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Abstract

In this paper, we present an approach to incor-
porate retrieved datapoints as supporting evi-
dence for context-dependent semantic parsing,
such as generating source code conditioned on
the class environment. Our approach naturally
combines a retrieval model and a meta-learner,
where the former learns to find similar dat-
apoints from the training data, and the latter
considers retrieved datapoints as a pseudo task
for fast adaptation. Specifically, our retriev-
er is a context-aware encoder-decoder model
with a latent variable which takes context en-
vironment into consideration, and our meta-
learner learns to utilize retrieved datapoints
in a model-agnostic meta-learning paradigm
for fast adaptation. We conduct experiments
on CONCODE and CSQA datasets, where
the context refers to class environment in JA-
VA codes and conversational history, respec-
tively. We use sequence-to-action model as
the base semantic parser, which performs the
state-of-the-art accuracy on both datasets. Re-
sults show that both the context-aware retriev-
er and the meta-learning strategy improve ac-
curacy, and our approach performs better than
retrieve-and-edit baselines.

1 Introduction

Context-dependent semantic parsing aims to map
a natural language utterance to a structural logi-
cal form (e.g. source code) conditioned on a giv-
en context (e.g. class environment) (Ling et al.,
2016; Long et al., 2016; Iyyer et al., 2017; Iy-
er et al., 2018; Suhr et al., 2018; Suhr and Artzi,
2018). Standard approaches typically learn a one-
size-fits-all model on the entire training dataset,
which is fed with each example individually in the
training phase and makes predictions for each test
example in the inference phase. However, taking

* Work done while this author was an intern at Microsoft
Research.
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code generation as an example, programmers usu-
ally do not write codes from scratch in the real
world. When they write a piece of code in a par-
ticular environment, they typically leverage past
experience on writing or reading codes in the simi-
lar situation as a guidance. Meanwhile, datapoints
for a task may vary widely (Huang et al., 2018a),
thus it is desirable to learn a “personalized” mod-
el for the target datapoint. In this work, we study
how to automatically retrieve similar datapoints in
a context-dependent scenario and use them as the
supporting evidence to facilitate semantic parsing.

There are recent attempts at exploiting re-
trieved examples to improve the generation of log-
ical form and text. Retrieve-and-edit approaches
(Hashimoto et al., 2018; Huang et al., 2018b; Wu
et al., 2018; Gu et al., 2017) typically first use a
context-independent retriever to find the most rel-
evant datapoint, and then use it as an additional
input of the editing model. However, a context-
aware retriever is very important for the task of
context-dependent semantic parsing. For exam-
ples, as shown in Figure 1, class environment can
help the retriever decide whether the desired code
of “Increment this vector” is generated by directly
calling add() or iterating the vecElements array
to increment each element. Furthermore, retrieve-
and-edit approaches typically consider only one
similar example to edit. In semantic parsing, the
pattern of a structural output may come from dif-
ferent retrieved examples. There also exist works
to utilize multiple examples to guide the semantic
parser (Hayati et al., 2018; Huang et al., 2018a),
however, these approaches either use a heuristic
way to exploit the retrieved logical form such as
increasing the probability of actions (Hayati et al.,
2018) or use a relevance function designed and
learned based on expertise about the target logi-
cal form (Huang et al., 2018a). When we consider
the context environment, it’s nontrivial to design
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a context-aware relevance function since the form
of the context environment varies widely.

Class environment:
public class SimpleVector implements Serializable {
double[] vecElements;
double[] weights;

NL: Adds a scalar to this vector in place.
public void add(double arg0)
]

NL: Increment this vector in place

(a)

public void inc() { this.add(1);}

public void inc() {
(®)

for (int i = 0; i< vecElements.length; i++){

vecElements[i[+=1; } }

Figure 1: Code generation based on the class envi-
ronment and a natural language documentation (N-
L). (a) shows a example of code generation by ap-
plying the class function add(), while (b) iterates the
vecElements array to increment each element.

In this work, we propose to retrieve similar ex-
amples by taking into account the context environ-
ment, and use meta-learning to utilize retrieved ex-
amples to guide the generation of a logical form.
Our retriever is a context-aware encoder-decoder
model that takes context environment into con-
sideration. Specially, the model is based on the
variational auto-encoder framework (Kingma and
Welling, 2013; Rezende et al., 2014), which en-
codes a natural language utterance with the con-
text environment into a latent variable that can pro-
duce the correct logical form. We adopt meta-
learning framework (Finn et al., 2017) to train a
general semantic parser that can quickly adapt to
a new (pseudo) task via few-shot learning, where
multiple retrieved examples are viewed as a sup-
port set of a pseudo task. Our approach naturally
make use of multiple similar examples to guide the
semantic parser in the current task.

