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Abstract

We address the task of assessing discourse co-
herence, an aspect of text quality that is essen-
tial for many NLP tasks, such as summariza-
tion and language assessment. We propose a
hierarchical neural network trained in a multi-
task fashion that learns to predict a document-
level coherence score (at the network’s top lay-
ers) along with word-level grammatical roles
(at the bottom layers), taking advantage of in-
ductive transfer between the two tasks. We as-
sess the extent to which our framework gen-
eralizes to different domains and prediction
tasks, and demonstrate its effectiveness not
only on standard binary evaluation coherence
tasks, but also on real-world tasks involving
the prediction of varying degrees of coherence,
achieving a new state of the art.

1 Introduction

Discourse coherence refers to the way textual
units relate to one another and form a coher-
ent whole. Coherence is an important aspect of
text quality and therefore its modeling is essen-
tial in many NLP applications, including sum-
marization (Barzilay et al., 2002; Parveen et al.,
2016), question-answering (Verberne et al., 2007),
question generation (Desai et al., 2018), and lan-
guage assessment (Burstein et al., 2010; Soma-
sundaran et al., 2014; Farag et al., 2018). A
large body of work has investigated models for the
assessment of inter-sentential coherence, that is,
assessment in terms of transitions between adja-
cent sentences (Barzilay and Lapata, 2008; Yan-
nakoudakis and Briscoe, 2012; Guinaudeau and
Strube, 2013; Tien Nguyen and Joty, 2017; Joty
et al., 2018). The properties of text that re-
sult in inter-sentential connectedness have been
translated into a number of computational mod-
els – some of the most prominent ones include
the entity-based approaches, inspired by Center-

ing Theory (Grosz et al., 1995) and proposed in
the pioneering work of Barzilay and Lapata (2005,
2008). Such approaches model local coherence in
terms of entity transitions between adjacent sen-
tences, where entities are represented by their syn-
tactic role in the sentence (e.g., subject, object).

Current state-of-the-art deep learning adapta-
tions of the entity-based framework involve the
use of Convolutional Neural Networks (CNNs)
over an entity-based representation of text to dis-
criminate between a coherent document and its
incoherent variants containing a random reorder-
ing of the document’s sentences (Tien Nguyen and
Joty, 2017); as well as lexicalized counterparts of
such models that further incorporate lexical infor-
mation regarding the entities, thereby distinguish-
ing between different entities (Joty et al., 2018).

In contrast to existing approaches, we propose
a more generalized framework that allows neural
models to encode information about the types of
grammatical roles all words in a sentence partic-
ipate in, rather than focusing only on the roles
of entities within a sentence. Inspired by recent
advances in Multi-Task Learning (MTL) (Rei and
Yannakoudakis, 2017; Sanh et al., 2018), we pro-
pose a simple, yet effective hierarchical model
trained in a multi-task fashion that learns to per-
form two tasks: scoring a document’s discourse
coherence and predicting the type of grammati-
cal role (GR) of a dependent with its head. We
take advantage of inductive transfer between these
tasks by giving a supervision signal at the bottom
layers of a network with respect to the types of
GRs, and a supervision signal at the top layers
with respect to document-level coherence.

Our contributions are four-fold: (1) We pro-
pose a MTL approach to coherence assessment
and compare it against a number of baselines. We
experimentally demonstrate that such a framework
allows us to exploit more effectively the inter-
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dependencies between the two prediction tasks
and achieve state-of-the-art results in predicting
document-level coherence; (2) We assess the ex-
tent to which the information encoded in the net-
work generalizes to different domains and predic-
tion tasks, and demonstrate the effectiveness of
our approach not only on standard binary evalu-
ation tasks on the Wall Street Journal (WSJ), but
also on more realistic tasks involving the predic-
tion of varying degrees of coherence in people’s
everyday writing; (3) In contrast to existing work
that has only investigated the impact of a specific
set of grammatical roles (i.e., subject and object)
on coherence, we instead investigate a large set
of GR types, and train the model to predict the
type of role dependents participate in. This al-
lows the network to learn more generic patterns
of language and composition, and a much richer
set of representations than those induced by cur-
rent approaches. In turn, this can be better ex-
ploited at the top layers of the network for pre-
dicting document-level coherence; (4) Finally, and
contrary to previous work, our model does not rely
on the availability of external linguistic tools at
testing time as it directly learns to predict the GR
types.

