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Abstract

In visual communication, text emphasis is
used to increase the comprehension of writ-
ten text and to convey the author’s intent.
We study the problem of emphasis selec-
tion, i.e. choosing candidates for emphasis
in short written text, to enable automated de-
sign assistance in authoring. Without know-
ing the author’s intent and only considering
the input text, multiple emphasis selections
are valid. We propose a model that employs
end-to-end label distribution learning (LDL)
on crowd-sourced data and predicts a selection
distribution, capturing the inter-subjectivity
(common-sense) in the audience as well as the
ambiguity of the input. We compare the model
with several baselines in which the problem is
transformed to single-label learning by map-
ping label distributions to absolute labels via
majority voting.

1 Introduction

Visual communication relies heavily on images
and short texts. Whether it is flyers, posters, ads,
social media posts or motivational messages, it is
usually highly designed to grab a viewer’s atten-
tion and convey a message in the most efficient
way. For text, word emphasis is used to capture
the intent better, removing the ambiguity that may
exist in some plain texts. Word emphasis can clar-
ify or even change the meaning of a sentence by
drawing attention to some specific information. It
can be done with colors, backgrounds, or fonts, or
with styles like italic and boldface.

Some graphic design applications such as
Adobe Spark1 perform automatic text layout using
templates that include images and text with differ-
ent fonts and colors. However, their text layout
algorithms are mainly driven by visual attributes
like word length, rather than the semantics of the

1https://spark.adobe.com

(a) (b)

Figure 1: Two different text layouts emphasizing dif-
ferent parts of the sentence.

text or the user’s intent, which can lead to un-
intended emphasis and the wrong message. Fig-
ure 1a shows an example that is aesthetically ap-
pealing but fails to effectively communicate its in-
tent. Understanding the text would allow the sys-
tem to propose a different layout that emphasizes
words that contribute more to the communication
of the intent, as shown in Figure 1b.

We investigate models that aim to understand
the most common interpretation of a short piece
of text, so the right emphasis can be achieved au-
tomatically or interactively. The ultimate goal is
to enable design assistance for the user during au-
thoring. The main focus is on short text instances
for social media, with a variety of examples from
inspirational quotes to advertising slogans. We
model emphasis using plain text with no additional
context from the user or the rest of the design.

This task differs from related ones in that
word emphasis patterns are person- and domain-
specific, making different selections valid depend-
ing on the audience and the intent. For example,
in Figure 1b, some users might prefer to just em-
phasize “knowledge” or “good.” To tackle this,
we model emphasis by learning label distributions
(LDL) with a deep sequence labeling network and
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the KL-Divergence loss function. LDL allows
us to effectively capture the label ambiguity and
inter-subjectivity within the annotators. Unlike
single- or multi-label learning, LDL allows direct
modeling of different importance of each label to
the instance (Geng, 2016). The proposed model
yields good performance despite the small amount
of training data and can be used as a baseline for
this task for future evaluations.

Our main contributions are: (1) Introducing a
new NLP task: emphasis selection for short text
instances as used in social media, learned from
a new dataset. (2) Proposing a novel end-to-
end sequence labeling architecture utilizing LDL
to model the emphasis words in a given text.
(3) Defining evaluation metrics and providing
comparisons with several baselines to assess the
model performance.

2 Related Work

A large amount of work in NLP addresses finding
keywords or key-phrases in long texts from scien-
tific articles, news, etc. (Augenstein et al., 2017;
Zhang et al., 2016). Keyword detection mainly fo-
cuses on finding important nouns or noun phrases.
In contrast, social media text is much shorter, and
users tend to emphasize a subset of words with
different roles to convey specific intent. Empha-
sis words are not necessarily the words with the
highest or lowest frequency in the text. Often a
high sentiment adjective can be emphasized, such
as Hot in Hot Summer. Generally, word empha-
sis may express emotions, show contrast, capture
a reader’s interest or clarify a message.

In a different context, modeling word emphasis
has been addressed in expressive prosody genera-
tion. Most studies detect emphasis words based on
acoustic and prosodic features that exist in spoken
data (Mishra et al., 2012; Chen and Pan, 2017).
More recently, few works model emphasis from
text to improve expressive prosody generation in
modern Text-To-Speech (TTS) systems (Nakajima
et al., 2014; Mass et al., 2018). For example,
(Mass et al., 2018) trained a deep neural network
model on audience-addressed speeches to predict
word emphasis. The dataset consists of relatively
long paragraphs which are labeled by four anno-
tators based on words that clearly stand out in a
recorded speech.