We evaluate our approach on CONCODE (ly-
er et al., 2018) and CSQA (Saha et al., 2018)
datasets, where tasks are generating source code
conditioned on the class environment in JAVA
codes and answering conversational question over
a knowledge graph conditioned on conversational
history. Results show that our approach achieves
the state-of-the-art performances on both datasets.
We show that coupling retrieval and meta-learning
performs better than two retrieve-and-edit base-
lines. Further analysis show that both the context-
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aware retriever and the meta-learning strategy im-
prove the performance.

2 Task Definition and Datasets

Context-dependent semantic parsing aims to map
a natural language to a structural logical form con-
ditioned on the context environment. In this sec-
tion, we introduce two tasks we study, namely
code generation and conversational question an-
swering, and the datasets we use.

2.1 Context-dependent Code Generation

Figure 1 shows a example of code generation.
Given a natural language (NL) description z, the
goal aims to generate a source code y conditioned
on the class environment c. Formally, the class
environment comprises two kinds of context: (1)
class variables v composed of variable names and
their data type (e.g. double| | vecElements),
and (2) class methods m, including method names
with their return type (e.g. void add()). We con-
duct experiments on the CONCODE! dataset (Iy-
er et al., 2018). The dataset is built from about
33,000 public Java projects on Github that con-
tains NL and codes together with class environ-
ment information.

2.2 Conversational Question Answering

This task aims to answer questions in conversa-
tions based on a knowledge base (KB). We tack-
le the problem in a context-dependent semantic
parsing manner. Specially, the task aims to map
the question x conditioned on conversational his-
tory c into a logical form y, which will be execut-
ed on the KB to produce the answer. The con-
versational history refers to preceding questions
{q1,q2,..,qi_1}. In particular, we use the CSQA?
dataset (Saha et al., 2018) to develop our mod-
el and to conduct the experiments. The dataset
is created based on Wikidata with 12.8M enti-
ties, including 152K/16K/28K dialogs for train-
ing/development/testing.

3 Overview of the Approach

We present our approach in this section, which
first retrieves supporting datapoints from the train-
ing dataset using a context-aware retriever, and
then considers retrieved datapoints as a pseudo

"https://github.com/sriniiyer/concode
’https://amritasahal8l2.github.io/CSQA
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Figure 2: An overview of our approach that couples
context-aware retriever and meta-learning.

task for fast adaptation in a model-agnostic meta-
learning paradigm (Finn et al., 2017). Figure 2
gives an overview of our approach. First, we
sample a batch of examples D’ from the training
dataset D. In meta-learning, there are two opti-
mizing steps, namely the meta-train step (Step 1
in Figure 2) that learns a task-specific learner My
based on the current parameter 6, and the meta-test
step (Step 2 in Figure 2) that updates the parameter
0 based on the evaluation of My . In this work, D’
is used for meta-test process, and retrieved exam-
ples S from the context-aware retriever are used
for meta-training. In the inference phase, We con-
sider the prediction of each test example as a new
task, given retrieved examples from the training
data as the supporting evidence. Instead of apply-
ing the general model My directly, retrieved ex-
amples are used to update the model, and the up-
dated model will be used to make predictions. The
approach is summarized in Algorithm 1.

The details about the context-aware retriever
and the semantic parser model will be introduced
in Sections 4 and Section 5, respectively.

4 Context-Aware Retriever

In this section, we present the model architecture
of our context-aware retriever, the way to use the
model to retrieve similar examples using a dis-
tance metric in the latent space, and how to effec-
tively train the model.

4.1 Model Architecture

Figure 3 illustrates an overview of the retrieval
model in the task of generating source code. Fol-
lowing Hashimoto et al. (2018), our retriever is
a encoder-decoder model based on the variational
autoencoder framework, which encodes a natural
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Algorithm 1 Retrieval-MAML

Input: Training dataset D = (z() ¢l y0)),
step size « and 3
Output: Meta-learner M
1: Training a context-aware retriever R using D.
2: For each example d, we obtain a support set
S retrieved by R
3: Randomly initialize 6 for M
while not done do
Sample a batch of examples D’ from D as
test examples, and 5" = (J e p S 4 are viewed
as training examples
Evaluate VyL(Mpy) using S’, and com-
pute adapted parameters with gradient descen-
t: 0 =0 — aVyeL(My)
Update 6 < 0 — BV L(Mjy ) using D’ for
meta-update
end while

language = with the context environment c into a
latent variable z that can predict the output y.