2 Related Work

Several studies have proposed frameworks for
modeling the textual properties that coherent texts
exhibit. A popular approach is one based on
the entity-grid (egrid) representation of texts, pro-
posed by Barzilay and Lapata (2005, 2008) and in-
spired by Centering Theory (Grosz et al., 1995). In
the egrid model, texts are represented as matrices
of entities (columns) and sentences (rows). Enti-
ties in the matrix are represented by their gram-
matical role (i.e., subject, object, neither), and en-
tity transitions across sentences are used as fea-
tures for coherence assessment. A large body
of work has utilized and extended the egrid ap-
proach (Elsner and Charniak, 2008; Burstein et al.,
2010; Elsner and Charniak, 2011; Guinaudeau and
Strube, 2013). Other features have also been
leveraged, such as syntactic patterns (Louis and
Nenkova, 2012) and discourse relations (Lin et al.,
2011; Feng et al., 2014). Deep learning architec-
tures have also been successfully applied to the
task of coherence scoring, achieving state-of-the-
art results (Li and Jurafsky, 2017; Logeswaran
et al., 2018; Cui et al., 2018). Some have exploited

egrid features in a CNN model aimed at captur-
ing long range entity transitions (Tien Nguyen and
Joty, 2017; Joty et al., 2018); further details are
provided in Section 4.2.

Traditionally, coherence evaluation has been
treated as a binary task, where a model is trained
to distinguish between a coherent document and
its incoherent counterparts created by randomly
shuffling the sentences it contains. The news do-
main has been a popular source of well-written,
coherent texts. Among the popular datasets are
articles about EARTHQUAKES and AIRPLANES
accidents (Barzilay and Lapata, 2008; Guinaudeau
and Strube, 2013; Li and Jurafsky, 2017) and the
Wall Street Journal (WSJ) portion of the Penn
Treebank (Elsner and Charniak, 2008; Lin et al.,
2011; Tien Nguyen and Joty, 2017). Elsner
and Charniak (2008) argue that the WSJ docu-
ments are normal informative articles, whereas
the AIRPLANES and EARTHQUAKES ones have
a more constrained style.

3 Approach

3.1 Neural Single-Task Learning (STL)
Our baseline model, shown in Figure 1, performs
the single task of predicting an overall coherence
score via a hierarchical model based on a Long
Short-Term Memory (LSTM) network (Hochre-
iter and Schmidhuber, 1997). A document is com-
posed of a sequence of sentences {s1, s2, ..., sm}
and, in turn, each sentence consists of a sequence
of words {w1, w2, ..., wn}. The input words are
initialized with vectors from a pre-trained embed-
ding space. A bidirectional LSTM (Bi-LSTM) is
applied to the words in each sentence to get con-
textualized representations, and the output vectors
from both directions are concatenated:

−→
hwt = LSTM(wt,

−−→
hwt−1)

←−
hwt = LSTM(wt,

←−−
hwt+1)

hwt = [
−→
hwt ,
←−
hwt ]

(1)

To compose a sentence representation s, the hid-
den states {hw1 , ..., hwn } of its words are combined
with an attention mechanism:

uwt = tanh(Wwhwt )

awt =
exp(vwuwt )∑
t exp(v

wuwt )

s =
∑
t

awt h
w
t

(2)
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Figure 1: The hierarchical architecture of the STL and MTL models. The dotted red box is specific to the MTL
framework. The dotted purple box is applied if the document contains paragraph boundaries (which is the case for
the Grammarly Corpus in Section 4.1) in order to create paragraph representations prior to the document one.

where Ww and vw are learnable parameters. At-
tention allows the model to focus on the salient
words for coherence and build better sentence rep-
resentations.

