.
The dimension of the hidden layers was set to 512.
Training used a batch-size of 32 and the Adam
optimizer (Kingma and Ba, 2015) with an initial
learning rate of 0.0001, β1 = 0.5. The vocabulary
size was set to 60k by concatenating the source
and target corpora. We performed 140 epochs6

(approximately 500K iterations) to train every
model. The case-sensitive BLEU score computed
with the multi − bleu.perl script from Moses7

was used as the evaluation metric. For model
selection, we followed the strategy described by
Lample et al. (2018a). That is, the BLEU score
computed between the original source sentences

6The definition of epoch in UNMT is different from that
in NMT. We followed the settings in Lample et al. (2018b)’s
toolkit, i.e., 3500 iterations as one epoch.

7https://github.com/moses-smt/
mosesdecoder

https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/fastText
https://github.com/artetxem/vecmap
https://github.com/facebookresearch/UnsupervisedMT
https://github.com/facebookresearch/UnsupervisedMT
https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
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and their reconstructions was used as the criterion.
We selected the model that had the highest average
BLEU score over the two translation directions.

For the proposed methods, both UBWE
agreement regularization and UBWE adversarial
training were added as objective functions at
the beginning of UNMT training. The detailed
parameter settings are discussed in Section 6.

5.4 Performance

Figure 4 shows the trend in UBWE quality and
BLEU score during UNMT training on Fr-En and
Ja-En. Our observations are as follows:

1) For all systems, the UBWE accuracy
decreases during UNMT training. This is
consistent with our finding in the preliminary
experiments.

2) For the system with UBWE agreement
regularization and UBWE adversarial training,
UBWE accuracy decreased much more slowly
than in the original baseline system. This indicates
that the proposed methods effectively mitigated
the degradation of UBWE accuracy.

3) Regarding the two proposed methods,
UBWE agreement regularization was better at
mitigating the degradation of UBWE accuracy
than UBWE adversarial training.

Table 2 presents the detailed BLEU scores of
the UNMT systems on the De-En, Fr-En, and Ja-
En test sets. Our observations are as follows:

1) Our re-implemented baseline performed
similarly with the state-of-the-art method of
Lample et al. (2018b). This indicates that the
baseline is a strong system.

2) The proposed methods significantly
outperformed the corresponding baseline in
all the language pairs by 1∼3 BLEU scores.

3) Regarding the two proposed methods,
UBWE adversarial training performed slightly
better than UBWE agreement regularization
by BLEU score, although UBWE agreement
regularization was better at maintaining UBWE
accuracy. The reason may be that agreement
regularization is just added to the training
objective of UNMT. In comparison, UBWE
adversarial training is jointly trained with UNMT,
thus has more interaction with UNMT model.

6 Discussion

We now analyze the effect of the hyper-
parameters. There are two primary factors

that affect the performances of the proposed
methods: the synthetic word-pair dictionary size
for UBWE agreement regularization and λ for
UBWE adversarial training.

6.1 Effect of Dictionary Size

We first evaluated the impact of the synthetic
word-pair dictionary size |Dict| during UBWE
agreement regularization training on the Fr-En
task. As indicated by Table 3, almost all models
with different dictionary sizes outperformed the
baseline system. This indicates that the proposed
method is robust.

Dict Size Fr-En En-Fr
BLEU BLEU

Baseline 24.50 25.37
20K 25.15 27.18
10K 25.10 27.48
5K 25.14 27.58
3K 25.21 27.86
1K 25.25 27.40
500 25.13 27.07

Table 3: Effect on Dictionary Size

We also investigated the relationship between
dictionary size and UBWE accuracy. As shown in
Fig. 5, a larger dictionary size results in a slower
decrease in UBWE accuracy. This indicates that
a larger dictionary size helps estimate a better
UBWE agreement. However, larger dictionary
size did not always obtain a higher BLEU as
shown in Table 3. The model with a dictionary
size of 3000 achieved the best performance.
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Figure 5: UBWE accuracy with respect to dictionary
size on the Fr-En test set during UNMT training.
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6.2 Effect of Hyper-parameter λ
In Figure 6, we empirically investigated how the
hyper-parameter λ in Eq. (4) affects the UNMT
performance on the Fr-En task. The selection of λ
influences the role of the LBWE across the entire
UNMT training process. Larger values of λ cause
the LBWE to play a more important role than the
back-translation and denoising loss terms. The
smaller the value of λ, the less important are the
LBWE . As the Fig. 6 shows, λ ranging from 0.01
to 10 nearly all enhanced UNMT performance and
a balanced λ = 1 achieved the best performance.