Encoder We use bidirectional RNNs with L-
STM (Hochreiter and Schmidhuber, 1997) as en-
coders to compute the representation h,, of the nat-
ural language = and the representation h. of the
context environment ¢, where h,, is the hidden s-
tates of the NL encoder at the last token and de-
tails about . for CONCODE and CSQA datasets
are provided in the appendix A.

Latent variable We have two latent variables,
one (z;) is for the current utterance and another
(z.) 1s for the context. We use the concatenation of
z, and z. as the embedding of the natural language
with the context, namely z = [z,; 2¢].

We describe how to map the the natural lan-
guage x into a latent variable z, here. The calcula-
tion of z. is analogous to z,. Following (Hashimo-
to et al., 2018), we choose z; to be a von Mises-
Fisher (vMF) distribution over unit vectors cen-
tered on p,, where both 2, and p, are unit vectors,
and Z,, is a normalization constant depending only
on constant x and the dimension d of z,. The pu,
is calculated by a linear layer followed by a acti-
vation function, and the input is h,.

Z;le(HMITZI)
ey
Other distributions such as the Gaussian distri-
bution can also be used to represent latent vari-
ables, but we choose the vMF in this paper since

p(zx‘x) = UMF(Z'I;,U%N%)
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Figure 3: An overview of our context-dependent retriever.

the KV-divergence is proportional to the squared
Euclidean distance between their respective direc-
tion vectors i with the same « and d. The property
will be used in the next section.

Decoder At the decoding, we first sample z
from p(z|z, c) using the re-parametrization trick
(Kingma and Welling, 2014), and then use an ad-
ditional linear layer over z to obtain the initial hid-
den state of the decoder. We use LSTM as the de-
coder. At each time-step ¢, the current hidden state
s¢ of the decoder is used to predict a word from
the vocabulary. In order to ensure that the target y
is only inferred by the latent variable z, we don’t
incorporate attention or copying mechanism. The
strategy is also used in Hashimoto et al. (2018).

4.2 Retrieve Examples

We use KL-divergence as the distance metric to re-
trieve similar examples in the latent space. In par-
ticular, the KL divergence between two vMF dis-
tributions with the same concentration parameter
K is calculated as follows, where 1, o € RA-1
and Cy, is calculated as Equation 3.

KL(uMF (1, 5)|[[oMF (p2, 5)) = Ciella—pa|[3

2)
1, stands for the modified Bessel function of the
first kind at order d. Since Cy only depends on
r and d, the KL divergence is proportional to the
squared Euclidean distance between their respec-
tive direction vectors p with the same « and d.
More details about the proof of this proposition
can be found in (Hashimoto et al., 2018).

I
o —r da/2(K)
2L4/5-1(K

Given two examples (z, ¢) and (2/, ¢'), the KL di-
vergence between their distributions of latent vari-

3)

ables (i.e. p(z|z,c) and p(z|2’,)) is equivalent
to the distance calculated as given in Equation 4.
The retriever will find top-K nearest examples ac-
cording to the distance.

distance = K L(p(z|z, ¢)||p(z|2’, c))
= KL(p(z|x)|lp(z2]2"))
+ K L(p(zl)]|p(zc|c’))
= Clllia = 1|13 + llne — pell3)
“)

4.3 Training

Our entire approach corresponds to the following
generative process. Given a example (z,c), we
first use the retriever p,e:(S|z,c) to find similar
examples S as a support set and then generate an
output y by a meta-learner model py,(y|z, ¢, S)
based on S. Therefore, the probability distribution
over targets y is formulated in Equation 5.

pylz.c) = > pm(yle,c, S)prer(Slz,c)  (5)
ScD

A basic idea for learning the retriever might be
maximizing the marginal likelihood by jointly
learning, but it is computationally intractable. In-
stead, we train the retriever in isolation, assum-
ing that semantic parser provides the true condi-
tional distribution over the target y given context
¢ and retrieved examples .S under the joint distri-
bution pyet(S|x, ¢)pgata(z, ¢, y). Then, we opti-
mize a lower bound for the marginal likelihood un-
der this semantic parser (Hashimoto et al., 2018),
which decomposes the reconstruction term and the
KL divergence as follows.