Constructing a document representation d is
similar to the sentence one – a second Bi-LSTM
is utilized over sentences {s1, s2, ..., sm} to gen-
erate contextually rich sentence representations:

−→
hsi = LSTM(si,

−−→
hsi−1)

←−
hsi = LSTM(si,

←−−
hsi+1)

hsi = [
−→
hsi ,
←−
hsi ]

(3)

Subsequently, attention is applied over the sen-
tence embeddings {hs1, ..., hsm} to allow the model
to focus on sentences that contribute highly to the
overall coherence of the document:

usi = tanh(W shsi )

asi =
exp(vsusi )∑
i exp(v

susi )

d =
∑
i

asth
s
i

(4)

where W s and vs are trainable weights in the
network. If a document consists of paragraphs
{p1, p2, ..., pl}, a third Bi-LSTM is stacked over
the sentence vectors and the output is aggregated
with another attention layer to compose the docu-
ment vector d.

Finally, the coherence score of a document is
predicted by applying a linear transformation to

the vector d followed by a sigmoid operation to
bound the score in [0, 1]:

ŷ = σ(W d d) (5)

where W d ∈ Rdim is the linear function weight
and dim represents the dimensionality of the doc-
ument vector. In a binary classification task, where
the document is labeled as either coherent or inco-
herent, the model predicts one value for ŷ ∈ [0, 1].
In a multiclass classification setting where there
are multiple classes y ∈ C representing various
degrees of coherence, a document is labeled with
a one-hot vector with length |C| with a value of 1
in the index of the correct class and 0 everywhere
else. The model predicts |C| scores, using Equa-
tion 5 with W d ∈ Rdim×|C|, and learns to maxi-
mize the value corresponding to the gold label.

For the binary task, the network’s parame-
ters are optimized to minimize the negative log-
likelihood of the document’s ground-truth label y,
given the networks prediction ŷ:

L1 = −y log(ŷ)− (1− y)log(1− ŷ) (6)

For the multiclass task, we use mean squared error
to minimize the discrepancy between the one-hot
gold vector and the estimated one:

L1 =
1

|C|

|C|∑
j=1

(yj − ŷj)2 (7)

An alternative approach to the multiclass problem
is to apply a softmax over the predictions instead
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of a sigmoid, and minimize the categorical cross
entropy; however, initial experiments on the devel-
opment set showed that our formation yields better
results.

3.2 Neural Multi-Task Learning (MTL)

The model described in 3.1 performs the single
task of predicting a coherence score for a text; all
model parameters are tuned to minimize the loss
(L1) in Equation 6 or 7 (depending on whether we
are optimizing for a binary or a multiclass classifi-
cation task respectively). We extend this model
to a MTL framework by training it to optimize
a secondary objective at the bottom layers of the
network, along with the main one (L1). Specifi-
cally, the model is trained to predict a document-
level score along with word-level labels indicating
the (predicted) GR type of dependents in the doc-
ument.1 The GRs are based on a predefined set R,
generated from a dependency parser on the train-
ing set (Section 4.3). The set includes the types of
GRs in which a word is a dependent (e.g., nsubj,
amod, xcomp, iobj), and each type r ∈ R is treated
as a class (for the ‘root’ word, the type is root). In
order to predict a probability distribution over R
given a word representation ht (Equation 1), a lin-
ear operation normalized by a softmax function is
applied:

P (yrt |hwt ) = softmax(W rhwt ) (8)

The secondary objective and the word-level loss is
defined as the categorical cross-entropy, i.e., the
negative log-probability of the correct labels:

L2 = −
∑
t

∑
r

yrt logP (y
r
t |hwt ) (9)

Both the main (L1) and secondary (L2) objectives
are optimized jointly (Ltotal), but with different
weights to indicate the importance of each of these
tasks during training:

Ltotal = αL1 + βL2 (10)

where α, β ∈ [0, 1] are the loss weight hyperpa-
rameters. Figure 1 (red-dotted box) presents the
complete MTL framework. MTL allows us to
take advantage of inductive transfer between these
tasks and learn a rich set of representations at the

1We make our code publicly available at https://
github.com/Youmna-H/coherence_mtl

#Docs #Synthetic Docs Avg #Sents
Train 1,376 25,767 21.0
Test 1,090 20,766 21.9

Table 1: Statistics for the WSJ data. #Docs represents
the number of original articles and #Synthetic Docs the
number of original articles + their permuted versions.