Many approaches have been proposed to deal
with annotations coming from multiple annota-

tors by essentially transforming the problem into
single-label learning. Some rely on majority vot-
ing e.g. (Laws et al., 2011). More recent works
(Yang et al., 2018; Rodrigues et al., 2014; Ro-
drigues and Pereira, 2018) use different strategies
to learn individual annotator expertise or reliabil-
ity, helping to infer the true labels from noisy and
sparse annotations. All these approaches share one
key aspect: only one label sequence is correct and
should be considered as ground truth. This is con-
trary to the ambiguous nature of our task, where
different interpretations are possible. Our solution
is to utilize label distribution learning (Subsec-
tion 3.2). LDL methods have been used before to
solve various visual recognition problems such as
facial age prediction (Rondeau and Alvarez, 2018;
Gao et al., 2017). We are the first to introduce LDL
for sequence labeling.

3 Emphasis Selection

3.1 Task Definition

Given a sequence of words or tokens C =
{x1, ..., xn}, we want to determine the subset S of
words in C that are good candidates to emphasize,
where 1 ≤ |S| ≤ n.

3.2 Label Distribution Learning

We pose this task as a sequence labeling problem
where the model assigns each token x from C a
real number dxy to each possible label, represent-
ing the degree to which y describes x. Where
dxy ∈ [0, 1] and

∑
y d

x
y = 1. We use IO scheme

y ∈ {I,O}, where “I” and “O” indicate emphasis
and non-emphasis respectively. The final set of Si

can be generated by selecting tokens with different
strategies (Subsection 5.3).

3.3 Dataset

We obtained 1,206 short text instances from
Adobe Spark, which will be publicly available
along with their annotations2. This collection
contains a variety of subjects featured in flyers,
posters, advertisement or motivational memes on
social media. The dataset contains 7,550 tokens
and the average number of tokens per instance is
6.16, ranging from 2 to 25 tokens. On average,
each instance contains 2.38 emphases and the ra-
tio of non-emphasis to emphasis tokens is 1.61.

2http://ritual.uh.edu/resources/
emphasis-2019/

http://ritual.uh.edu/resources/emphasis-2019/
http://ritual.uh.edu/resources/emphasis-2019/
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Words A1 A2 A3 A4 A5 A6 A7 A8 A9 Freq. [I,O]
Enjoy I I I I I O I O O [6,3]

the O O O O O O O O O [0,9]
Last O O O O I I O O O [2,7]
Bit O O O O I I O O I [3,6]
of O O O O O O O O O [0,9]

Summer I I I O I O I I O [6,3]

Table 1: A short text example from our collected
dataset along with its nine annotations.

We used Amazon Mechanical Turk and asked
nine annotators to label each piece of text.
To ensure high quality annotation, we included
carefully-designed quality questions in 10 percent
of the hits. We obtained a Fleiss’ kappa agreement
(Fleiss, 1971) of 63.59, which compared to simi-
lar tasks proves the subjectivity and multi-answer
nature of our problem. We noticed higher anno-
tation agreement in shorter length instances (2 to
5 words). Having many extremely short pieces of
text in the dataset (∼60%) increased the annota-
tion agreement.

We split up the data randomly into training
(60%), development (10%) and test (30%) sets for
further analysis. Table 1 shows an example of text
annotated with the IO annotations. Ultimately, we
compute the label distribution for each instance,
which corresponds to the count per label normal-
ized by the total number of annotations.

4 Model

We use an LSTM-based sequence labeling model
to learn emphasis patterns. Figure 2 shows the
overall architecture of the proposed model (DL-
BiLSTM). Given a sequence of words, the model

w1
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w4
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+ 

Attention 
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connected
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[I,O]
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Figure 2: DL-BiLSTM Architecture

is to label each word with its appropriate label
distribution. Words are represented with word
embeddings for each input word sequence. We
use two stacked bidirectional LSTM layers as an
encoder to model word sequence information in

both forward and backward directions. Having
two BiLSTM layers helps to build a deeper fea-
ture extractor; having more than two does not help
the performance as the model becomes too com-
plicated. We investigate the impact of attention
mechanisms to the model (Vinyals et al., 2015;
Zhang et al., 2017), where attention weights ai
represent the relative contribution of a specific
word to the text representation. We compute ai
at each output time i as follows:

ai = softmax(vT tanh(Whhi + bh)) (1)

zi = ai · hi (2)

where hi is encoder hidden state and v and Wh are
learnable parameters of the network. The output
zi is the element-wise dot product of ai and hi.