lng(y|I,C) > Ezwp(z\m,c)logp(ylz)
—E{(@ )} rpre KL(p(2]2, 0)l[p(2]2", 1)) (6)

According to Equation 4, the upper bound of
KL(p(z|z,c)||lp(z]2’, ")) is 8C}. Therefore, we
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can maximize this worst-case lower bound, where
Cy is constant in our case. This lower bound
objective is analogous to the recently proposed
hyperspherical variational autoencoder (Davidson
et al., 2018; Xu and Durrett, 2018).

logp(y|x, C) > Ezwp(z|:c,c)logp(y‘z) —8C, (1)

Thus, we optimize the context-aware retriever by
maximizing £ (.|q,)l09p(y|2).

5 Semantic Parser

Recently, sequence-to-action models (Yin and
Neubig, 2017; Chen et al., 2018; Iyer et al., 2018;
Guo et al., 2018) have achieved strong perfor-
mance in semantic parsing, which consider the
generation of a logical form as the prediction of
a sequence of actions (e.g. derivation rules in a
defined grammar). We use two context-dependent
sequence-to-action models (Iyer et al., 2018; Guo
et al., 2018) as the base semantic parsers, both of
which take a natural language with the context en-
vironment as the input and outputs an action se-
quence. Both models achieve state-of-the-art on
CONCODE and CSQA datasets.

In the task of code generation, the JAVA ab-
stract grammar contains a set of production rules
composed of an non-terminal and multiple sym-
bols (e.g. Statement — return Expression).
We represent a source code as an Abstract Syntax
Tree (AST) by applying several production rules
(Aho et al., 2007). The sequence of production
rules applied to generate an AST is viewed as an
action sequence a1, ..., a,, where an action a refer-
s to a production rule. To access to the context
environment, we introduce several special action-
s. For examples, two actions IdentifierNT —
ClassMethod and ClassMethod — constant
are used to invoke class methods. The former ac-
tion means that the identifier comes from class
methods, and the latter is an action used for in-
stantiating C'lassM ethod by a copying mechanis-
m (Gu et al., 2016). In the task of conversational
question answering, we convert the logical form
into a action sequence using the similar grammar
defined in (Guo et al., 2018).

Specially, a bidirectional LSTM takes a source
sentence as the input, and feeds the concatenation
of both ends as the initial state of the decoder. The
decoder has another LSTM to generate an action
sequence in a sequential way. At each time-step ,

the decoder calculates the current hidden state s¢¢
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as Equation 8, where s is the last hidden state,
ny is the current non-terminal to be expanded, and
yr—1 is the previously predicted action. p,, and
sp, are the parent action and the hidden state of
the decoder respectively, which produce the cur-
rent non-terminal. If the previously predicted ac-
tion is an instantiated action, the embedding y;—1
is the representation of the selected constant.

Stdec = LSTM(S?ECD [nt; Yt—15Pnys Snt]) (®)

In order to generate a valid logical form, the
model incorporates an action-constrained gram-
mar to filter illegitimate actions. An action is le-
gitimate if its left-hand non-terminal is the same
as the current non-terminal to be expanded. Let
us denote the set of legitimate actions at the time
step t as A; = {ai,...,an}. The probability dis-
tribution over the set is calculated as Equation 9,
where v; is the one-hot indicator vector for a;, W,
is model parameter, and a ¢ stands for the preced-
ing actions of the ¢-th time step.

emp(viTWasfec)

p(ai‘a<t7 $) =

- ©
Pasea, €xp(v] Wasi™)

For instantiated actions (e.g. ClassMethod —
constant), the probability of a constant m being
instantiated at time-step ¢ is calculated as Equa-
tion 10, where W is model parameter, v,, is the
embedding of the constant.

exp(vhtanh(W sie))
> exp(vl tanh(W sdec))
(10)
Please see more details about the model hyper-
parameters in the Appendix B.

p(mlac, ) =

6 Experiment

6.1 Model Comparisons on CONCODE

Table 1 reports results of different approaches on
the CONCODE dataset. We use Exact match ac-
curacy as the major evaluation metric, which mea-
sure whether the generated program is exactly cor-
rect. Following Iyer et al. (2018), we also report
BLEU-4 score (Papineni et al., 2002) between the
reference and generated code as a reference. These
approaches are divided into three groups. The first
group is retrieval ONLY, which directly returns the
top-ranked retrieved example. The second group
report numbers of existing systems and our base