#Docs Avg #Sents

Yahoo
Train 1000 7.5
Test 200 7.5

Clinton
Train 1000 6.6
Test 200 6.6

Enron
Train 1000 7.7
Test 200 7.8

Table 2: Statistics for the GCDC.

bottom layers that can be exploited by the top lay-
ers of the network for predicting a document-level
coherence score.

Current state-of-the-art approaches utilizing the
entity-based framework (Joty et al., 2018) focus
solely on the subject and object types. To fur-
ther assess the impact of our extended set of GR
types, we re-train the same MTL model but now
only utilize subject (S) and object (O) GR types as
our secondary training signal. Following the cur-
rent entity-based approaches, all other types are
mapped to X , to represent ‘other’ roles; specifi-
cally, R = {S,O,X}. We refer to this baseline
model as MTLsox.

4 Experiments

4.1 Data and Evaluation Metrics

Synthetic Data. The Wall Street Journal (WSJ)
portion of the Penn Treebank (Elsner and Char-
niak, 2008; Lin et al., 2011; Tien Nguyen and Joty,
2017) is one of the most popular datasets for (bi-
nary) coherence assessment, given its size and the
nature of the texts it contains; i.e. long articles not
constrained in style (Elsner and Charniak, 2008;
Tien Nguyen and Joty, 2017). Following previ-
ous work (Tien Nguyen and Joty, 2017), we also
use the WSJ and specifically sections 00 − 13 for
training and 14 − 24 for testing (documents con-
sisting of one sentence are removed). We create
20 permutations per document, making sure to ex-
clude duplicates or versions that happen to have
the same ordering of sentences as the original arti-
cle. Table 1 presents the data statistics.

To evaluate model performance on this dataset,

https://github.com/Youmna-H/coherence_mtl
https://github.com/Youmna-H/coherence_mtl
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we again follow previous work (Barzilay and La-
pata, 2008; Tien Nguyen and Joty, 2017) and cal-
culate pairwise ranking accuracy (PRA) between
an original text and its 20 permuted counterparts.
Specifically, PRA calculates the fraction of cor-
rect pairwise rankings in the test data (i.e., a co-
herent/original text should be ranked higher than
its permuted counterpart). Following Farag et al.
(2018), we also report the total pairwise ranking
accuracy (TPRA) that extends PRA to comparing
each original text to all permuted texts in the test
set rather than only its own set of permuted coun-
terparts.

Realistic Data. The Grammarly Corpus of Dis-
course Coherence (GCDC) is a newly-released
dataset containing emails and reviews written with
varying degrees of proficiency and care (Lai and
Tetreault, 2018).2 In addition to the WSJ, we em-
ploy this dataset in order to assess the effectiveness
of our coherence model for tasks involving the
prediction of varying degrees of coherence in peo-
ple’s everyday writing. Specifically, the dataset
contains texts from four domains: Yahoo online
forum posts, emails from Hillary Clinton’s office,
emails from Enron and Yelp business reviews. As
some of the reviews from the latter were subse-
quently removed by Yelp, we evaluate our model
on each of the first three domains (Table 2).

Annotators were instructed to rate each docu-
ment with a score ∈ {1, 2, 3}, representing low,
medium and high levels of coherence respectively.
For our experiments, we use the consensus rat-
ing of the expert scores as calculated by Lai and
Tetreault (2018), and train the models to maximize
the probability of the gold class within a multi-
class classification framework (see Section 3). The
gold label distribution is as follows: Yahoo 44.8%
low, 17.9% medium, 37.25% high; Clinton 27.8%
low, 20.3% medium, 51.8% high; Enron 30% low,
20.3% medium, 49.6% high. To evaluate model
performance, we use three-way classification ac-
curacy.