Subsequently, the inference layer assigns labels
(probabilities) to each word using the hidden states
of word sequence representations. This layer in-
ternally consists of two fully connected layers with
size of 50. We use layer normalization (Ba et al.,
2016) for improved results. 3

KL-Divergence Loss During the training
phase, the Kullback-Leibler Divergence (KL-
DIV) (Kullback and Leibler, 1951) is used as
the loss function. KL-DIV is a measure of how
one probability distribution P is different from a
second reference probability distribution Q:

KL-DIV(P ||Q) =
∑
x∈X

P (x) log
Q(x)

P (x)

5 Experimental Settings and Results

5.1 Training Details
We use two different word representations: pre-
trained 100-dim GloVe embedding (Pennington
et al., 2014), and 2048-dim ELMo embedding (Pe-
ters et al., 2018). We use BiLSTM layers with
hidden size of 512 and 2048 when using GloVe
and ELMo embeddings respectively. We use the
Adam optimizer (Kingma and Ba, 2014) with the
learning rate set to 0.001. In order to better train
and to force the network finding different activa-
tion paths, we use two dropout layers with a rate
of 0.5 in the sequence and inference layers. Fine-
tuning is performed for 160 epochs, and the re-
ported test result corresponds to the best accuracy
obtained on the validation set.

3The implementation is available online: https://
github.com/RiTUAL-UH/emphasis-2019

https://github.com/RiTUAL-UH/emphasis-2019
https://github.com/RiTUAL-UH/emphasis-2019
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Model/Evals Matchm TopK MAX
m=1 m=2 m=3 m=4 k=1 k=2 k=3 k=4

F F F F ROC AUC
Label Distribution Learning Models

M1 DL-BiLSTM+GloVe 54.8 69.4 77.2 81.6 47.5 68.2 78.1 83.6 0.874
M2 DL-BiLSTM+GloVe+Att 54.5 69.7 77.7 80.8 47.2 68.5 78.4 83.2 0.880
M3 DL-BiLSTM+ELMo 57.4 72.5 79.2 83.3 49.7 70.7 79.4 84.7 0.887
M4 DL-BiLSTM+ELMo+Att 56.2 72.8 77.9 83.8 48.7 71.0 78.5 85.0 0.883

Single Label Learning Models
M5 SL-BiLSTM+GloVe 52.6 66.4 75.4 79.3 45.5 65.9 76.9 82.3 0.860
M6 SL-BiLSTM+GloVe+Att 52.3 66.1 77.2 78.5 45.3 65.6 78.1 81.7 0.862
M7 SL-BiLSTM+ELMO 53.7 68.7 76.9 80.5 46.5 67.7 77.9 83.0 0.865
M8 SL-BiLSTM+ELMo+Att 52.0 68.5 77.4 82.3 45.0 67.6 78.2 84.1 0.866
M9 CRF 44.0 65.3 73.0 79.2 38.1 65.0 75.3 82.2 0.818

Table 2: Experimental results of Label Distribution Learning and Single Label Learning models in three evaluation
settings, Matchm, TopK, and MAX. F represents F1-score.

(a) Model’s Output (b) Ground Truth

Figure 3: Heatmap of emphases; highlighting words with model’s output and ground truth probabilities.

5.2 Baselines

We compare our model against alternative setups
in which the label distribution is mapped to binary
labels using majority voting. We include the fol-
lowing single-label models:

SL-BiLSTM This model has a similar architec-
ture compared to the DL-BiLSTM model but the
input is a sequence of mapped labels and the neg-
ative log likelihood is used as the loss function in
the training phase.

CRF This model is a Conditional Random
Fields model (Lafferty et al., 2001) with hand-
crafted features including word identity, word suf-
fix, word shape and word part-of-speech (POS) tag
for the current and nearby words. The CRFsuite
program (Okazaki, 2007) is used for this model.