Dev Test
Methods Exact BLEU | Exact BLEU
Retrieval ONLY
TFIDF 1.25  17.78 | 1.50 19.73
Context-independent Retrieval 0.85 19.63 | 0.80 21.98
Context-dependent Retrieval 1.30 21.21 1.00 2494
Parsing-based methods without retrieved examples
Seq2Seq 290 21.00 | 320 23.51
Seq2Prod (Yin and Neubig, 2017) 5.55 21.00 | 665 21.29
Iyer et al. (2018) 7.05 2128 | 8.60 22.11
Seq2Action 775 2247 | 915 23.34
Parsing-based methods with retrieved examples
Seq2Action+Edit vector (Context-independent Retrieval) 6.6 21.27 | 790 22.51
Seq2Action+Edit vector (Context-aware Retrieval) 775  20.69 | 9.20 22.68
Seq2Action+Retrieve-and-edit (Context-independent Retrieval) | 5.55  21.27 | 7.05 22.74
Seq2Action+Retrieve-and-edit (Context-aware Retrieval) 7.55 2220 | 930 23.95
Seq2Action+tMAML (Context-independent Retrieval) 9.15 2148 | 9.85 2322
Seq2Action+tMAML (Context-aware Retrieval, w/o finetune) 8.30 21.27 | 10.30 24.12
Seq2Action+MAML (Context-aware Retrieval) 845 21.32 | 10.50 24.40

Table 1: Performance of different approaches on the CONCODE dataset.

model Seq2Action, all of which do not use re-
trieved examples. Models in the last group utilize
retrieved examples.

From the first group, we can see that directly
using the retrieved output has extremely low Ex-
act score since of mismatching environment vari-
ables and methods, which means that its mean-
ing is incorrect. Yet, the BLEU score is accept-
able, which means that some constituents might
be useful. In the second group, we compare
parsing based methods without retrieved exam-
ples. As we can see, our Seq2Action model out-
performs others models, resulting in the state-of-
the-art accuracy without using retrieved examples.
In the third group, we implement two retrieval-
augmented methods for comparison. Retrieve-
and-edit uses a copying mechanism to copy to-
kens from the retrieved example (Hashimoto et al.,
2018). Edit vector calculates an edit vector by
considering lexical differences between a proto-
type context and current context, and uses the edit
vector as an extra feature (Wu et al., 2018). We
can see that applying the MAML framework to
the Seq2Action model achieves a gain of 1.35%
exact match accuracy. Results also show that our
context-aware retriever performs better than the
context-independent retriever in various settings.
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6.2 Model Comparisons on CSQA

We follow the experiment protocol of Guo et al.
(2018). To make the comparison clearer, we use
F1 score as evaluation metrics for questions whose
answers are sets of entities. Accuracy is used
to measure the performance for questions which
produce boolean and numerical answers. Table 2
shows the results of different methods on the C-
SQA dataset. More detailed numbers are provided
in the appendix C. HRED+KVmem (Saha et al.,
2018) is a encoder-decoder model with key-value
memory network (Miller et al., 2016) to direct-
ly produce answers. D2A (Guo et al., 2018) is a
sequence-to-action model described in Section 5.
Since the dataset does not provide annotated ac-
tion sequence for each question, we follow (Guo
et al., 2018) to use a breadth-first-search algorith-
m to obtain action sequences that lead to correct
answers. However, some of action sequences are
spurious (Guu et al., 2017), in the sense they do
not represent the meaning of questions but get the
correct answers. We use retrieved examples by our
context-aware model to filter out spurious action
sequences. We choose the most similar action se-
quence to retrieved action sequences, measured by
editing distance. We denote the model learned in
this way as S2A.

Table 2 shows that filtering out spurious action



HRED S2A S2A S2A
Methods +KVmem | D2A | S22 | {EditVee | +RANdE | +MAML
Question Type F1
Simple Question (Direct) 13.64% | 91.41% | 92.01% | 91.95% | 92.08% | 92.66%
Simple Question (Co-referenced) 7.26% 69.83% | 71.40% | 7294% | 73.19% | 71.18%
Simple Question (Ellipsis) 9.95% 81.98% | 81.75% | 83.31% | 84.61% | 82.21%
Logical Reasoning (All) 8.33% 43.62% | 42.00% | 43.85% | 41.83% | 44.34%
Quantitative Reasoning (All) 0.96% 50.25% | 45.37% | 46.93% | 42.64% | 50.30%
Comparative Reasoning (All) 2.96% 4420% | 41.51% | 43.96% | 44.46% | 48.13%
Clarification 16.35% | 18.31% | 18.9% 18.42% | 18.70% | 19.12%
Question Type Accuracy
Verification (Boolean) 21.04% | 45.05% | 51.17% | 47.81% | 55.00% | 50.16%
Quantitative Reasoning (Count) 12.13% | 4094% | 46.01% | 44.67% | 43.07% | 46.43%
Comparative Reasoning (Count) 5.67% 17.78% | 16.52% | 17.52% 16.43% | 18.91%

Table 2: Performance of different approaches on the CSQA dataset.