6.3 Efficiency
We now discuss the efficiency of our proposed
methods. Table 4 indicates that UBWE agreement
regularization does not increase the number of
parameters. UBWE adversarial training adds
very few parameters. The training speed of
these methods is almost the same. In addition,
the proposed methods do not affect the UNMT
decoding. Thus, our proposed methods do not
affect the speed of the model.

Parameters Speed
Baseline 120,141K 3784
UBWE agreement regularization 120,141K 3741
UBWE adversarial training 120,764K 3733

Table 4: Analysis on parameters and training speed
(number of processed words per second on one P100).

7 Related Work

The supervised BWE (Mikolov et al., 2013),
which exploits similarities between the source
language and the target language through a linear
transformation matrix, serves as the basis for many

NLP tasks, such as machine translation (Bahdanau
et al., 2015; Vaswani et al., 2017; Chen et al.,
2018b; Zhang and Zhao, 2019), dependency
parsing (Zhang et al., 2016; Li et al., 2018),
semantic role labeling (He et al., 2018; Li et al.,
2019). However, the lack of a large word-
pair dictionary poses a major practical problem
for many language pairs. UBWE has attracted
considerable attention. For example, Artetxe
et al. (2017) proposed a self-learning framework to
learn BWE with a 25-word dictionary, and Artetxe
et al. (2018a) extended previous work without
any word dictionary via fully unsupervised
initialization. Zhang et al. (2017) and Conneau
et al. (2018) proposed UBWE methods via
generative adversarial network training.

Recently, several UBWE methods (Conneau
et al., 2018; Artetxe et al., 2018a) have been
applied to UNMT (Artetxe et al., 2018c; Lample
et al., 2018a). These rely solely on monolingual
corpora in each language via UBWE initialization,
denoising auto-encoder, and back-translation. A
shared encoder was used to encode the source
sentences and decode them from a shared latent
space (Artetxe et al., 2018c; Lample et al., 2018a).
The difference is that Lample et al. (2018a) used a
single shared decoder and Artetxe et al. (2018c)
leveraged two independent decoders for each
language. Yang et al. (2018) used two independent
encoders for each language with a weight-sharing
mechanism to overcome the weakness of retaining
the uniqueness and internal characteristics of
each language. Lample et al. (2018b) achieved
remarkable results in several similar languages
such as English-French by concatenating two
bilingual corpora as one monolingual corpus and
using monolingual embedding pre-training in the
initialization step. This initialization achieves
better performance than other UBWE methods.
However, it does not work in some distant
language pairs such as English-Japanese. This is
why we did not use this initialization process for
UBWE in our method.

In addition, an alternative unsupervised method
based on statistical machine translation (SMT)
was proposed (Lample et al., 2018b; Artetxe et al.,
2018b). The unsupervised machine translation
performance was improved through combining
UNMT and unsupervised SMT (Marie and Fujita,
2018; Ren et al., 2019; Artetxe et al., 2019). More
recently, Lample and Conneau (2019) achieved
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better UNMT performance through introducing
the pretrained language model. Neural network
based language model has been shown helpful in
supervised machine translation (Wang et al., 2014;
Wang et al., 2018; Marie et al., 2018). We think
that the proposed agreement mechanism can work
with the pretrained language model.

8 Conclusion

UBWE is a fundamental component of UNMT. In
previous methods, the pre-trained UBWE is only
used to initialize the word embedding of UNMT.
In this study, we found that the performance of
UNMT is significantly affected by the quality
of UBWE, not only in the initialization stage,
but also during UNMT training. Based on this
finding, we proposed two joint learning methods
to train UNMT with UBWE agreement. Empirical
results on several language pairs show that the
proposed methods can mitigate the decrease in
UBWE accuracy and significantly improve the
performance of UNMT.
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