5.3 Evaluation Settings

To assess the performance of the model, we pro-
pose three different evaluation settings:

Matchm For each instance x in the test set Dtest,
we select a set S(x)

m of m ∈ {1 . . . 4} words with
the top m probabilities according to the ground
truth. Analogously, we select a prediction set Ŝ(x)

m

for each m, based on the predicted probabilities.
We define the metric Matchm as follows:

Matchm :=

∑
x∈Dtest

|S(x)
m ∩ Ŝ

(x)
m |/(min(m, |x|))

|Dtest|

TopK Similarly to Matchm, for each instance x,
we select the top k = {1, 2, ..., 4} words with the
highest probabilities from both ground truth and
prediction distributions. Then Precision, Recall
and F1-score per each k can be computed accord-
ingly.

MAX We map the ground truth and prediction
distributions to absolute labels by selecting the
class with the highest probability. Then we com-
pute ROC AUC. (e.g. a token with label probabil-
ity of [I = 0.75, O = 0.25] is mapped to “I”).

5.4 Results
We run all models over 5 runs with different ran-
dom seeds and report the scores of the best runs
based on the dev set. Table 2 compares different
models in terms of three evaluation settings. M1-
M4 are four variants of the DL-BiLSTM model.
Considering all evaluation settings, LDL models
(M1-M4) either outperform SL-BiLSTM models
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(M5-M8) or perform equally. Using ELMo in-
stead of GloVe yields better results (M3 and M4).
M3 and M4 with higher performance in all three
metrics outperform the other models. Compar-
ing the best results of both approaches, M3 and
M4 with M7 and M8, we observe that both LDL
results are statistically significant under paired t-
test with 95% confidence interval. The improved
performance of label distribution over single-label
learning suggests that in LDL, the model exploits
ordinal relationships among the classes during op-
timization, which results in better generalization.

Our model is more successful in predicting
words with higher human annotation agreement.
As we increase the confidence threshold and only
consider words with higher ground-truth agree-
ment, our model is able to achieve better results.

Figure 3 shows examples from the test set, with
a heatmap showing the model’s predicted score
and ground truth probabilities.

6 SemEval-2020 Benchmarking

We are organizing a SemEval shared task on em-
phasis selection called “Task 10: Emphasis Selec-
tion for Written Text in Visual Media”. In order
to set out a comparable baseline for this shared
task, in this section, we report results of our mod-
els according to the SemEval setting defined for
the task. After the submission of this paper, we
continued to improve the quality of the annotated
data by cleaning the data and fixing the annota-
tions of some noisy instances. The SemEval ver-
sion of Spark dataset contains 1,200 instances with
a different split: 70% training, 10% development
and 20% test sets. We choose Matchm as the eval-
uation metric for this shared task as it provides
a comprehensive evaluation compared to MAX,
as one can choose the value of m. Furthermore,
compared to TopK, the Matchm metric can bet-
ter handle cases where multiple tokens have the
same label distribution according to the annotators
in the ground truth. Table 3 shows the results of all
nine models under the SemEval setting, using the
Matchm evaluation metric. Similar to the results
we showed in Table 2, M3 and M4 both perform
competitively and outperform the other models.

7 Conclusion

We introduced a new task, emphasis selection in
short text instances. Its goal is to develop mod-
els that suggest which part of the text to empha-

Model/Eval Matchm
m=1 m=2 m=3 m=4

Label Distribution Learning Models
M1 DL-BiLSTM+GloVe 54.6 69.2 76.5 81.9
M2 DL-BiLSTM+GloVe+Att 57.5 69.7 76.7 80.7
M3 DL-BiLSTM+ELMo 0.6 71.7 78.7 84.1
M4 DL-BiLSTM+ELMo+Att 59.6 72.7 77.7 84.6

Single Label Learning Models
M5 SL-BiLSTM+GloVe 51.7 66.7 75.0 81.1
M6 SL-BiLSTM+GloVe+Att 52.9 66.5 73.6 0.8
M7 SL-BiLSTM+ELMo 54.2 69.0 77.9 83.0
M8 SL-BiLSTM+ELMo+Att 54.2 70.7 78.5 82.8
M9 CRF 45.4 66.0 72.8 80.2

Table 3: Experimental results in SemEval setting

size. To tackle the subjective nature of the task,
we propose a sequence labeling architecture that
optimizes the model to learn label distributions
by capturing the inter-subjectivity within the audi-
ence. We provide comparisons to models trained
with other objective functions where the ground
truth probabilities are mapped to binary labels and
show that LDL is more effective in selecting the
emphasis. As future work, we plan to investigate
emphasis selection on a larger and more diverse
dataset. We also plan to investigate the role of
word sentiment and emotion intensity as well as
more advanced language models such as BERT
(Devlin et al., 2018) in modeling emphasis.