10 1
—8— S2A+MAML

S2A

Exact

/

10% 20%

40% 60% 80% 100%

Percentage of CONCODE Training Data

Figure 4: Comparison between S2A and S2A+MAML
with different portions of supervised data.

sequences brings about 5% point improvement on
boolean and Quantitative Reasoning (Count) ques-
tions. Results also show that applying the MAML
framework performs better than both retrieve-
and-edit approaches, namely RAndE (Hashimoto
et al., 2018) and EditVec (Wu et al., 2018), on the
majority of question types, especially on complex
questions.

6.3 Model Analysis

We study how the amount of training dataset
and retrieved examples impacts the overall perfor-
mance on the CONCODE. From Figure 4, we can
see that S2A+MAML performs better than S2A in
when >20% supervised datapoints are available to
retrieve from. From Figure 5, we can see that the
accuracy increases as the number of retrieved ex-
amples expands. This is consistent with our intu-
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Figure 5: S2A+MAML with different number of re-
trieved examples on the CONCODE devset.

ition that the performance of the semantic parser is
improved by utilizing multiple retrieved examples,
since the pattern of a logical form may come from
different retrieved examples. We did not try larger
number of retrieved examples due to the memory
limit of our GPU device. However, excessive re-
trieved examples may introduce noise, which hurts
the performance of the semantic parser. Therefore,
we need to choose the appropriate amount of re-
trieved examples.

6.4 Case Study

We give a case study to illustrate the retrieved re-
sults by our context-aware retriever, with a com-
parison to the context-independent retriever. Re-
sults are given in Figure 6. We can see that our
retriever can capture semantic content to retrieve.
For examples, in the second row, the current ques-
tion (i.g. “who is the spouse of that one”) has the



Input

Context-Aware Retriever

Context-Independent Retriever

Class environment:

HashMapc<lalr_item, lalr_item> _all;

NL:

Does the set contain a particular item

Code:

boolean function(lalr_item arg0){
return _all.constainsKey(arg0); }

Class environment:
Map<Point, RailwayNode> _nodeMap;
NL:
Check if a node at a specific position exits.
Code:
boolean function(Point arg0){

return _nodeMap.constainsKey(arg0);}

Class environment:

Node root;

Node get(Node x, String key, int d);
NL: Does the set contain the given key
Code:

boolean function(String arg0){

Node locO==get(root,arg0,0);
if (locO==null) return false;
return loc0.isString; }

Q1: who is the dad of jorgen ottesen
brahe?

A1: otte brahe

Q1: whose child are gio batta bellotti?
A1: matteo bellotti, paola cresipi guzzo
Q2: which person is married to that one?

Q1: which abstract beings have marge
simpson as an offspring?
A1: clancy bouvier, jacqueline bouvier

Q2: who is the spouse of that one?

Q2: who is the spouse of that one?

Figure 6: Examples from the CONCODE dataset (first row) and the CSQA dataset (second row). The retrieved
examples found by context-aware retriever (center panels) and context-independent retriever (right panels) follow

the input (left panels).

same semantic as that one of the context-aware re-
trieved example (i.g. “which person is married to
that one”), which demonstrates that our retriever
learns the semantic of “spouse” and “married” in
the retrieval process. Comparing with the context-
independent retriever, incorporating the context
environment can improve the performance of the
retrieval. Taking the first row as a example, al-
though the NL of the input (i.g. “Does the set
contain a particular item”) have similar seman-
tic to that one of the context-independent retriever
(i.g. “Does the set contain the given key”), source
codes differ greatly because the types of the sets
are different (i.g. HashMap and Node respec-
tively). Our context-aware retriever can find the
example with similar source code by considering
their context environment (both HashMap and
M ap have same constainsK ey function).