4.2 Models and Baselines

CNN Egrid (Egrid CNNext). We replicate the
model proposed by Tien Nguyen and Joty (2017)
using their source code.3 The authors generate
entity-grid representations of texts (i.e., matrices

2https://github.com/aylai/GCDC-corpus
3https://github.com/datienguyen/cnn_

coherence

of entities as columns and sentences as rows,
where entities are represented by their syntactic
role: subject, object, or other) using the Brown
coherence toolkit.4 They then employ a CNN over
the entity transitions across sentences in order
to capture high-level features and long-range
transitions. Training is performed in a pairwise
fashion where the model learns to rank a coherent
document higher than its incoherent counterparts.
To further improve performance, they extend the
model by including three entity-specific features,
attached to entities’ distributed representations:
named entity type, salience (represented as the
occurrence frequency of entities) and a binary
feature indicating whether the entity has a proper
mention.

Lexicalized CNN Egrid (Egrid CNNlex). The
aforementioned Egrid CNN model is agnostic
to entities’ lexical properties, which are useful
features for the task. To remedy this, Joty et al.
(2018) further extend it with lexical information
about the entities: they represent each entity
with its lexical presentation and attach it to its
syntactic role (S, O, X). For instance, if “Obama”
appears as a subject and an object, there will be
two different representations for it in the input
embedding matrix: Obama-S and Obama-O. Joty
et al. (2018) achieve state-of-the-art results on
the WSJ, outperforming Egrid CNNext without
including the three entity-specific features in their
model. We also replicate their model using the
authors’ source code.5

Local Coherence Model (LC). This model,
initially proposed by Li and Hovy (2014), applies
a window approach to assess a text’s local coher-
ence. Sentences are encoded with a recurrent or
recursive layer and a filter of weights is applied
over each window of sentence vectors to extract
“clique” scores that are aggregated to calculate
the overall document coherence score. We use
an improved variant that captures sentence repre-
sentations via an LSTM and predicts an overall
coherence score by averaging the local clique
scores (Li and Jurafsky, 2017; Farag et al., 2018).
Lai and Tetreault (2018) recently showed that the
LC model achieves state-of-the-art results on the
Clinton and Enron datasets.

4https://bitbucket.org/melsner/
browncoherence

5https://ntunlpsg.github.io/project/
coherence/n-coh-acl18/

https://github.com/aylai/GCDC-corpus
https://github.com/datienguyen/cnn_coherence
https://github.com/datienguyen/cnn_coherence
https://bitbucket.org/melsner/browncoherence
https://bitbucket.org/melsner/browncoherence
https://ntunlpsg.github.io/project/coherence/n-coh-acl18/
https://ntunlpsg.github.io/project/coherence/n-coh-acl18/
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Paragraph sequence (PARSEQ). Lai and
Tetreault (2018) implemented a hierarchical
neural network consisting of three LSTMs to
generate sentence, paragraph and document
representations. The network’s architecture is
similar to our STL model; the key difference is the
attention mechanism we use for aggregation. The
model was tested on the GCDC and was found to
outperform other feature-engineered methods and
give state-of-the-art results on the Yahoo dataset.

Neural Single-Task Learning (STL). We imple-
ment the STL model as described in 3.1. For the
WSJ data, the network utilizes two Bi-LSTMs to
compose sentence and document representations.
For the GCDC, we add a third Bi-LSTM, where
sentence representations are aggregated via
attention to form paragraph vectors. Given these
paragraph vectors, we then apply a Bi-LSTM
followed by attention to compose the document
vectors that are to be scored for coherence.

Neural Multi-Task Learning (MTL). We im-
plement the MTL model as described in 3.2. The
same architecture variants as the STL ones are
applied on the different datasets.

Neural S-O-X Multi-Task Learning (MTLSOX).
As discussed in 3.2, we create another version of
the MTL model where, for each word, we only
predict subject (S), object (O) and ‘other’ (X)
roles.

GR types Concatenation Model (Concatgrs).
Instead of learning to predict the GR types within
a MTL framework, we incorporate them as input
features to the model by concatenating them to
the word representations in the STL framework.
In this setup, we randomly initialize the types
embedding matrix Egr ∈ Rq×g, where g is the
embedding size and q is the number of GR types
in the training data. Each type is then mapped to a
row in Egr and concatenated to its corresponding
word at the model’s input layer. Here, the GRs
are needed as input at both training and test time,
unlike the MTL framework that only requires
them during training. The concatgrs model allows
us to further assess whether the MTL framework
has an advantage over feeding the GR types as
input features.