Acknowledgement

This research began during an internship at Adobe
Research, and was sponsored in part by Adobe Re-
search. We thank reviewers for their valuable sug-
gestions. We also thank Amin Alipour and Niloo-
far Safi for comments that greatly improved the
manuscript.

References

Isabelle Augenstein, Mrinal Das, Sebastian Riedel,
Lakshmi Vikraman, and Andrew McCallum.
2017. Semeval 2017 task 10: Scienceie-extracting
keyphrases and relations from scientific publica-
tions. arXiv preprint arXiv:1704.02853.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Yanju Chen and Rong Pan. 2017. Automatic emphatic
information extraction from aligned acoustic data
and its application on sentence compression. In
Thirty-First AAAI Conference on Artificial Intelli-
gence.



1172

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378.

Bin-Bin Gao, Chao Xing, Chen-Wei Xie, Jianxin Wu,
and Xin Geng. 2017. Deep label distribution learn-
ing with label ambiguity. IEEE Transactions on Im-
age Processing, 26(6):2825–2838.

Xin Geng. 2016. Label distribution learning. IEEE
Transactions on Knowledge and Data Engineering,
28(7):1734–1748.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Solomon Kullback and Richard A Leibler. 1951. On
information and sufficiency. The annals of mathe-
matical statistics, 22(1):79–86.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data.

Florian Laws, Christian Scheible, and Hinrich Schütze.
2011. Active learning with amazon mechanical turk.
In Proceedings of the conference on empirical meth-
ods in natural language processing, pages 1546–
1556. Association for Computational Linguistics.

Yosi Mass, Slava Shechtman, Moran Mordechay, Ron
Hoory, Oren Sar Shalom, Guy Lev, and David
Konopnicki. 2018. Word emphasis prediction for
expressive text to speech. pages 2868–2872.

Taniya Mishra, Vivek Rangarajan Sridhar, and Alistair
Conkie. 2012. Word prominence detection using ro-
bust yet simple prosodic features. In Thirteenth An-
nual Conference of the International Speech Com-
munication Association.

Hideharu Nakajima, Hideyuki Mizuno, and Sumitaka
Sakauchi. 2014. Emphasized accent phrase predic-
tion from text for advertisement text-to-speech syn-
thesis. In Proceedings of the 28th Pacific Asia Con-
ference on Language, Information and Computing.

Naoaki Okazaki. 2007. Crfsuite: a fast im-
plementation of conditional random fields (crfs).
http://www.chokkan.org/software/crfsuite/.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Filipe Rodrigues, Francisco Pereira, and Bernardete
Ribeiro. 2014. Sequence labeling with multiple an-
notators. Machine learning, 95(2):165–181.

Filipe Rodrigues and Francisco C Pereira. 2018. Deep
learning from crowds. In Thirty-Second AAAI Con-
ference on Artificial Intelligence.

Jared Rondeau and Marco Alvarez. 2018. Deep mod-
eling of human age guesses for apparent age esti-
mation. In 2018 International Joint Conference on
Neural Networks (IJCNN), pages 01–08. IEEE.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural In-
formation Processing Systems, pages 2692–2700.

Jie Yang, Thomas Drake, Andreas Damianou, and
Yoelle Maarek. 2018. Leveraging crowdsourcing
data for deep active learning an application: Learn-
ing intents in alexa. In Proceedings of the 2018
World Wide Web Conference on World Wide Web,
pages 23–32. International World Wide Web Con-
ferences Steering Committee.

Qi Zhang, Yang Wang, Yeyun Gong, and Xuanjing
Huang. 2016. Keyphrase extraction using deep re-
current neural networks on twitter. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 836–845.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor An-
geli, and Christopher D Manning. 2017. Position-
aware attention and supervised data improve slot fill-
ing. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing,
pages 35–45.

https://doi.org/10.21437/Interspeech.2018-1159
https://doi.org/10.21437/Interspeech.2018-1159