6.5 Error Analysis

We analyze a randomly selected set of wrong-
ly predicted 100 instances on the CONCODE
dataset. We observe that 44% examples do not
correctly copy class members, among which the
majority of them lack information about class
member (e.g. the effect of the class method get).
This problem might be mitigated by encoding
source codes of class methods or incorporating de-
scriptions of class members. 24% examples fail to
invoke functions of the library and member class
(e.g. a model is required to know there exit a
size() function in List class to invoke list.size()).
A potential direction to mitigate the problem is

incorporate definitions of the external or system
classes, which requires an updated version of the
dataset. Among the other 32% examples, the ma-
jor problem is that some of retrieved examples are
incorrect. Incorporating more signal to measure
the usefulness of retrieved examples might allevi-
ate this problem.

7 Related work

Semantic parsing is a fundamental problem in
NLP that maps natural languages to logical forms
of their underlying meaning, including variable-
free logic (Zelle and Mooney, 1995; Clarke et al.,
2010), lambda calculus (Zettlemoyer and Collins,
2005; Kushman and Barzilay, 2013), dependency-
based compositional semantics (Liang et al., 2011;
Berant et al., 2013), and database queries (Iyer
etal.,2017; Zhong et al., 2017; Liang et al., 2017).
Recently, context-dependent semantic parsing has
drawn plenty of attention (Long et al., 2016; Iyyer
et al., 2017; Iyer et al., 2018; Suhr et al., 2018;
Suhr and Artzi, 2018), where the generation of
logical forms is conditioned on the context envi-
ronment.

Neural encoder-decoder models have proved ef-
fective in semantic parsing (Neelakantan et al.,
2015; Dong and Lapata, 2016; Yin and Neubig,
2017; Herzig and Berant, 2018). One direction is
to employ sequence-to-sequence model by model-
ing semantic parsing as a sentence to logical form
translation problem (Dong and Lapata, 2016; Ji-
a and Liang, 2016; Ling et al., 2016; Xiao et al.,
2016). However, regarding logical form as a se-
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quence could not guarantee the grammatical cor-
rectness of the generated output. Sequence-to-
Action approaches (Yin and Neubig, 2017; Krish-
namurthy et al., 2017; Iyyer et al., 2017; Chen
et al., 2018) treat semantic parsing as the predic-
tion of a action sequence that can construct logi-
cal forms, which not only guarantee the grammat-
ical correctness of outputs, but also leverage the
strength of sequence-to-sequence model in learn-
ing sequential transformations.

Recently, there are recent attempts at exploiting
retrieved examples to improve the generation of
logical forms. Hashimoto et al. (2018) propose a
retrieve-and-edit approach, including an encoder-
decoder based retrieval model learnt in a task-
dependent way without relying on a hand-crafted
metric, and an editing model with a copying mech-
anism to replicate tokens from the retrieved ex-
ample. Hayati et al. (2018) increase the proba-
bility of actions that can derive the retrieved sub-
trees. Huang et al. (2018a) also use MAML and
treat each example as a new task. The relevance
function for retrieving examples is based on the
predicated type of the SQL query and the question
length. Different from these three works, we focus
on context-dependent semantic parsing, and our
context-aware retriever is learned from the dataset
without the help of a hand-craft relevant function.
Different from (Hashimoto et al., 2018), our ap-
proach naturally make use of multiple similar ex-
amples to improve the semantic parser.

Retrieval-augmented models have also been s-
tudied in text generation (Gu et al., 2017; Huang
et al., 2018b; Guu et al., 2018; Wu et al., 2018).
Gu et al. (2017) use the retrieved sentence pairs as
extra inputs to the NMT model. Wu et al. (2018)
calculate an edit vector by considering lexical d-
ifference between a prototype context and current
context, which is used as extra features.

8 Conclusion

In this paper, we present an approach which com-
bines a context-aware retrieval model and model-
agnostic meta-learning (MAML) to utilize multi-
ple retrieved examples for context-dependent se-
mantic parsing. We show that both context-aware
retriever and MAML are useful on CONCODE
and CSQA datasets. Our approach achieves the
state-of-the-art performances and outperforms two
retrieve-and-edit baselines.
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A Encoders for Context-Aware Retriever

To obtain the representation of the context envi-
ronment h., we first use a 2-step Bi-LSTM to en-
code the variable to get the contextual representa-
tion of class variables h¢. The representations of
class methods h! are also obtained in the same
way. Usually, identifiers are composed of multi-
ple words, such as vecElements. We split them
based on camel-casing and encode them to get
corresponding embedding by a Bi-LSTM. Finally,
the representation of the context environment h,. is
calculated by average pooling over the vectors.