4.3 Experimental setup

We extract the GR types of words using the Stan-
ford Dependency Parser (v. 3.8) (Chen and Man-

word embed
dim

LSTM hidden dim
α β

hw hs hp

WSJ 50 100 100 - 0.7 0.3
Yahoo 300 100 100 100 1 0.1
Clinton 300 100 200 100 1 0.1
Enron 300 100 100 100 1 0.2

Table 3: Model hypermarameters: w, s and p refer
to word, sentence and paragraph hidden layers respec-
tively; α is the main and β the secondary loss weight.

ning, 2014) and obtain a total of 39 different types
of Universal Dependencies and their subtypes (see
Appendix A for the full list). For the MTLSOX
model, we consider direct objects, indirect objects
and subjects of passive verbs as objects (O). Our
models are initialized with pre-trained GloVe em-
beddings (Pennington et al., 2014). We use mini-
batches of size 32, optimize the models using RM-
SProp (Tieleman and Hinton, 2012), and set the
learning rate to 0.001. Dropout (Srivastava et al.,
2014) is used for regularization with probability
0.5 and applied to the word embedding layer and
the output of the Bi-LSTM sentence layer. Ta-
ble 3 shows the different hyperparameters used for
training.6

Training is done for 30 epochs and performance
is monitored over the development set; the model
with the highest performance (highest PRA on the
synthetic data and highest classification accuracy
on GCDC) on the development set is selected and
applied at testing time. To reduce model variance,
we run the WSJ experiments 5 times with dif-
ferent random initializations and the GCDC ones
10 times (following Lai and Tetreault (2018)),
and average the predicted scores of the ensem-
bles for the final evaluation. For the WSJ data,
we use the same train/dev splits as Tien Nguyen
and Joty (2017), and for GCDC, we follow Lai and
Tetreault (2018) and split the training data with a
9:1 ratio for tuning.

5 Results and Discussion

Binary Classification. Table 4 shows the re-
sults of the binary discrimination task on the
WSJ. The results demonstrate the effectiveness
of our MTL approach using a supervision sig-
nal at the bottom layers based on the words’ GR
types, which significantly outperforms all other
approaches and achieves state-of-the-art results on

6We note that hyperparameters are tuned per domain.
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Model PRA TPRA
Egrid CNNext 0.876 0.656
Egrid CNNlex 0.846 0.566

LC 0.741 0.728
STL 0.877 0.893
MTL 0.932* 0.941*

MTLSOX 0.899 0.913
Concatgrs 0.896 0.908

Table 4: Results of the binary discrimination task on
the WSJ. * indicates significance (p < 0.01) over
all the other models based on the randomization test.
Egrid models are significantly worse than MTLSOX and
Concatgrs on the PRA metric and significantly worse
than all models on TPRA.8

the WSJ (0.932 PRA and 0.941 TPRA).7 The per-
formance of the Egrid neural models shows that
despite their ability to rank a document higher
than its incoherent counterparts (0.876 and 0.846
PRA), they do not generalize when documents
are compared against counterparts from the whole
test set (0.656 and 0.566 TPRA). This could be
partly attributed to the pairwise training strategy
adopted by these models and their inability to
compare entity-transition patterns across different
topics. The table also shows that models that uti-
lize compositions over textual units to form docu-
ment representations (the last four models) are sig-
nificantly more effective than those explicitly uti-
lizing only the local transitions between sentences
(LC model). Furthermore, we observe that incor-
porating GR types (MTL, MTLSOX and Concatgrs)
gives significantly better results compared to the
STL model that is GR-agnostic. The superiority
of the MTL model over Concatgrs and MTLSOX
demonstrates that learning the GR types, within an
MTL framework, allows the model to learn richer
contextual representations (but also to be more ef-
ficient at testing time compared to e.g., Concatgrs
since it does not require external linguistic tools).