Different from code generation, the context of
conversational question answering refers to previ-
ous questions {q1, g2, .., ¢i—1}. Therefore, we use
a bidirectional LSTM to encode them to get the
representation {hg,, hy,, .., hg, , }. The represen-
tation of the context environment A, is calculated
by average pooling over the vectors.

B Model Training

For the context-aware retriever on both experi-
ment, we set the dimension of the word embed-



Methods HRED+KVmem D2A S2A
Question Type Recall ~ Precision | Recall Precision | Recall Precision
Overall 18.40% 6.30% 64.04%  61.76% | 64.86%  62.51%
Simple Question (Direct) 33.30% 8.58% 93.67%  89.26% | 93.19%  90.86%
Simple Question (Co-referenced) | 12.67% 5.09% 71.31% 68.41% 72.96%  69.91%
Simple Question (Ellipsis) 17.30% 6.98% 86.58%  77.85% | 85.24%  78.54%
Logical Reasoning (All) 15.11% 5.75% 42.49%  44.82% | 44.30%  39.93%
Quantitative Reasoning (All) 0.91% 1.01% 48.59%  52.03% | 45.98%  44.77%
Comparative Reasoning (All) 2.11% 4.97% 44.73%  43.69% | 43.23%  39.93%
Clarification 25.09%  12.13% | 19.36% 17.36% 19.84% 18.04%
Question Type Accuracy Accuracy Accuracy
Verification (Boolean) 21.04% 45.05% 51.17%
Quantitative Reasoning (Count) 12.13% 40.94% 46.01%
Comparative Reasoning (Count) 8.67% 17.78% 16.52%

Table 3: Results of methods without utilizing retrieved examples on the CSQA dataset.

Methods S2A+EditVec S2A+RAndE S2A+MAML
Question Type Recall ~ Precision | Recall Precision | Recall Precision
Overall 65.51%  63.45% | 6554%  63.12% | 6523%  63.02%
Simple Question (Direct) 93.47%  90.48% | 93.72%  90.50% | 94.43%  90.95%
Simple Question (Co-referenced) | 74.11%  71.81% | 74.47%  71.96% 72.72% 69.70%
Simple Question (Ellipsis) 87.01%  7991% | 88.06%  81.42% | 85.89%  78.84%
Logical Reasoning (All) 42.21%  45.63% | 40.55%  43.20% | 42.59%  46.23%
Quantitative Reasoning (All) 48.26%  45.67% | 45.44%  40.17% | 50.77%  49.83%
Comparative Reasoning (All) 46.60%  41.60% | 47.08% 42.11% | 4832%  47.95%
Clarification 19.30%  17.61% | 19.81% 17.71% | 20.01%  18.31%
Question Type Accuracy Accuracy Accuracy
Verification (Boolean) 47.81% 55.00% 50.16%
Quantitative Reasoning (Count) 44.67% 43.07% 46.43%
Comparative Reasoning (Count) 17.52% 16.43% 18.91%

Table 4: Results of methods with utilizing retrieved examples on the CSQA dataset.

ding as 300. The encoder is a 2-layer bidirec-
tional LSTM with hidden states of size 300, and
the decoder is a 4-layer unidirectional LSTM with
hidden states of size 300. We use dropout with a
rate of 0.5, which is applied to the inputs of RNN.
We set the dimension of latent variable and x as
600 and 500, respectively. Model parameters are
initialized with uniform distribution, and updated
with the Adam method. We set the learning rate
as 0.0001 and the batch size as 20. We tune hy-
per parameters and perform early stopping on the
development set.

The hyperparameters of encoder and decoder
are the same as the context-aware retriever. We
follow (Huang et al., 2018a) to train the meta-
learner without back-propagating to second order
gradients. The number of retrieved examples for
the CONCODE dataset and CSQA dataset are 4
and 1 respectively, which are tuned on the devel-
opment sets. We set the step size « of task update
as 0.001 for both experiment. On the CONCODE
dataset, the learning rate (3 is 0.0002 and the test-
batch size is 10, while the CSQA dataset are 0.001
and 32 respectively.

866

C Results on CSQA

Here, we provide more detailed numbers about the
performance of different approaches on the CSQA
dataset. Precision and recall are used as evaluation
metrics for questions whose answers are sets of
entities. Accuracy is used to measure the perfor-
mance for questions which produce boolean and
numerical answers. Table 3 shows the results of
methods without utilizing retrieved examples, and
Table 4 shows the results of retrieval-augmented
methods.