To further analyze performance, we calculate
the Pearson correlation between: a) the similar-
ity between a permuted document and its orig-
inal counterpart in terms of the minimum num-
ber of adjacent transpositions needed to transform
the former back to its original version (Lapata,

7Significance is calculated based on the randomization
test (Yeh, 2000).

8Joty et al. (2018) reported 0.885 PRA for their Egrid
CNNlex, which we were unable to replicate using their code;
however, this is still lower compared to our results.

Model Yahoo Clinton Enron
LC 0.535 0.610 0.544

PARSEQ 0.549 0.602 0.532
STL 0.550 0.590 0.505
MTL 0.560 0.620* 0.560*

MTLSOX 0.505 0.585 0.510
Concatgrs 0.455 0.570 0.460

Table 5: Model accuracy on the three-way classifica-
tion task on GCDC. * indicates significance over STL
with p < 0.01 using the randomization test. Results
for PARSEQ and LC are those reported in Lai and
Tetreault (2018) on the same data.

Figure 2: F1 scores for subject and object predictions
with the MTL and MTLSOX models over the first 20
epochs of training. Y-axis: F1 scores; x-axis: epochs.
The graphs are based on the WSJ dev set.

2006), and b) the predicted coherence score for
the permuted document. This allows us to inves-
tigate whether a higher similarity is linked to a
higher coherence score. We observe that MTL,
MTLSOX, Concatgrs and STL have the highest cor-
relations (0.260, 0.232, 0.227, 0.225 respectively),
followed by LC (0.076), Egrid CNNext (−0.0126)
and Egrid CNNlex (−0.069).9 In order to further
analyze the strengths of MTL, we plot in Figure
2 the F1 scores over the training epochs for pre-
dicting the subject and object types using MTL or
MTLSOX. We can see that learning to predict a
larger set of GR types enhances the model’s pre-
dictive power for the subject and object types, cor-
roborating the value of entity-based properties for
coherence.

Three-way Classification. On GCDC (Table 5)
we can see that MTL achieves state-of-the-art per-
formance across all three datasets. Although dif-
ferent evaluation metrics are employed, we note
that the numbers obtained on this dataset are quite
low compared to those on the WSJ. Assessing

9We note that the low correlation is due to the nature of
the task: binary evaluation rather than absolute scoring of
coherence.
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Figure 3: Visualization of the model’s gradients with respect to the input word embeddings for MTL and STL on
the WSJ dev set. Words that contribute the most to coherence scoring (i.e., those with high gradient norms) are
colored: the contribution of words decreases from dark red to lighter tones of orange.

varying degrees of coherence is a more challeng-
ing task: differences in coherence between differ-
ent documents is less pronounced than when tak-
ing a document and randomly shuffling its sen-
tences. When comparing MTL to STL, the for-
mer is consistently better across all datasets, with
significant improvements for two of them.10 Inter-
estingly, we observe that MTLSOX and Concatgrs
do not generalize to the more realistic domain.
As shown in Table 3, our best MTL model uses
smaller β and higher α values on the GCDC com-
pared to the WSJ. This could be attributed to the
performance of the parser and/or the nature of the
GCDC and the properties of (in)coherence it ex-
hibits, compared to the WSJ data. MTL allows the
model more flexibility and control with respect to
the features it learns in order to enhance perfor-
mance on the main task, in contrast to Concatgrs
where the GRs are given directly as input to the
model (yielding the worst performance across all
the GCDC datasets).

The results on GCDC demonstrate that our main
MTL approach generalizes to tasks involving the
prediction of varying degrees of coherence in ev-
eryday writing. In general, however, we observe
that, out of the three gold coherence labels (low,
medium, high) both MTL and STL have difficulty
in correctly classifying documents of medium co-
herence, which can be attributed to the smaller
number of training examples for that class (Sec-
tion 4.1).

Visualization. In an attempt to better understand
what the models have learnt, we visualize the
words that contribute the most to coherence pre-
diction. We calculate the model’s gradients with
respect to the input word embeddings (similarly

10We also note that GR prediction is only required dur-
ing training; therefore, at inference time, MTL uses the same
number of parameters as STL.

to Li et al. (2016)) to determine which words
maximize the model’s prediction (more influen-
tial words should have higher gradient norms).
Figure 3 presents example visualizations obtained
with STL and MTL. We observe that for MTL,
important words are those that are considered the
center of attention: in the first example (top two
sentences) where the document is about seats in
the stock exchange, “seat” and “Seats” are con-
sidered more important than the subject entities.
On the other hand, the STL model considers the
subject of the first sentence (“The American Stock
Exchange”) more important than the object “seat”.
In the second example (last two sentences) where
the document is about a canceled show by the
NBC, for the MTL model, the name of the show
(or part of it) in the first sentence (“Nutt”) is con-
sidered important, as well as “comedy” which also
refers to the show; in addition to “show” in the
second sentence. On the other hand, STL fails
to identify the name of the show as important.
In general, STL seems to be more distracted, fo-
cusing on words that do not necessarily contribute
to coherence (e.g., determiners and prepositions),
whereas MTL seems to be considering more infor-
mative parts of the text.

Qualitative Analysis. Following previous work
(Miltsakaki and Kukich, 2004; Li and Jurafsky,
2017), we perform a small-scale qualitative analy-
sis: we apply our best model to a number of dis-
courses that exhibit different types of coherence
and investigate the predicted coherence scores.
We observe that MTL can capture some aspects
of lexical and centering/referential coherence:

Mary ate some apples. She likes apples. 0.790
Mary ate some apples. She likes pears. 0.720
Mary ate some apples. She likes Paris. 0.742
She ate some apples. Mary likes apples. 0.747
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John went to his favorite music store to buy a pi-
ano. He had frequented the store for many years.
0.753
John went to his favorite music store to buy a pi-
ano. It was a store John had frequented for many
years. 0.743

On the other hand, it is not as good at recog-
nizing temporal order and causal relationships; for
example:

Bret enjoys video games; therefore, he sometimes
is late to appointments. 0.491
Bret sometimes is late to appointments; therefore,
he enjoys video games. 0.499

6 Conclusion

We have presented a hierarchical multi-task learn-
ing framework for discourse coherence that takes
advantage of inductive transfer between two tasks:
predicting the GR type of words at the bottom lay-
ers of the network and predicting a document-level
coherence score at the top layers. We assessed the
extent to which our framework generalizes to dif-
ferent domains and prediction tasks, and demon-
strated its effectiveness against a number of base-
lines not only on standard binary evaluation coher-
ence tasks, but also on tasks involving the predic-
tion of varying degrees of coherence, achieving a
new state of the art. As part of future work, we
would like to investigate the use of contextualized
embeddings (e.g., BERT, Devlin et al. (2018)) for
coherence assessment – as such representations
have been shown to carry syntactic information of
words (Tenney et al., 2019) – and whether they al-
low multi-task learning frameworks to learn com-
plementary aspects of language.
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A Grammatical roles

Type Description
acl

[relcl]
clausal modifier of noun

(adjectival clause)
advcl adverbial clause modifier

advmod adverbial modifier
amod adjectival modifier
appos appositional modifier
aux auxiliary

auxpass passive auxiliary
case case marking
cc

[preconj]
coordinating conjunction

ccomp clausal complement
compound

[prt]
compound

conj conjunct
cop copula

csubj clausal subject
csubjpass clausal passive subject

dep unspecified dependency
det

[predet]
determiner

discourse discourse element
dobj direct object
expl expletive
iobj indirect object
mark marker
mwe multi-word expression
neg negation modifier

nmod
[tmod, poss, npmod]

nominal modifier

nsubj nominal subject
nsubjpass passive nominal subject
nummod numeric modifier
parataxis parataxis

punct punctuation
root root

xcomp open clausal complement

Table 6: The GR types (UDs) extracted from the WSJ
training data. The text inside [] (left column) denotes
the extracted subtypes (language specific types).a The
total number of main types and their subtypes is 39.b

aFor more details about subtypes please see
http://universaldependencies.org/docsv1/
ext-dep-index.html.

bFor the full list of UDs please see http:
//universaldependencies.org/docsv1/u/
dep/index.html.
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